

Econométrie des Séries Temporelles Univariées

Gilles de Truchis

Master 1 ESA

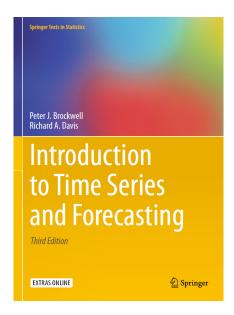
Table of contents

Introduction
AR et MA
Stationnarité et inversibilité
Les processus ARMA
La prévision des ARMA
Introduction à l'estimation
MLE
Sélection de modèle
ARIMAX

Tests de validation
Faits stylisés et rappels
DS versus TS
Intégration fractionnaire
ARMA Saisonniers
Théorie limite standard
Théorie limite non-standard
Tests de racine unitaire
Les régressions factices
Conclusion

Chapter 1

Références



Les séries temporelles

Definition (1)

Un **processus stochastique temporel** noté $\{X_t\}_{t\in\mathbb{Z}}$ ou simplement X_t est une séquence de variables aléatoires ordonnées dans le temps

Definition (2)

Une **série temporelle** notée $\{x_t\}_{t\in\mathbb{T}}$ ou x_t est un segment des réalisations d'un processus stochastique $\{X_t\}_{t\in\mathbb{Z}}$ avec $\mathbb{Z} \supseteq \mathbb{T}$

Definition (3)

Une **série temporelle infinie** notée $\{x_t\}_{t=-\infty}^{\infty}$ est un segment infini des réalisations d'un processus stochastique $\{X_t\}_{t\in\mathbb{Z}}$

Note 1 on suppose ici que le temps est discret ($t \in \mathbb{Z}$) mais $t \in \mathbb{R}$ est possible

Note 2 la terminologie séries temporelle dénote autant x_t que X_t

Caractéristiques distributionnelles des séries temporelles

- Attention à ne pas confondre temps continu v.s. discret et variable continue v.s. discrète
- e.g. 1 Soit l'évolution journalière des cas de contamination au variant Delta
 - $\Rightarrow x_t$ est en temps **discret** mais la réalisation d'une variable **discrète**
- e.g. 2 Soit l'évolution du nombre neutrinos produits par les éruptions solaires
 - $\Rightarrow x_t$ est en temps **continu** mais la réalisation d'une variable **discrète**
- e.g. 3 Soit l'évolution haute fréquence d'un cours de bourse
 - $\Rightarrow x_t$ est en temps **continu** mais la réalisation d'une variable **continue**
- e.g. 4 Soit l'évolution trimestrielle du PIB en France
 - $\Rightarrow x_t$ est en temps **discret** mais la réalisation d'une variable **continue**

Analyse des séries temporelles

- · Les séries temporelles observées révèlent de l'information
 - Sur le processus sous-jacent générateur des données (DGP)
 - ⇒ Qu'est-ce qu'un DGP en séries temporelles ?
- L'approche paramétrique consiste a choisir ex-ante un modèle
 - dont on pourra estimer les paramètres sous certaines hypothèses
 - $\Rightarrow\;$ par des tests on jugera de la performance du modèle choisi
 - $\Rightarrow\,\,$ on pourra également faire des prédictions des valeurs futures
- L'analyse des séries temporelles dépasse l'économie ou la finance
 - physique, hydrologie, climatologie, démographie, etc.

Modélisation des séries temporelles

Definition (4)

Pour une série observée x_t , un **modèle** est une spécification, au moins partielle, des distributions jointes de la séquence de variables aléatoires $\{X_t\}_{t\in\mathbb{Z}}$ dont on postule que les x_t sont des réalisations

- · Dans le meilleur des cas, le modèle probabiliste est complet
 - Pour toute la séquence X_t , on spécifie toutes les distributions jointes du vecteur aléatoire $(X_1, X_2, \dots, X_n)'$ pour $n = 1, 2, \dots$, ou dit autrement

$$\mathbb{P}(X_1 \leq x_1, X_2 \leq x_2, \dots, X_n \leq x_n), \quad -\infty < x_1, \dots, x_n < \infty, \quad n = 1, 2, \dots$$

- · Dans la pratique, obtenir un modèle complet est extrêmement difficile
 - $\Rightarrow\;$ le nombre de paramètre à estimer peut dépasser le nombre de données
- ⇒ Souvent on spécifie seulement les moments 1 et 2

$$\mathbb{E}(X_t) \text{ et } \mathbb{E}(X_{t+h}X_t), \quad t=1,2,\ldots, \quad h=0,1,\ldots$$

- cette approche implique en générale une perte d'information
- elle peut néanmoins se justifier dans le cadre de la prédiction (cf. S25)

Modélisation : un exemple simple

- Le bruit blanc indépendamment et identiquement distribué (i.i.d.)
- X_1, X_2, \ldots , sont des variables aléatoires
 - dont la moyenne est nulle
 - dont les distributions sont identiques
 - dont les distributions sont indépendantes
- Plus formellement, pour F(.) une fonction de répartition :

Definition (5)

Une série temporelle X_t est un bruit blanc i.i.d. si $\mathbb{E}(X_t)=0$, $\forall t$ et si

$$X_t$$
 satisfait $\mathbb{P}(X_1 \leq x_1, \dots, X_n \leq x_n) = \mathbb{P}(X_1 \leq x_1) \dots \mathbb{P}(X_n \leq x_n) = F(x_1) \dots F(x_n)$

et
$$\mathbb{P}(X_{n+h} \leq x | X_1 = x_1, \dots, X_n = x_n) = \mathbb{P}(X_{n+h} \leq x), \ \forall h \geq 1$$
 (indépendamment distribué)

Approche globale de la modélisation des séries temporelles

- Le choix du modèle repose sur les caractéristiques de x_t
- ⇒ Comment identifier ces caractéristiques ?
 - 1 Tracer la série temporelle et examiner son allure
 - o présence d'une tendance?
 - o présence d'une composante saisonnière ?
 - o présence de changement radicaux dans la dynamique?
 - o présence de points aberrants ?
 - 2 Retirer les composantes déterministes (tendance et/ou saisonnalité)
 - 3 Identifier un modèle, l'estimer et examiner les résidus pour le valider
 - 4 Prédire la série à l'aide du modèle et évaluer la qualité des prévisions
 - ⇒ Comparer avec des modèles alternatifs les points 3 et 4

Stationnarité stricte

- Se limiter à spécifier les moments 1 et 2 mène à la **stationnarité faible**
- Mais qu'est-ce que la stationnarité ?

Definition (6)

Un processus stochastique $\{X_t\}_{t\in\mathbb{Z}}$ est strictement stationnaire si

$$(X_1, X_2, \ldots, X_n) \stackrel{d}{=} (X_{1+h}, X_{2+h}, \ldots, X_{n+h})$$

 $pour h, n \ge 1$

- e.g. Un bruit blanc i.i.d. Gaussien est strictement et faiblement stationnaire
- Note 1 Les processus strictement stationnaire ne sont pas forcément faiblement stationnaire
- Note 2 Le terme stationnarité fait néanmoins référence à la forme faible dans la suite du cours

Moments inconditionnels

Definition (7)

On peut exprimer **les moments inconditionnels centrés et non-centrés** de X_t comme des espérances de $h(X_t)$, une fonction continue de X_t

$$\mathbb{E}(h(X_t)) = \int h(X_t) f(X_t) dX_t$$

avec $f(X_t)$ la fonction de densité inconditionnelle de X_t

• Pour calculer l'espérance de X_t on a $h(X_t) = X_t$

$$\mathbb{E}(X_t) = \mu_t$$

• Pour calculer la variance de X_t on a $h(X_t) = (X_t - \mathbb{E}(X_t))^2$

$$\mathbb{V}(X_t) = \sigma_t^2$$

Fonction d'autocovariance

Pour comprendre la forme faible de la stationnarité introduisons la fonction d'autocovariance (ACovF)

Definition (8)

La fonction **d'autocovariance** de X_t est dérivée de la densité jointe de

$$(X_t,X_{t-1},\ldots,X_{t-h})$$

et se note $\gamma_X(t, t+h)$

$$\begin{split} \gamma_X(t,t+h) &= Cov(X_t,X_{t-h}) \\ &= \mathbb{E}\Big((X_t - \mu_t)(X_{t-h} - \mu_{t-h})\Big) \\ &= \int \dots \int (X_t - \mu_t)(X_{t-h} - \mu_{t-h})f(X_t,\dots,X_{t-h})dX_t\dots dX_{t-h} \end{split}$$

avec $f(X_t, \ldots, X_{t-h})$ la fonction de densité inconditionnelle de X_t, \ldots

• $\gamma_X(t,t+h)$ décrit la dépendance de X_t à son passé jusqu'à l'horizon h

Stationnarité faible

Definition (9)

 X_t est **faiblement stationnaire** si

$$\forall t \in \mathbb{Z}, \ \mathbb{E}(X_t) = \mu < \infty$$

$$\forall t, h \in \mathbb{Z}, \ \ \textit{Cov}(X_t, X_{t+h}) = \gamma_X(t, t+h) = \gamma_X(h) < \infty$$

$$\forall t \in \mathbb{Z}, \ \mathbb{V}(X_t) = \sigma_X^2 < \infty \ \textit{car Cov}(X_t, X_{t+h}) = \mathbb{V}(X_t) \ \textit{pour } h = 0$$

- Ici on cherche à résumer la stabilité en loi de X_t seulement à travers ses 2 premiers moments
 - \Rightarrow Cette définition est pertinente dans le cas Gaussien mais plus rarement en général

Note Dans le cas Gaussien, stationnarité stricte et faible sont équivalentes

Ergodicité

• C'est un concept complexe que nous définierons heuristiquement

Definition (10)

Soit X_t un processus strictement stationnaire. Si X_t est ergodique on a alors

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^n Cov(X_t,X_{t+j})=0$$

 Intuition : l'ergodicité impose que la corrélation entre deux observations tend à s'annuler en moyenne lorsque la distance temporelle augmente entre elles

Note Le concept d'ergodicité est utile pour invoquer la loi des grands nombres

Mélange

- Définissons deux ensembles informationnelles (σ -algèbres) :

$$\mathcal{F}_{-\infty}^t = \sigma(\ldots, X_{t-1}, X_t) \text{ et } \mathcal{F}_t^{\infty} = \sigma(X_t, X_{t+1}, \ldots)$$

ainsi que la dépendance entre 2 événements A et B comme

$$|\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$

 \Rightarrow la proba jointe de A et B — la proba de A et B considérés indépendants

Definition (11)

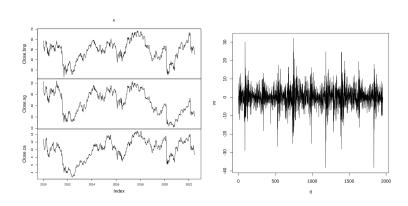
On définie comme coefficients de mélange

$$\alpha(\ell) = \sup_{A \in \mathcal{F}_{-\infty}^{t-\ell}, B \in \mathcal{F}_{t}^{\infty}} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|$$

et X_t comme fortement mélangeant si $\alpha(\ell) \to 0$ quand $\ell \to \infty$ et faiblement mélangeant sinon.

- Note 1 Un processus fortement mélangeant est ergodique (pas de réciproque)
- Note 2 Les règles de mélanges sont importantes pour l'application des TCL

Analyse graphique de la stationnarité



Fonction d'Autocorrélation

Definition (12)

Si X_t est **faiblement stationnaire**, alors sa fonction d'autocovariance existe et on peut construire sa fonction d'autocorrélation

$$\rho_X(h) \equiv \frac{\gamma_X(h)}{\gamma_X(0)} = \frac{\gamma_X(h)}{\sigma_X^2}$$

• A la différence de $\gamma_{\rm X}(h)$, $ho_{\rm X}(h)$ est bornée sur [-1,1]

Note La linéarité de l'opérateur de covariances nous assure par ailleurs que

$$\mathit{Cov}(\mathit{aX} + \mathit{bY} + c, \mathit{Z}) = \mathit{aCov}(\mathit{X}, \mathit{Z}) + \mathit{bCov}(\mathit{Y}, \mathit{Z})$$

si
$$\mathbb{E}(X^2) < \infty$$
, $\mathbb{E}(Y^2) < \infty$, $\mathbb{E}(Z^2) < \infty$ et pour a, b et c des constantes

Note 1 $\gamma_X(h)$ existe pour tous les processus faiblement stationnaires mais pas forcement pour tous les processus strictement stationnaires

Note 2
$$\rho_X(0) = \gamma_X(0)/\gamma_X(0) = 1$$

Autocorrélations partielles

- $ho_{
 m X}(h)$ délivre parfois un résultat ambiguë
- Soit une dépendance non-nulle obtenue aux ordres 1 et 2 :

$$\rho_X(1) \neq 0$$
 et $\rho_X(2) \neq 0$

- Cela reflète-il une dépendance directe entre x_t et x_{t-2} ...
- ... ou une dépendance indirecte liée à une dépendance à l'ordre 1?

$$x_{t-2}
ightarrow x_{t-1}$$
 puis $x_{t-1}
ightarrow x_t$

- \Rightarrow Pour lever cette ambiguïté il faudra purger $x_{t-1} o x_t$
 - Les autocorrélations partielles permettent cela comme nous le verrons par la suite

Exemple de processus stationnaire et non-stationnaire

- Par définition (5), les bruits blancs forts, notés WN(.) par la suite, sont des processus stationnaires Note les processus i.i.d. sont des bruits blancs mais la réciproque ne tient pas
 - Les marches aléatoires sont non-stationnaires (exercice : démontrez cela)

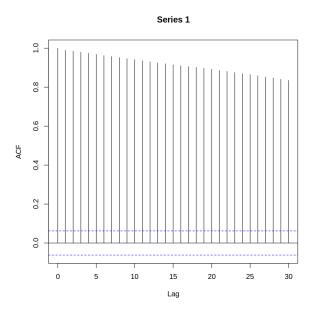
Definition (13)

Une série temporelle X_t définie comme une somme de bruits blancs i.i.d. est appelée marche aléatoire

$$S_t = X_1 + X_2 + \ldots + X_t = \sum_{i=1}^t X_i, \ \forall t > 0$$

et satisfait $\mathbb{E}(S_t)=0$, $\mathbb{E}(S_t^2)=t\sigma_X^2$ et $\gamma_S(t,t+h)=t\sigma_X^2$

Analyse graphique d'une ACF



Autocorrelation et prédiction

- Supposons que X_t soit Gaussien : $X_t \sim \mathcal{N}(\mu_X, \sigma_X^2)$
- $\rho_X(h)$ va décrire la dépendance entre X_t et X_{t+h}
- On peut montrer que la distribution conditionnelle de

$$X_{n+h}|X_n=x_n$$

est donnée par

$$\mathcal{N}(\mu + \rho_X(h)(x_n - \mu), \sigma_X^2(1 - \rho_X(h)^2))$$

 \Rightarrow il s'agit donc d'une distribution prédictive car x_n est observable mais pas X_{n+h}

Note cela suggère que $\mu + \rho_X(h)(x_n - \mu)$ est une prédiction de X_{n+h} car

$$\mathbb{E}(X_{n+h}|X_n=x_n)=\mu+\rho_X(h)(x_n-\mu)$$

• Mais que peut-on dire de la précision de cette prédiction ?

Le critère de l'erreur quadratique moyenne

La prédiction la plus précise sera celle qui minimise la variance de l'erreur de prédiction (MSE)

$$\mathbb{E}(X_{n+h}-m(X_n))^2$$

où m(Y) est une certaine fonction (un prédicteur) de X_n

• Avec $X=X_{n+h}$, $Y=X_n$ et $f_{X|Y}(.)$ la densité conditionnelle on a

$$\mathbb{E}\Big((X-m(Y))^2\Big) = \int_{-\infty}^{\infty} (x-m(y))^2 f_{X|Y}(x|y) dx$$

$$= \int_{-\infty}^{\infty} x^2 f_{X|Y}(x|y) dx - 2m(Y) \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

$$+ m(Y)^2 \int_{-\infty}^{\infty} f_{X|Y}(x|y) dx$$

• C'est donc cette expression que l'on cherche à minimiser

Le meilleur prédicteur dans le cas Gaussien

· Résolvons ce problème d'optimisation :

Note $\int_{-\infty}^{\infty} x^2 f_{X|Y}(x|y) dx$ ne compte pas et $\int_{-\infty}^{\infty} f_{X|Y}(x|y) dx = 1$ donc

$$\begin{split} \arg\min_{m(Y)} \mathbb{E}\Big((X-m(Y))^2\Big) &= \arg\min_{m(Y)} \Big(-2m(Y) \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx + m(Y)^2\Big) \\ &= \arg\min_{m(Y)} \Big(-2m(Y) \mathbb{E}(X|Y) + m(Y)^2\Big) \end{split}$$

· Les conditions de première ordre impliquent donc :

$$\nabla \mathbb{E}\Big((X-m(Y))^2\Big) = -2\mathbb{E}(X|Y) + 2m(Y) = 0 \iff m(Y) = \mathbb{E}(X_{n+h}|X_n)$$

 Ce résultat confirme que le meilleur prédicteur au sens de l'erreur quadratique moyenne (le plus précis) est

$$\mathbb{E}(X_{n+h}|X_n=x_n)=\mu+\rho_X(h)(x_n-\mu)$$

Note 1 En remplaçant on obtient que l'erreur quadratique moyenne est

$$\mathbb{E}(X_{n+h}-m(X_n))^2 = \sigma_X^2(1-\rho_X(h)^2)$$

Le meilleur prédicteur linéaire

- · Dans un cadre non-Gaussien, c'est bien plus complexe...
- ... à moins qu'une hypothèse de linéarité soit faite $m(Y) = \ell(Y) = aY + b$
- \Rightarrow le calcul précédent reste valide et $\ell(Y) = \mu + \rho_X(h)(x_n \mu)$
- Note 1 Le cadre Gaussien impose une structure linéaire qui peut se perdre sous d'autres hypothèses distributionnelles
- Note 2 Imposer un prédicteur linéaire relâche l'hypothèse de Normalité mais
 - ... soit on restreint implicitement les choix de distributions possibles
 - ... soit on cherche un prédicteur linéaire dans un cadre non-linéaire (information omise)

Séries temporelles linéaires

- \Rightarrow Se limiter aux séries temporelles linéaires simplifie le cadre d'analyse
 - Une série temporelle $\{X_t\}_{t\in\mathbb{Z}}$ est un **processus linéaire** si

$$X_t = \ell(\ldots, \varepsilon_{t-1}, \varepsilon_t, \varepsilon_{t+1}, \ldots)$$

où $\varepsilon_t \sim WN(0, \sigma_\varepsilon^2)$ et $\ell(.)$ est une fonction linéaire

Definition (14)

Un processus est donc linéaire s'il admet une représentation du type

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j \varepsilon_{t-j}$$

avec $\psi_j \in \mathbb{R}$ des coefficients constant (filtre linéaire) et $\sum_{j=-\infty}^\infty |\psi_j| < \infty$

- Introduisons l'opérateur retard $L^j X_t = X_{t-j}$
- Une réécriture plus compacte est alors possible $X_t = \Psi(L)\varepsilon_t$ où $\Psi(L) = \sum_{j=-\infty}^\infty \psi_j L^j$

Séries temporelles linéaires et convergence

- La **convergence absolue** des ψ_j est cruciale pour la convergence de X_t
- \Rightarrow En effet, on sait que $\mathbb{E}(|arepsilon_t|) \leq \sigma$ par l'inégalité de Jensen et donc

$$\mathbb{E}(|X_t|) \leq \sum_{j=-\infty}^{\infty} |\psi_j| \mathbb{E}(|\varepsilon_{t-j}|) \leq \left(\sum_{j=-\infty}^{\infty} |\psi_j|\right) \sigma < \infty$$

- Elle assure également la convergence en moyenne quadratique de X_t
- \Rightarrow En effet, $\sum_{j=-\infty}^{\infty}|\psi_j|<\infty$ implique $\sum_{j=-\infty}^{\infty}\psi_j^2<\infty$ (et l'ergodicité)
 - Or, pour $S_n = \sum_{j=-n}^n \psi_j arepsilon_{t-j}$ et 0 < m < n on a

$$\mathbb{E}\bigg(\big(S_m - S_n\big)^2\bigg) = \mathbb{E}\bigg(\big(\sum_{m < |j| \le n} \psi_j \varepsilon_j\big)^2\bigg) = \sigma_{\varepsilon}^2 \sum_{m < |j| \le n} \psi_j^2 \to 0$$

car $\sum_{j=-\infty}^\infty \psi_j^2 < \infty$ est une condition équivalente à $\sum_{m<|j|\leq n} \psi_j^2 o 0$

Outils: Inégalité de Jensen : $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$, si f(.) est convexe ce qui ici donne

$$(\mathbb{E}(|\varepsilon_t|))^2 \leq \mathbb{E}(|\varepsilon_t|^2) \Rightarrow (\mathbb{E}(|\varepsilon_t|))^2 \leq \mathbb{E}(\varepsilon_t^2) \Rightarrow \sqrt{(\mathbb{E}(|\varepsilon_t|))^2} \leq \sigma$$

Inégalité triangulaire : $|X + Y| \le |X| + |Y|$

Convergence et stationnarité

Theorem (1)

Soit Y_t une série stationnaire d'espérance nulle et d'autocovariance γ_Y . Si $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, alors

$$X_t = \sum_{j=-\infty}^{\infty} \psi_j Y_{t-j} = \Psi(L) Y_t$$

est stationnaire d'espérance nulle et d'autocovariance

$$\gamma_{\mathrm{X}}(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_{j} \psi_{k} \gamma_{\mathrm{Y}}(h+k-j)$$

Note Si Y_t est strictement stationnaire, X_t l'est aussi

Convergence, stationnarité et linéarité

Theorem (2)

Si X_t est linéaire et $Y_t = arepsilon_t \sim \textit{WN}(0, \sigma_Y^2)$, on a alors

$$\gamma_{X}(h) = \sigma_{Y}^{2} \sum_{j=-\infty}^{\infty} \psi_{j} \psi_{j+h}$$

 $\mathit{car}\, \mathbb{E}(\mathit{X}_t) = \sum_{j=-\infty}^{\infty} \psi_j \mathbb{E}(Y_t) = 0$ et

$$\mathbb{E}(X_{t+h}X_t) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \psi_j \psi_k \mathbb{E}(Y_{t+h-j}Y_{t-k})$$

avec $\mathbb{E}(Y_{t+h-j}Y_{t-k})=\gamma_{\mathbb{Y}}(h-j+k)=\sigma_{\mathbb{Y}}^2$ si k=j-h et 0 sinon

Théorème de Wold

• Le Théorème 2 est le corollaire du théorème suivant

Theorem (3)

Si X_t est un processus stationnaire en covariance et σ_{ε}^2 la variance des erreurs projetée, alors X_t admet la représentation linéaire suivante

$$X_t = \mu_t + \sum_{j=0}^{\infty} \psi_j arepsilon_{t-j}$$

ou $\mu_t = \lim_{m \to \infty} \overline{P_{t-m}(X_t)}$ est une composante déterministe (parfaitement prédictible) et possiblement constante $\mu_t = \mu_t$

Note 1 La **décomposition de Wold** est basée sur l'unicité des erreurs d'un projecteur linéaire $P_t(.)$,

$$\varepsilon_t = X_t - P_{t-1}(X_t)$$

Note 2 Les erreurs sont non-corrélées, $\mathbb{E}(\varepsilon_t)=0$ et $\sigma_{\varepsilon}^2=\mathbb{E}(\varepsilon_t^2)\leq \mathbb{E}(X_t^2)<\infty$

Moyenne mobile infinie : $MA(\infty)$

- Soit X_t un processus linéaire
- \Rightarrow Sans restriction particulière, X_t dépend de son passé et son futur
 - Si on suppose que pour tout j < 0, $\psi_j = 0$, le processus est dit **causal**

$$X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$

- \Rightarrow On parle de **représentation moyenne mobile infinie** ou MA(∞)
 - · D'après le Théorème 2 on sait que

$$\gamma_{X}(h) = \sigma_{\varepsilon}^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+h}$$

et

$$\mathbb{V}(X_t) = \gamma_X(0) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j^2$$

• Par le Théorème 1 on sait que si $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, X_t est stationnaire

Moyenne mobile d'ordre q: MA(q)

- La représentation $\mathsf{MA}(\infty)$ est très générale
- Supposons un cas particulier où X_t dépend de q innovations passées

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q} \Leftrightarrow X_t = \Theta(L) \varepsilon_t$$

- $\Rightarrow X_t$ est donc corrélé avec ses q observations passées
 - D'après les formules du processus $MA(\infty)$ on en déduit

$$\gamma_{X}(h) = \sigma_{arepsilon}^{2} \sum_{j=0}^{q-h} heta_{j} heta_{j+h}, \;\; h \leq q$$

et

$$\mathbb{V}(X_t) = \gamma_X(0) = \sigma_{\varepsilon}^2 \sum_{j=0}^q \theta_j^2$$

et surtout

$$\gamma_X(h) = \rho_X(h) = 0, \ h > q$$

Note 1 Un MA $(q<\infty)$ est toujours stationnaire car $\gamma_{X}(t,t+h)=\gamma_{X}(h)<\infty$

Note 2 $c = \mu_X = \mathbb{E}(X_t) \neq 0$ pourrait intégrer le MA(q) sans affecter sa structure

La convention de Box-Jenkins

- Box et Jenkins sont des économètres célèbres ayant développé une méthodologie d'analyse systématique des séries temporelles
- Elle est implémentée dans de nombreux logiciels avec une convention de signe négatif pour les écritures MA
- \Rightarrow Si X_t suit un MA(q), il s'écrira alors

$$X_t = \varepsilon_t - \vartheta_1 \varepsilon_{t-1} - \vartheta_2 \varepsilon_{t-2} - \ldots - \vartheta_q \varepsilon_{t-q}$$

ou
$$\vartheta_j = -\theta_j$$

• En théorie c'est équivalent

Note Si vous estimez un MA(1), sous cette convention le logiciel renverra, e.g., $\hat{\vartheta}_1=0.8$ et vous devrez lire $\theta_j=-0.8$

Moyenne mobile d'ordre 1: MA(1)

- Dans le cas très spécifique où X_t dépend de 1 innovation passée

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

- $\Rightarrow X_t$ est donc corrélé avec une unique 1 observation passée
 - D'après les formules du MA(q) on en déduit pour l'ACovF

$$\begin{split} \gamma_X(0) &= \mathbb{V}(X_t) = \mathbb{E}(X_t X_t) = (1 + \theta_1^2) \sigma_{\varepsilon}^2 \\ \gamma_X(1) &= \mathbb{E}(X_t X_{t-1}) = \mathbb{E}((\varepsilon_t + \theta_1 \varepsilon_{t-1})(\varepsilon_{t-1} + \theta_1 \varepsilon_{t-2})) = \theta_1 \sigma_{\varepsilon}^2 \\ \gamma_X(j) &= \mathbb{E}(X_t X_{t-j}) = 0, \ j > 1 \end{split}$$

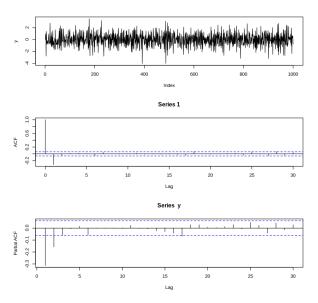
 $\operatorname{car} \mathbb{E}(\varepsilon_t \varepsilon_{t-j}) = 0, \ j \neq 0 \ \operatorname{et} \sigma_{\varepsilon}^2 \operatorname{sinon}$

• Pour **l'ACF** on obtient donc $\rho_0 = 1$,

$$\rho_X(1) = \frac{\gamma_X(1)}{\gamma_X(0)} = \frac{\theta_1}{1 + \theta_1^2}$$

$$\rho_X(h) = 0, \ h > 1$$

Analyse graphique d'un MA(1) : $X_t = \varepsilon_t - 0.4\varepsilon_{t-1}$



Identification des MA(1): problème

- A l'inverse, peut-on déduire de $\rho_X(1)$ la forme d'un MA(1) ?
- \Rightarrow D'après la formule de $ho_X(1)$ les racines de $ho_X(1) heta_1^2- heta_1+
 ho_X(1)=0$ sont

$$heta_1^{(1)} = rac{-1 + \sqrt{1 - 4
ho_X(1)^2}}{2
ho_X(1)} \ heta_1^{(2)} = rac{-1 - \sqrt{1 - 4
ho_X(1)^2}}{2
ho_X(1)}$$

• On peut montrer qu'elles sont réelles que si $-1/2 \le
ho_{\tt X}(1) < 1/2$

Note 1 Si $ho_{\rm X}(0)=1,
ho_{\rm X}(1)=0.6,
ho_{\rm X}(h>1)=0$, $ho_{\rm X}(h)$ n'est pas la fonction d'autocorrélation d'un MA(1)

Note 2 Si $ho_X(0)=1,
ho_X(1)=0.3,
ho_X(h>1)=0,
ho_X(h)$ est la fonction d'autocorrélation d'un MA(1)

Note 3 $\,
ho_{\rm X}(1) = 0.3$ mène à deux solutions réelles $heta_1^{(1)} = -1/3$ et $heta_1^{(2)} = -3$

 \Rightarrow Ces 2 MA(1) ont la même fonction $\rho_X(h)$ et **ne sont pas identifiables!**

Inversibilité des MA(1): intuition

- $\rho_X(1)$ décrit la dépendance entre X_t et X_{t-1} ...
- ... or le modèle MA(1) se formule comme une dépendance entre X_t et ε_{t-1}
- En utilisant l'opérateur retard L on voit pourtant une réécriture possible

$$X_t = (1 + \theta_1 L)\varepsilon_t \Rightarrow (1 + \theta_1 L)^{-1}X_t = \varepsilon_t$$

- La validité de cette écriture va dépendre de **l'inversibilité** de $(1+ heta_1 L)$

Inversibilité des MA(1): démonstration

• Repartons de $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}$

$$\begin{split} \varepsilon_{t} &= X_{t} - \theta_{1} \varepsilon_{t-1} \\ &= X_{t} - \theta_{1} (X_{t-1} - \theta_{1} \varepsilon_{t-2}) = X_{t} - \theta_{1} X_{t-1} + \theta_{1}^{2} \varepsilon_{t-2} \\ &= X_{t} - \theta_{1} X_{t-1} + \theta_{1}^{2} (X_{t-2} - \theta_{1} \varepsilon_{t-3}) \\ &= X_{t} - \theta_{1} X_{t-1} + \theta_{1}^{2} X_{t-2} - \theta_{1}^{3} \varepsilon_{t-3} = \dots = \sum_{j=0}^{l} (-\theta_{1})^{j} X_{t-j} + \theta_{1}^{l+1} \varepsilon_{t-l-1} \end{split}$$

- Pour que $arepsilon_t$ soit défini, la somme doit converger et donc | heta| < 1
- \Rightarrow le deuxième terme va alors tendre vers 0 quand $l \to \infty$ et on obtient

$$\varepsilon_t = \sum_{j=0}^l (-\theta_1)^j X_{t-j} = \left(\sum_{j=0}^l (-\theta_1)^j L^j\right) X_t$$

- Mais nous sommes partis de $X_t = (1+ heta_1)arepsilon_t$ pour arriver à ...
- ... une représentation valide de ε_t impliquant que $\varepsilon_t = (1 + \theta_1 L)^{-1} X_t$ est valide si $|\theta_1| < 1$

Inversibilité des MA(1): application

- On constate que si la condition d'inversibilité $|\theta_1| < 1$ est vérifiée ...

... alors
$$X_t = (1 + \theta_1 L)\varepsilon_t$$
,

$$\varepsilon_t = (1 + \theta_1 L)^{-1} X_t$$
$$= \sum_{j=0}^{\infty} (-\theta_1)^j X_{t-j}$$

et $X_t = -\sum_{j=1}^{\infty} (-\theta_1)^j X_{t-j} + \varepsilon_t$ sont des écritures équivalentes

• Cette forme écrite sur les retards de X_t est dite $\mathsf{AR}(\infty)$

Note 1 On verra que tout MA(q) inversible admet une forme $AR(\infty)$

Note 2 En retenant uniquement les processus inversibles on résoud le problème d'identification

 \Rightarrow Nous avions 2 solutions réelles $heta_1^{(1)}=-1/3$ et $heta_1^{(2)}=-3$ mais seul $heta_1^{(1)}$ sera retenu

Processus auto-régressif d'ordre p : AR(p)

• Tout comme l'on a introduit les $\mathsf{MA}(q)$ on peut construire des $\mathsf{AR}(p)$

$$\tilde{X}_t = c + \phi_1 \tilde{X}_{t-1} + \phi_2 \tilde{X}_{t-2} + \ldots + \phi_p \tilde{X}_{t-p} + \varepsilon_t$$

• Mais contrairement au MA, la présence de c a des conséquences car

$$\mu_{\tilde{X}} = \mathbb{E}(\tilde{X}_t) = c + \phi_1 \mu_{\tilde{X}} + \ldots + \phi_p \mu_{\tilde{X}} \Rightarrow c = \mu_{\tilde{X}} (1 - \phi_1 - \ldots - \phi_p)$$

- $\Rightarrow \mathbb{E}(ilde{X}_t)
 eq c$ et travailler avec $X_t = ilde{X}_t \mu_{ ilde{X}}$ est plus simple
 - En utilisant l'opérateur retard $\it L$ on peut également écrire

$$(1 - \phi_1 L - \ldots - \phi_p L^p) X_t = \varepsilon_t \Leftrightarrow \Phi(L) X_t = \varepsilon_t$$

- Note 1 Pour les MA, la stationnarité des innovations suffisait à assurer celle de X_t mais cela ne tient plus pour les AR(p)
- Note 2 La **stationnarité** de X_t va ici reposer sur l'inversibilité de $\Phi(L)$ car si

$$X_t = \Phi(L)^{-1} \varepsilon_t$$

est valide et que $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$, en vertu du Th. 3, X_t est stationnaire

AR(1) et solution stationnaire

• L'AR(1) est le processus le plus simple de la classe des AR(p)

$$X_t = \phi_1 X_{t-1} + \varepsilon_t \Leftrightarrow (1 - \phi_1 L) X_t = \varepsilon_t \Leftrightarrow X_t = (1 - \phi_1 L)^{-1} \varepsilon_t$$

• Comme pour l'inversibilité des MA, supposons Y_t un $\mathsf{AR}(1)$ stationnaire basé sur ε_t et

$$\begin{split} \mathbf{Y}_t &= \phi_1 \mathbf{Y}_{t-1} + \varepsilon_t \\ &= \varepsilon_t + \phi_1 (\phi_1 \mathbf{Y}_{t-2} + \varepsilon_{t-1}) = \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 (\varepsilon_{t-2} + \phi_1 \mathbf{Y}_{t-3}) \\ &= \varepsilon_t + \phi_1 \varepsilon_{t-1} + \phi_1^2 \varepsilon_{t-2} + \phi_1^3 \mathbf{Y}_{t-3} = \dots \\ \mathbf{Y}_t &= \sum_{j=0}^l \phi_1^j \varepsilon_{t-j} + \phi_1^{l+1} \mathbf{Y}_{t-l-1} \end{split}$$

- Comme pour le cas des MA on voit que la suite converge si $|\phi_1| < 1 \dots$
- ... et que le second terme tend vers 0 quand $l
 ightarrow \infty$
- $\Rightarrow X_t = \sum_{j=0}^\infty \phi_1^j arepsilon_{t-j}$ est l'unique solution stationnaire de

$$X_t = \phi_1 X_{t-1} + \varepsilon_t$$

$\mathsf{AR}(1)$ causal vs non-causal

- · Le résultat est cohérent avec le Th. 1
- \Rightarrow Si $|\phi_1| < 1$ on sait que $\sum_{j=0}^{\infty} |\phi_1^j| < \infty$ et donc X_t est stationnaire
 - Par ailleurs, si X_t est stationnaire, $\mathbb{E}(X_t)^2 < \infty$ et quand $l o \infty$

$$\mathbb{E}\left((X_t - \sum_{j=0}^l \phi_1^j \varepsilon_{t-j})^2\right) = \phi_1^{2l+2} \mathbb{E}(X_{t-k-1})^2 \to 0$$

- Mais qu'en est-il du cas $|\phi_1|>1$ puisque $\sum_{j=0}^\infty \phi^j_1 arepsilon_{t-j}$ ne converge pas ?
- A partir de $X_{t+1}=\phi_1X_t+\varepsilon_{t+1}$ on peut écrire $X_t=\phi_1^{-1}X_{t+1}-\phi_1^{-1}\varepsilon_{t+1}$ $X_t=-\phi_1^{-1}\varepsilon_{t+1}-\phi_1^{-2}\varepsilon_{t+2}+\phi_1^{-2}X_{t+2}$ $=\dots$ $=-\sum_{i=1}^l\phi_1^{-j}\varepsilon_{t+j}+\phi_1^{-l-1}Y_{t+l+1}\Rightarrow X_t=-\sum_{i=1}^\infty\phi_1^{-j}\varepsilon_{t+j} \text{ si } |\phi_1|>1$
- ⇒ C'est toujours la même solution stationnaire mais écrite vers le futur

AR(1) solution non-stationnaire

- Solutions causale et non-causale sont similaires sur le plan probabiliste dans le cadre de la stationnarité faible!
- \Rightarrow Le **causal** est plus naturel, nous le retiendrons (on exclut $|\phi_1| > 1$)
 - Qu'en est-il du cas $|\phi_1| = 1$?

$$X_{t} = \varepsilon_{t} + \phi_{1}(\phi_{1}X_{t-2} + \varepsilon_{t-1}) = \dots = \sum_{j=0}^{l} \phi_{1}^{j} \varepsilon_{t-j} + \phi_{1}^{l+1}X_{t-l-1}$$

$$\Rightarrow X_{t} - \phi_{1}^{l+1}X_{t-l-1} = \sum_{i=0}^{l} \phi_{1}^{j} \varepsilon_{t-j}$$

• S'il existe une solution stationnaire, on devrait avoir $\gamma_{\mathtt{X}}(0) < \infty$ mais

$$\begin{split} \mathbb{V}\left(\sum_{j=0}^{l} \phi_{1}^{j} \varepsilon_{t-j}\right) &= \sum_{j=0}^{l} \phi_{1}^{2j} \mathbb{V}(\varepsilon_{t-j}) = \sum_{j=0}^{l} \sigma_{\varepsilon}^{2} = (l+1)\sigma_{\varepsilon}^{2} \\ \mathbb{V}\left(X_{t} - \phi_{1}^{l+1} X_{t-l-1}\right) &= 2\gamma_{X}(0) - 2\phi_{1}^{l+1} \gamma_{X}(l+1) \leq 2\gamma_{X}(0) + 2\gamma_{X}(l+1) \leq 4\gamma_{X}(0) \end{split}$$

et donc $(l+1)\sigma_{arepsilon}^2 \leq 4\gamma_{\mathrm{X}}(0)$ ce qui implique $\gamma_{\mathrm{X}}(0) = \infty$ si $l \to \infty$

AR(1) et ACF

- D'après Th. 2 on peut calculer $\gamma_{\!X}(h)$ et $ho_{\!X}(h)$ pour $|\phi_1| < 1$
- C'est moins direct que pour les MA donc détaillons $\gamma_X(0), \gamma_X(1), \dots, \gamma_X(h)$

$$\begin{split} \gamma_X(0) &= \mathbb{V}(X_t) = \mathbb{V}(\phi_1 X_{t-1} + \varepsilon_t) = \phi_1^2 \gamma_X(0) + \sigma_\varepsilon^2 \Rightarrow \gamma_X(0) = \sigma_\varepsilon^2/(1 - \phi_1^2) \\ \gamma_X(1) &= \mathbb{E}(X_t X_{t-1}) = \mathbb{E}(\phi_1 X_{t-1}^2 + \varepsilon_t X_{t-1}) = \phi_1 \gamma_X(0) \\ \gamma_X(2) &= \mathbb{E}(X_t X_{t-2}) = \mathbb{E}(\phi_1 X_{t-1} X_{t-2} + \varepsilon_t X_{t-2}) = \phi_1 \gamma_X(1) = \phi_1^2 \gamma_X(0) \\ &= \dots \\ \gamma_X(h) &= \mathbb{E}(X_t X_{t-h}) = \phi_1 \gamma_X(h-1) = \phi_1^h \gamma_X(0), \quad h \geq 1 \\ &= \sigma_\varepsilon^2 \sum_{j=0}^\infty \phi^j \phi^{j+h} = \frac{\sigma_\varepsilon^2 \phi_1^h}{1 - \phi_1^2} \end{split}$$

$$\operatorname{car} \mathbb{E}(\varepsilon_t X_{t-h}) = 0, \forall h$$

 \Rightarrow Pour $\forall h \geq 0$, l'ACF d'un $\mathrm{AR}(1)$ est $ho_{\mathrm{X}}(h) = \gamma_{\mathrm{X}}(h)/\gamma_{\mathrm{X}}(0) = \phi_1^h$

AR(p) et ACF

- Repartons de l'AR(p) : $X_t = \sum_{j=1}^p \phi_j X_{t-j} + \varepsilon_t$ avec $\phi_j = 0$ si j > p
- On suppose X_t stationnaire et les autocovariances sont alors

$$\gamma_X(0) = \mathbb{E}(X_t X_t) = \sum_{j=1}^p \phi_j \mathbb{E}(X_t X_{t-j}) + \mathbb{E}(X_t \varepsilon_t) = \sum_{j=1}^p \phi_j \gamma_X(j) + \sigma_{\varepsilon}^2$$

$$\gamma_X(1) = \mathbb{E}(X_t X_{t-1}) = \sum_{j=1}^p \phi_j \mathbb{E}(X_{t-1} X_{t-j}) + \mathbb{E}(X_{t-1} \varepsilon_t) = \sum_{j=1}^p \phi_j \gamma_X(j-1)$$

$$\vdots$$

$$\gamma_X(h) = \mathbb{E}(X_t X_{t-h}) = \sum_{j=1}^p \phi_j \mathbb{E}(X_{t-h} X_{t-j}) + \mathbb{E}(X_{t-h} \varepsilon_t) = \sum_{j=1}^p \phi_j \gamma_X(j-h)$$

• Les ACFs sont alors $ho_{\rm X}(h)=\gamma_{\rm X}(h)/\gamma_{\rm X}(0)=\sum_{j=1}^p\phi_j
ho_{\rm X}(h-j)$

Note On rappelle que $\gamma_{X}(h)=\gamma_{X}(-h)$ car $\gamma_{X}(.)$ est symétrique

Les équations de Yule-Walker

• Elles facilitent le passage des ACF vers les ϕ_h si l'on connaît les

$$\rho_X(h) = \rho_h$$

• Pour *p* retards il faut constuire un système à *p* équations

$$\begin{pmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{p-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{p-2} \\ \vdots & & & & \\ \rho_{p-1} & \rho_{p-2} & \rho_{p-3} & \cdots & 1 \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{pmatrix}$$

· En inversant le système on obtient alors

$$\begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_p \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{p-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{p-2} \\ \vdots & & & & \\ \rho_{p-1} & \rho_{p-2} & \rho_{p-3} & \cdots & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \vdots \\ \rho_p \end{pmatrix}$$
(1)

Yule-Walker et autocorrélations partielles (PACF)

- Comme précisé au S19, l'interprétation de ho_j peut-être ambiguë
- Si l'on veut connaître la PACF d'ordre j dans notre AR(p) on considère

$$X_t = \phi_{1,j} X_{t-j} + \dots + \phi_{j,j} X_{t-j} + \varepsilon_t$$

la **corrélation partielle d'ordre** j étant $\phi_{j,j}$ (dépendance directe entre x_t et x_{t-j})

- Grâce à Yule-Walker si on résout le système à l'ordre j on retrouve $\phi_{j,j}$
- \Rightarrow Pour j = 1 on a

$$\phi_{1,1} = (1)^{-1} \rho_1$$

 $\Rightarrow \operatorname{Pour} j = 2 \operatorname{on} \mathsf{a}$

$$\begin{pmatrix} \phi_{2,1} \\ \phi_{2,2} \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix}$$

ou $\phi_{2,2} \neq \rho_2$ donne la corrélation partielle d'ordre 2

PACF pour un AR(2): exercice

- Soit un $\mathsf{AR}(2)$ qu'on suppose stationnaire

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t \Leftrightarrow (1 - \phi_1 L - \phi_2 L^2) X_t = \varepsilon_t$$

- Calculez l'ACF à l'ordre h > 2
- Calculez la PACF à l'ordre j=1,2 et 3

Note Aidez-vous de la structure de l'ACovF de l'AR(2)

$$\begin{split} \gamma_X(0) &= \mathbb{E}(X_t X_t) = \mathbb{E}(\phi_1 X_t X_{t-1} + \phi_2 X_t X_{t-2} + X_t \varepsilon_t) = \phi_1 \gamma_X(1) + \phi_2 \gamma_X(2) + \sigma_{\varepsilon}^2 \\ \gamma_X(1) &= \mathbb{E}(X_t X_{t-1}) = \mathbb{E}(\phi_1 X_{t-1}^2 + \phi_2 X_{t-1} X_{t-2} + X_{t-1} \varepsilon_t) = \phi_1 \gamma_X(0) + \phi_2 \gamma_X(1) \\ \gamma_X(2) &= \mathbb{E}(X_t X_{t-2}) = \mathbb{E}(\phi_1 X_{t-2} X_{t-1} + \phi_2 X_{t-2}^2 + X_{t-2} \varepsilon_t) = \phi_1 \gamma_X(1) + \phi_2 \gamma_X(0) \\ \gamma_X(h) &= \mathbb{E}(X_t X_{t-h}) = \mathbb{E}(\phi_1 X_{t-h} X_{t-1} + \phi_2 X_{t-h} X_{t-2} + X_{t-h} \varepsilon_t) \\ &= \phi_1 \gamma_X(h-1) + \phi_2 \gamma_X(h-2) \end{split}$$

PACF pour un AR(2): solution

- Soit un AR(2) qu'on suppose stationnaire $X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$
- Calculez l'ACF à l'ordre h>2

$$\rho_0 = 1
\rho_1 = \phi_1 + \phi_2 \rho_1 \Rightarrow \rho_1 = \phi_1 / (1 - \phi_2)
\rho_2 = \phi_1 \rho_1 + \phi_2 \rho_0 \Rightarrow \rho_2 = \phi_2 + \phi_1^2 / (1 - \phi_2)
\rho_h = \phi_1 \rho_{h-1} + \phi_2 \rho_{h-2}, \quad h > 2$$

• Calculez la PACF à l'ordre i = 1, 2 et 3

$$\begin{split} \phi_{1,1} &= \rho_1 \\ \phi_{2,2} &= \phi_2 \operatorname{car} \left(\phi_{1,1} X_{t-1} + \phi_{2,2} X_{t-2} \right) \Leftrightarrow \left(\phi_1 X_{t-1} + \phi_2 X_{t-2} \right) \\ \phi_{3,3} &= 0 \operatorname{car} 3 > p = 2 \end{split}$$

 \Rightarrow Pour un AR(p) on voit un passage brutal à 0 des PACFs

Note Pour les $\mathsf{MA}(q)$ ce ne sera pas le cas comme nous allons le voir

PACF pour un MA(1): exemple

- Soit le MA(1) du S38 que l'on suppose inversible : $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}$
- Pour la PACF à l'ordre j on considère un ${\sf AR}(j)$: $X_t = \sum_{i=1}^j \phi_{i,j} X_{t-i} + \varepsilon_t$ et les équations de Yule-Walker

$$\begin{pmatrix} \phi_{1,j} \\ \phi_{2,j} \\ \phi_{3,j} \\ \vdots \\ \phi_{j,j} \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & 0 & \cdots & 0 \\ \rho_1 & 1 & \rho_1 & \cdots & 0 \\ 0 & \rho_1 & 1 & \cdots & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

• En résolvant pour $j=1,2,\ldots$ on obtient

$$\phi_{1,1} = \rho_1, \ \, \phi_{2,2} = -\theta_1^2/(1+\theta_1^2+\theta_1^4), \ \, \phi_{3,3} = \theta_1^3/(1+\theta_1^2+\theta_1^4+\theta_1^6)$$
 et pour tout j on a $\phi_{i,j} = -(-\theta_1)^j/(1+\theta_1^2+\ldots+\theta_1^{2j})$

Note Si heta < 0 tous les $\phi_{j,j} < 0$ et si heta > 0 le signe de $\phi_{j,j}$ alternera selon que j est pair ou impair

PACF pour un MA(2): exercice

- Soit un MA(2) que l'on suppose inversible : $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$
- Calculez l'ACF à l'ordre h>2
- Calculez la PACF à l'ordre j=1 et 2

Note Aidez-vous de la structure de l'ACovF du MA(2)

$$\begin{split} \gamma_X(0) &= \mathbb{E}(X_t X_t) = (1 + \theta_1^2 + \theta_2^2) \sigma_\varepsilon^2 \\ \gamma_X(1) &= \mathbb{E}(X_t X_{t-1}) = \mathbb{E}((\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) (\varepsilon_{t-1} + \theta_1 \varepsilon_{t-2} + \theta_2 \varepsilon_{t-3})) \\ &= (\theta_1 + \theta_1 \theta_2) \sigma_\varepsilon^2 \\ \gamma_X(2) &= \mathbb{E}(X_t X_{t-2}) = \mathbb{E}((\varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}) (\varepsilon_{t-2} + \theta_1 \varepsilon_{t-3} + \theta_2 \varepsilon_{t-4})) \\ &= \theta_2 \sigma_\varepsilon^2 \\ \gamma_X(h) &= \mathbb{E}(X_t X_{t-j}) = 0, \ \, \forall h > 2 \end{split}$$

PACF pour un MA(2): solution

- Soit un MA(2) que l'on suppose inversible : $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$
- Pour l'ACF à l'ordre h>2 on a $ho_X(0)=1$, $ho_X(h)=0, \ \ \forall h>2$ et

$$\rho_{X}(1) = \frac{\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}} \text{ et } \rho_{X}(2) = \frac{\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}}$$

• Pour la PACF à l'ordre j = 1 et 2 on utilise Yule-Walker

$$\begin{pmatrix} \phi_{1,j} \\ \phi_{2,j} \\ \phi_{3,j} \\ \phi_{4,j} \\ \vdots \\ \phi_{j,j} \end{pmatrix} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & 0 & \cdots & 0 \\ \rho_1 & 1 & \rho_1 & \rho_2 & \cdots & 0 \\ \rho_2 & \rho_1 & 1 & \rho_1 & \cdots & 0 \\ 0 & \rho_2 & \rho_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}^{-1} \begin{pmatrix} \rho_1 \\ \rho_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

• En résolvant $j=1,2,\ldots$ on obtient $\phi_{1,1}=\rho_1$, $\phi_{2,2}=\theta_2/(1+\theta_1^2+\theta_2^2+\theta_2)$

$$\textcolor{red}{\phi_{3,3}} = -2\theta_2^2/(1+\theta_1^2+(\theta_2-1)\theta_2)(\theta_1^2+(\theta_2+1)^2)$$

et pour tout j > 3 on a des expressions de plus en plus complexes

Conditions de stationnarité : intuition

- Repartons d'un AR(1) avec $arepsilon_t \sim \mathit{WN}(0,\sigma^2)$: $(1-\phi_1 \mathit{L})\mathit{X}_t = arepsilon_t$
- Th.1 et Th.3 : X_t sera stationnaire causal s'il peut s'exprimer comme

$$X_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{t-j}$$

ce qui implique l'inversibilité de $\Phi(L)=(1-\phi_1L)$

• $\Phi(L)$ est un polynôme de degré 1 dont l'inverse est un polynôme infini

$$(1 - \phi_1 L)^{-1} = \sum_{j=0}^{\infty} \phi_1^j L^j = \Phi(L)^{-1}$$

comme obtenu au S41 (se voit aussi avec une division euclidienne)

- $\Rightarrow \Phi(L)^{-1}$ converge si $|\phi_1| < 1$
 - Une condition en découle sur la racine de $\Phi(z)$:

$$1 - \phi_1 z = 0 \Leftrightarrow z = \phi^{-1}$$

$$\Rightarrow$$
 Si $|\phi_1| < 1$, $|z| > 1$

Conditions de stationnarité : AR(p)

• Considérons le cadre plus général d'un $\mathsf{AR}(p)$: $\Phi(L)X_t = arepsilon_t$

$$\Phi(L) = 1 - \phi_1 L^1 - \ldots - \phi_p L^p = 1 - \sum_{j=1}^p \phi_j L^j$$

- L'utilisation des conditions sur les racines va devenir cruciale ...
- ... car les conditions sur les coefficients sont indéterminables
- ⇒ Par le **Th. fondamental de l'algèbre** on sait que

$$1-\sum_{j=1}^p \phi_j z^j = 0 \Leftrightarrow \prod_{j=1}^p (1-rac{\lambda_j}{z}) = 0, \;\; z \in \mathbb{C}$$

et on voit alors que les p racines sont $\mathbf{z} = 1/\lambda_{\mathbf{j}}, j = 1, 2, \dots, p$

 \Rightarrow Une écriture alternative de X_t est donc

$$(1-z_1^{-1}L)(1-z_2^{-1}L)\dots(1-z_p^{-1}L)X_t=\varepsilon_t$$

où $|z_j| > 1 \Leftrightarrow |\lambda_j| < 1$ assure que $\exists (1 - \mathbf{z}_j^{-1} L)^{-1}$ et donc $\exists \Phi(L)^{-1}$

Conditions de stationnarité : AR(2)

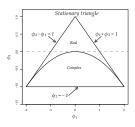
- Pour p>1, les racines peuvent être complexes $z\in\mathbb{C}$
- Étudions le cas d'un AR(2), $(1-\phi_1L-\phi_2L^2)X_t=arepsilon_t$, de polynôme

$$(1-\phi_1 z - \phi_2 z^2) = 0 \Rightarrow \lambda_1^{-1} = rac{\phi_1 + \sqrt{\phi_1^2 + 4\phi_2}}{2\phi_2}, \;\; \lambda_2^{-1} = rac{\phi_1 - \sqrt{\phi_1^2 + 4\phi_2}}{2\phi_2}$$

Note 1 On voit que selon le signe de $\phi_1^2+4\phi_2$, $z=\lambda_j^{-1}\in\mathbb{R}$ ou $z=\lambda_j^{-1}\in\mathbb{C}$

Note 2 On peut montrer également que $\phi_1=\lambda_1+\lambda_2$ et $\phi_2=-\lambda_1\lambda_2$

Note 3 On peut alors trouver les conditions sur les coefficients pour que $\lvert z \rvert > 1$



Stationnarité et AR(2): exemple

- Soit un AR(2) : $(1-0.7L+0.1L^2)X_t=arepsilon_t$
- La factorisation du polynôme s'obtient à l'aide de $\lambda_1=0.5$ et $\lambda_2=0.2$

$$(1 - 0.7z + 0.1z^2) \Leftrightarrow (1 - \lambda_1 z)(1 - \lambda_2 z) = (1 - 0.5z)(1 - 0.2z)$$

• On voit alors que pour |z| = 2 et |z| = 5

$$(1 - \lambda_1 \mathbf{z})(1 - \lambda_2 \mathbf{z}) = 0$$

et X_t est donc stationnaire puisque |z| > 1

Un manière alternative de définir la condition de stationnarité est

$$\exists \phi_j, \ j=1,2,\ldots,p \Rightarrow \Phi(z) = (1-\phi_1z-\ldots-\phi_pz^p) \neq 0 \ \forall \ |z| \leq 1$$

Note 1 Cette définition impose une forme causale ($|z| \le 1$ vs |z| = 1)

Note 2 Comme on peut avoir $z\in\mathbb{C}$, on dit que les racines sont en dehors du cercle unitaire défini par

$$cis(\vartheta) = e^{i\vartheta} = \cos\vartheta + i\sin\vartheta$$

Conditions d'inversibilité : intuition

• Repartons d'un $\mathsf{MA}(1)$ et de la démonstration du S38

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} = (1 + \theta_1 L) \varepsilon_t$$

• On a vu que l'écriture $\mathsf{AR}(\infty)$ venait de l'inversion de $(1+ heta_1 L)$

$$(1 + \theta_1 L)^{-1} = \sum_{j=0}^{\infty} \theta_1^j L^j = \Theta(L)^{-1}$$

obtenu par récursion (ou simple division euclidienne) et

• $\Theta(L)^{-1}$ converge si $|\theta_1| < 1$ et une **condition sur la racine en découle**

$$1 - \theta_1 z = 0 \Leftrightarrow z = \theta_1^{-1}$$

$$\Rightarrow$$
 Si $| heta_1|<1$, $|z|>1$ et $arepsilon_t=(1+ heta_1L)^{-1}X_t=\sum_{j=0}^\infty heta_1^jX_{t-j}$ ou

$$X_t = -\sum_{j=1}^{\infty} \theta_1^j X_{t-j} + \varepsilon_t$$

sont des écritures équivalentes valides

Conditions d'inversibilité : MA(q)

• Considérons le cadre plus général d'un $\mathsf{MA}(q)$: $X_t = \Theta(L) arepsilon_t$

$$\Theta(L)=1+ heta_1L^1+\ldots+ heta_qL^q=1+\sum_{j=1}^q heta_jL^j$$

- L'utilisation des conditions sur les racines va devenir cruciale ...
- ... car les conditions sur les coefficients sont indéterminables
- ⇒ Par le **Th. fondamental de l'algèbre** on sait que

$$1 + \sum_{j=1}^q heta_j z^j = 0 \Leftrightarrow \prod_{j=1}^q (1 - rac{\lambda_j}{z} z) = 0, \ \ z \in \mathbb{C}$$

et on voit alors que les q racines sont $\mathbf{z}=\mathbf{1}/\lambda_{j}$, $j=1,2,\ldots,p$

 \Rightarrow Une écriture alternative de $\Theta(L)$ est donc

$$(1-z_1^{-1}L)(1-z_2^{-1}L)\dots(1-z_q^{-1}L)$$

où $|z_j| > 1 \Leftrightarrow |\lambda_j| < 1$ assure que $\exists (1 - \mathbf{z}_j^{-1} L)^{-1}$ et donc $\exists \Theta(L)^{-1}$

Conditions d'inversibilité : MA(2)

Soit un MA(2), dont on souhaite étudier les conditions d'inversibilité

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} \Rightarrow (1 + \theta_1 L + \theta_2 L^2) = (1 - z_1^{-1} L)(1 - z_2^{-1} L)$$

On sait que

$$(1+\theta_1z+\theta_2z^2)=0 \Rightarrow \lambda_1^{-1}=\frac{-\theta_1+\sqrt{\theta_1^2-4\theta_2}}{2\theta_2}, \ \ \lambda_2^{-1}=\frac{-\theta_1-\sqrt{\theta_1^2-4\theta_2}}{2\theta_2}$$

• On peut alors déterminer pour quelles z

$$(1 - \lambda_1 z)(1 - \lambda_2 z) = 0$$

et ce MA(2) est inversible ou non selon que |z|>1 ou |z|<1

· Un manière alternative de définir la condition d'inversibilité est

$$\exists \theta_j, \ j=1,2,\ldots,q \Rightarrow \Theta(z) = (1+\theta_1z+\ldots+\theta_qz^q) \neq 0 \ \forall \ |z| \leq 1$$

Note Comme on peut avoir $z\in\mathbb{C}$, on dit que les racines sont en dehors du cercle unitaire défini par

$$cis(\vartheta) = e^{i\vartheta} = \cos\vartheta + i\sin\vartheta$$

Processus auto-régressif moyenne mobile d'ordre 1 : ARMA(1,1)

• En combinant $\mathsf{AR}(1)$ et $\mathsf{MA}(1)$ on obtient un $\mathsf{ARMA}(1,1)$

$$X_t - \phi_1 X_{t-1} = \varepsilon_t + \theta_1 \varepsilon_{t-1} \Leftrightarrow \Phi(L) X_t = \Theta(L) \varepsilon_t$$

• D'après les Th.1 et 3, X_t sera stationnaire si

$$X_t = \Phi(L)^{-1}\Theta(L)\varepsilon_t = \Psi(L)\varepsilon_t$$

est une écriture valide

• D'après S41, $\Phi(L)^{-1}$ admet un développement en séries infinie

$$\Phi(L)^{-1} = \sum_{i=0}^{\infty} \phi_1^i L^i$$

qui converge si $|\phi_1| < 1$ et qui implique l'écriture $\mathsf{MA}(\infty)$ suivante

$$X_t = \varepsilon_t + (\phi_1 + \theta_1) \sum_{j=1}^{\infty} \phi_1^{j-1} \varepsilon_{t-j} = \Psi(L) \varepsilon_t$$

et démontre l'existance d'une solution stationnaire causale (unique)

ARMA(p,q)

• En combinant $\mathsf{AR}(p)$ et $\mathsf{MA}(q)$ on obtient un $\mathsf{ARMA}(p,q)$

$$X_{t} - \sum_{j=1}^{p} \phi_{j} X_{t-j} = \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-1} \Leftrightarrow \Phi(L) X_{t} = \Theta(L) \varepsilon_{t}$$

• D'après les Th.1 et 3, X_t sera stationnaire si on peut écrire

$$X_t = \Phi(L)^{-1}\Theta(L)\varepsilon_t = \Psi(L)\varepsilon_t$$

• D'après S54, $\Phi(L)^{-1}$ admet une factorisation en p polynôme et

$$\Phi(z)^{-1} = \sum_{j=0}^{\infty} \tilde{\lambda}_j z^j = \tilde{\Lambda}(z)$$

avec $\sum_{j=0}^{\infty} |\tilde{\lambda}_j| < \infty$ si les |z| ne sont pas sur le cercle unitaire (développement en séries de Laurent au voisinage du cercle unitaire)

- On peut alors définir $\tilde{\Lambda}(L)$ comme un filtre linéaire et écrire

$$X_t = \Phi(L)^{-1}\Theta(L)\varepsilon_t = \tilde{\Lambda}(L)\Theta(L)\varepsilon_t = \Psi(L)\varepsilon_t$$

ce qui démontre l'existance d'une solution stationnaire causale (unique)

Stationnarité des ARMA(p,q)

Definition (15)

 X_t est un ARMA(p,q) et admet une unique solution stationnaire causale si

$$X_t = \sum_{j=1}^p \phi_j X_{t-j} + arepsilon_t + \sum_{j=1}^q heta_j arepsilon_{t-j}$$

où $arepsilon_t \sim \mathit{WN}(0,\sigma_arepsilon^2)$ et s'il existe ϕ_j , $j=1,2,\ldots,p$ tel que

$$\Phi(z) = 1 - \phi_1 z - \ldots - \phi_p z^p \neq 0, \quad \forall |z| \le 1$$

et si les polynômes $\Phi(z) = 1 - \phi_1 z - \ldots - \phi_p z^p$ et

$$\Theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q$$

n'ont pas de racines communes (condition d'identification)

Inversibilité des ARMA(p,q)

Definition (16)

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

est un ARMA(p,q) inversible s'il existe $heta_j$, $j=1,2,\ldots,q$ tel que

$$\Theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q \neq 0, \ \ \forall |z| \leq 1$$

de sorte que X_t admet la représentation

$$\varepsilon_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}$$

et si les polynômes $\Phi(\mathbf{z}) = 1 - \phi_1 \mathbf{z} - \ldots - \phi_p \mathbf{z}^p$ et

$$\Theta(z) = 1 + \theta_1 z + \ldots + \theta_q z^q$$

n'ont pas de racines communes (condition d'identification)

Variance des ARMA(p,q) stationnaires inversibles

• D'après le Th. 2 on sait que pour $X_t=\Psi(L)arepsilon_t=\sum_{j=0}^\infty \psi_j arepsilon_{t-j}$

$$\gamma_X(h) = \mathbb{E}(X_{t+h}X_t) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+|h|}$$

• Considérons le cas d'un ARMA(1,1) : $X_t - \phi_1 X_{t-1} = \varepsilon_t + \theta_1 \varepsilon_{t-1}$

$$\begin{split} \gamma_X(0) &= \sigma_\varepsilon^2 \sum_{j=0}^\infty \psi_j^2 = \mathbb{V}\bigg(\varepsilon_t + (\phi_1 + \theta_1) \sum_{j=1}^\infty \phi_1^{j-1} \varepsilon_{t-j}\bigg) \\ &= \sigma_\varepsilon^2 + \sigma_\varepsilon^2 (\phi_1 + \theta_1)^2 \sum_{j=1}^\infty \phi_1^{2(j-1)} \\ &= \sigma_\varepsilon^2 \bigg(1 + (\phi_1 + \theta_1)^2 \sum_{j=0}^\infty \phi_1^{2j}\bigg) \\ &= \sigma_\varepsilon^2 \bigg(1 + \frac{(\phi_1 + \theta_1)^2}{1 - \phi_1^2}\bigg) \operatorname{car} \sum_{i=0}^\infty \phi_1^{2j} = 1/(1 - \phi_1^2) \operatorname{si} j \to \infty \end{split}$$

ACovF des ARMA(p,q) stationnaires inversibles

• Toujours dans le cas d'un ARMA(1,1) : $X_t - \phi_1 X_{t-1} = \varepsilon_t + \theta_1 \varepsilon_{t-1}$

$$\gamma_{X}(1) = \sigma_{\varepsilon}^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j-1}
= \sigma_{\varepsilon}^{2} \left(\theta_{1} + \phi_{1} + (\phi_{1} + \theta_{1})^{2} \phi_{1} \sum_{j=0}^{\infty} \phi_{1}^{2j} \right)
= \sigma_{\varepsilon}^{2} \left(\theta_{1} + \phi_{1} + \frac{(\phi_{1} + \theta_{1})^{2} \phi_{1}}{1 - \phi_{1}^{2}} \right)
\gamma_{X}(h) = \phi_{1}^{h-1} \gamma_{X}(1), \quad h > 1$$

Il en découle les autocorrélations

$$\begin{split} \rho_0 &= 1 \\ \rho_1 &= \frac{(\theta_1 + \phi_1)(1 + \theta_1 \phi_1)}{1 + 2\theta_1 \phi_1 + \theta_1^2} \\ \rho_h &= \phi_1 \rho_{h-1} = \phi_1^{h-1} \rho_1 \end{split}$$

Comportement des ACF et PACF des ARMA(p,q)

• Si X_t suit un $\mathsf{MA}(q)$ inversible

$$- ACF(h) = 0 si h > q$$

—
$$\mathsf{PACF}(h)
eq 0$$
 mais $\mathsf{PACF}(h) \to 0$ quand $h \to \infty$

• Si X_t suit un AR(p) stationnaire

$$-$$
 ACF(h) ≠ 0 mais ACF(h) → 0 quand h → ∞

$$-$$
 PACF $(h) = 0$ si $h > p$

- Si X_t suit un ARMA(p,q) stationnaire et inversible
 - ACF(h) \neq 0 mais ACF(h) \rightarrow 0 quand h \rightarrow ∞
 - PACF(h) \neq 0 mais PACF(h) \rightarrow 0 quand h \rightarrow ∞

Analyse des ACFs

- L'ACF d'un $\mathsf{ARMA}(p,q)$ peut prendre des **formes très diverses**
- Considérons le cas simple d'un AR(2) : $(1-z_1^{-1}L)(1-z_2^{-1}L)X_t=arepsilon_t$
- On suppose $|z_1|>1, \;\; |z_2|>1$ et le lien avec ϕ_1 et ϕ_2 est donné S55

$$\phi_1 = z_1^{-1} + z_2^{-1}$$
 et $\phi_2 = -z_1^{-1}z_2^{-1}$

Un calcul compliqué (non demandé) permet d'obtenir l'ACovF

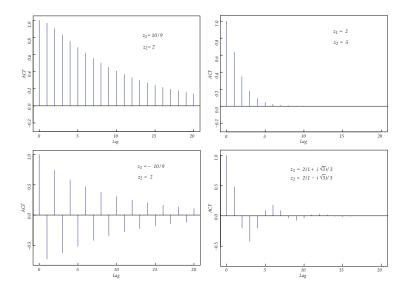
$$\gamma(h) = \frac{\sigma_{\varepsilon}^2 z_1^2 z_2^2}{(z_1 z_2 - 1)(z_2 - z_1)} \Big((z_1^2 - 1)^{-1} z_1^{1-h} - (z_2^2 - 1)^{-1} z_2^{1-h} \Big)$$

• Si $z\in\mathbb{C}$, $z_1=re^{i\vartheta}$, $z_2=re^{-i\vartheta}$ et on peut alors raffiner le calcul

$$\gamma(h) = \sigma_{\varepsilon}^{2} \frac{r^{4} r^{-h} \sin(h\theta + \psi)}{(r^{2} - 1)(r^{4} - 2r^{2} \cos(2\theta) + 1) \sin \theta}$$

· Nous verrons au C2 comment l'analyse graphique peut aiguiller le choix de modélisation

Analyse graphique des ACFs



Prédictions linéaires

- Soit X_t un processus stationnaire causal avec $\mu_X=0$ et $\gamma_X(h)$ connue
- Comme au S25, on cherche un prédicteur linéaire $P_n(X_{n+h})$ de

$$X_{n+h}|X_n,\ldots,X_1, h>0$$

- $\Rightarrow P_n(X_{n+h})$ sera de la forme $P_n(X_{n+h}) = \alpha_1 X_n + \ldots + \alpha_n X_1$
 - On cherche donc les $\alpha_1, \ldots, \alpha_n$ qui minimisent

$$\sigma_{\epsilon}^2 = \mathbb{E}\Big((X_{n+h} - P_n(X_{n+h}))^2\Big), \text{ où } \epsilon = X_{n+h} - P_n(X_{n+h})$$

i.e., les $\alpha_0, \ldots, \alpha_n$ qui minimise l'erreur quadratique moyenne (MSE)

• La solution est donnée par $\mathbb{E}(X_{n+h} - \sum_{i=1}^n \alpha_i X_{n+1-i}) = 0$ ou

$$\mathbb{E}((X_{n+h} - \sum_{i=1}^{n} \alpha_i X_{n+1-i}) X_{n+1-j}) = 0, \quad j = 1, \dots, n$$
(2)

de manière équivalente car un bon prédicteur ne laisse pas d'information inutilisée

 $\mathbb{E}(\epsilon \times \text{Variables utilisées pour prédire}) = 0$

Prédictions linéaires et autocovariance

• On peut réécrire $P_n(X_{n+h}) = \sum_{i=1}^n \alpha_i X_{n+1-i}$ vectoriellement

$$P_n(X_{n+h}) = \alpha'_n X_n, \quad \alpha_n = (\alpha_1, \dots, \alpha_n)'$$

avec
$$\boldsymbol{X}_n = (X_n, \dots, X_1)$$

Une réécrire vectorielle de l'Eq. (2) est aussi possible via

$$\Gamma_n \alpha_n = \gamma_n(h), \quad \gamma_n(h) = (\gamma_X(h), \gamma_X(h+1), \dots, \gamma_X(h+n-1))'$$

et $\Gamma_n = [\gamma_X(i-j)]_{i,j=1}^n$ avec intérêt que

$$egin{aligned} \sigma_{\epsilon}^2 &= \mathbb{E}\Big((X_{n+h} - P_n(X_{n+h}))^2\Big) \ &= \gamma_X(0) - 2\sum_{i=1}^n lpha_i \gamma_X(h+i-1) + \sum_{i=1}^n \sum_{j=1}^n lpha_i \gamma_X(i-j) lpha_j \ &= \gamma_X(0) - lpha_n' \gamma_n(h) \end{aligned}$$

et donc la variance de l'erreur de prédiction est simple à obtenir

Note Si $\mu_X \neq 0$, on peut le retirer du modèle puis l'ajouter à $P_n(.)$ car la structure linéaire reste inchangée

Prédictions d'un AR(1) et Yule-Walker : exemple

- Soit $X_t = \phi_1 X_{t-1} + \varepsilon_t$, avec $|\phi_1| < 1$ et X_1, \dots, X_n
- On souhaite prédire en X_{n+1} et l'on sait à présent que

$$P_n(X_{n+1}) = \alpha'_n X_n$$

• Une application direct de $\Gamma_n \alpha_n = \gamma_n(h)$ nous donne

$$\begin{pmatrix} 1 & \phi_1 & \phi_1^2 & \cdots & \phi_1^{n-1} \\ \phi_1 & 1 & \phi_1 & \cdots & \phi_1^{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \phi_1^{n-1} & \phi_1^{n-2} & \phi_1^{n-3} & \cdots & 1 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \phi_1 \\ \phi_1^2 \\ \vdots \\ \phi_1^n \end{pmatrix}$$

d'après YW (S44) et sachant que $\gamma(0)$ étant des deux côtés il disparaît

- On voit alors que $\alpha_n = (\phi_1, 0, \dots, 0)'$ est une **solution évidente**
- \Rightarrow le meilleur prédicteur linéaire est $P_n(X_{n+1}) = \phi_1 X_n$

$$\Rightarrow \ \sigma_{\epsilon}^2 = \gamma(0) - \alpha_n' \gamma_n(1) = \gamma(0) (1 - \alpha_n' \rho_n(1)) = \sigma_{\epsilon}^2 (1 - \phi_1^2)^{-1} (1 - \phi_1^2) = \sigma_{\epsilon}^2$$

Prédictions d'un AR(p)

• Soit un AR(p) stationnaire

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + \varepsilon_t$$

· Vous devez pouvoir montrer via l'Eq.(2) que

$$P_n(X_{n+1}) = \phi_1 X_n + \ldots + \phi_p X_{n+1-p}$$

est le meilleur prédicteur linéaire de X_{n+1}

• Pour cela il suffit de remplacer X_{n+h} par son expression dans

$$\mathbb{E}(X_{n+h} - \sum_{i=1}^{n} \alpha_i X_{n+1-i})$$

et de déterminer la séquence α_n solution de

$$\mathbb{E}(X_{n+h}-\sum_{i=1}^n\alpha_iX_{n+1-i})=0$$

Astuce On peut passer par $\Gamma_n \alpha_n = \gamma_n(h)$ puisqu'en multipliant par X_{t-j} de chaque côté et en prenant l'espérance on obtient $\Gamma_p \phi_p = \gamma_p(h)$ et donc

$$\alpha_n = \phi_p$$

Prédictions de variables aléatoires quelconques

• Les propriétés de l'opérateur $P_n(.|.)$ sont préservées pour

Y et
$$\boldsymbol{W} = (W_n, \dots, W_1)$$

des variables aléatoires quelconques

 $\Rightarrow P_n(Y|\mathbf{W})$ est toute solution de

$$\Gamma \alpha = \gamma$$

avec
$$\gamma = Cov(Y, W)$$
 et $\Gamma = Cov(W, W)$

- Ces formules sont donc générales et s'appliquent
 - aux valeurs manquantes
 - aux modèles ARMA
 - à tout autre modèle linéaire

Estimation d'une valeur manquante : exemple

- Soit $X_t = \phi_1 X_{t-1} + \varepsilon_t$, avec $|\phi_1| < 1$ et X_1, \dots, X_n
- On suppose que X₂ = Y est une valeur manquante à "prédire"
- La structure AR(1) nous indique que $\mathbf{W} = (W_1, W_3)$ et donc

$$\Gamma = \mathit{Cov}(W_1, W_3) = \begin{pmatrix} 1 & \phi_1^2 \\ \phi_1^2 & 1 \end{pmatrix}$$

car la dépendance entre X_1 et X_3 n'est pas directe alors que

$$\gamma = (\phi_1, \phi_1)'$$

car la dépendance entre X_1 et X_2 puis X_3 et X_2 , est directe

 \Rightarrow La solution de $\Gamma lpha = \gamma$ est alors

$$\alpha = (1+\phi^2)^{-1} \begin{pmatrix} \phi_1 \\ \phi_1 \end{pmatrix}$$

et le meilleur prédicteur linéaire de X_2 est donc

$$P_n(X_2|\mathbf{W}) = \alpha' \mathbf{W} = \phi (1 + \phi^2)^{-1} (X_1 + X_3)$$

Prédictions par récursion : Durbin-Levinson

- En théorie, $\forall h$, $\Gamma_n \boldsymbol{\alpha}_n = \boldsymbol{\gamma}_n(h)$ permet d'obtenir $P_n(X_{n+h})$
- En pratique, c'est numériquement lourd pour n grand et h>1...
- \Rightarrow Lier $P_n(X_{n+1})$ à $P_{n+1}(X_{n+2}), \dots, P_{n+h-1}(X_{n+h})$ serait donc utile
 - Pour h=1 on sait que $\Gamma_n^{-1} \gamma_n = \phi_n$ donne

$$P_{\mathbf{n}}(X_{n+1}) = \phi'_{\mathbf{n}} \mathbf{X}_{n} = \phi_{\mathbf{n},1} X_{n} + \ldots + \phi_{\mathbf{n},n} X_{1}$$

avec
$$\gamma_n = (\gamma(1), \dots, \gamma(n))'$$
 et $\sigma_{\epsilon,n}^2 = \gamma(0) - \phi_n' \gamma_n$

Solution L'algoritheoreme de Durbin-Levinson (ADL) se base sur

$$\phi_{n,n} = \left(\gamma(n) - \sum_{j=1}^{n-1} \phi_{n-1,j} \gamma(n-j)\right) \sigma_{\epsilon,n-1}^{-2}$$

$$\begin{pmatrix} \phi_{n,1} \\ \phi_{n,2} \\ \vdots \\ \phi_{n,n-1} \end{pmatrix} = \begin{pmatrix} \phi_{n-1,1} \\ \phi_{n-1,2} \\ \vdots \\ \phi_{n-1,n-1} \end{pmatrix} - \phi_{n,n} \begin{pmatrix} \phi_{n,1} \\ \phi_{n-1,n-1} \\ \vdots \\ \phi_{n-1,1} \end{pmatrix}$$

et
$$\sigma_{\epsilon,n}^2=\sigma_{\epsilon,n-1}^2 imes(1-\phi_{n,n}^2)$$
, où $\phi_{1,1}=\gamma(1)/\gamma(0)$ et $\sigma_{\epsilon,0}^2=\gamma(0)$

Prédictions par récursion : les erreurs de prédiction in-sample (innovations)

- Une alternative intéressante à Durbin-Levinson se base sur $\epsilon_n = X_n P_{n-1}(X_n) \equiv X_n \widehat{X}_n$
- Sous forme matricielle, les innovations $\epsilon_n = (\epsilon_1, \dots, \epsilon_n)'$ s'écrivent

$$\boldsymbol{\epsilon}_{n} = A_{n} \boldsymbol{X}_{n}, \ \ A_{n} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ -\alpha_{1} & 1 & 0 & \dots & 0 \\ -\alpha_{2} & -\alpha_{1} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ -\alpha_{n-1} & -\alpha_{n-2} & -\alpha_{n-3} & \dots & 1 \end{pmatrix}$$

et donc $\widehat{\mathbf{X}}_n := (X_1, P_1(X_2), \dots, P_{n-1}(X_n))'$ peut s'écrire $\widehat{\mathbf{X}}_n = \mathbf{X}_n - \epsilon_n = A_n^{-1} \epsilon_n - \epsilon_n = \Theta_n(\mathbf{X}_n - \widehat{\mathbf{X}}_n)$ avec $\Theta_n = (A_n^{-1} - I_n)$, où I_n est une matrice identité et

$$\mathbf{\Theta}_{n} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 \\ \theta_{1,1} & 0 & 0 & \dots & 0 \\ \theta_{2,2} & \theta_{2,1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ \theta_{n-1,n-1} & \theta_{n-1,n-2} & \theta_{n-1,n-3} & \dots & 0 \end{pmatrix}$$

Prédictions par récursion : l'algorithme des innovations

Solution l'algorithme des innovations (AI)

• Les coefficients $\theta_{n,1},\ldots,\theta_{n,n}$ s'obtiennent aussi récursivement

$$\theta_{n,n-k} = \left(\kappa(n+1,k+1) - \sum_{j=0}^{k-1} \theta_{k,k-j} \theta_{n,n-j} \nu_j\right) \nu_k^{-1}$$

avec $\mathbb{E}(X_iX_j) = \kappa(i,j)$, $\nu_0 = \kappa(1,1)$, et

$$u_n = \kappa(n+1, n+1) - \sum_{j=0}^{k-1} \theta_{n, n-j}^2 \nu_j$$

 \Rightarrow on commence par ν_0 puis on résout pour θ_{11} , ν_1 , puis θ_{22} , θ_{21} , ν_2 , etc.

Note 1 ADL repose sur la représentation $\widehat{X}_{n+1} = \sum_{j=1}^n \phi_{nj} X_{n+1-j}$

Note 2 Al repose sur $\widehat{X}_{n+1} = \sum_{j=1}^n \theta_{nj} (X_{n+1-j} - \widehat{X}_{n+1-j})$

Prédictions par récursion à l'horizon h

- L'approche récursive permet d'itérer au-delà de h = 1 : $P_{n+h-1}(X_{n+h})$
- On utilise le fait que l'erreur de prévision ϵ_{n+h} , $h \geq 1$, est **imprévisible**

$$P_{n}(X_{n+h} - P_{n+h-1}(X_{n+h})) = 0$$

$$\Rightarrow P_{n}(X_{n+h}) = P_{n}(P_{n+h-1}(X_{n+h}))$$

$$= P_{n}(\widehat{X}_{n+h})$$

$$= P_{n}\left(\sum_{j=1}^{n+h-1} \theta_{n+h-1,j}(X_{n+h-j} - \widehat{X}_{n+h-j})\right)$$

car $P_n(.)$ est un opérateur linéaire, et on obtient finalement

$$P_n(X_{n+h}) = \sum_{j=h}^{n+h-1} \theta_{n+h-1,j} (X_{n+h-j} - \widehat{X}_{n+h-j})$$

car si j < h, $\epsilon_{n+h-j} \equiv$ erreurs de prévisions futures

Note $\operatorname{\mathsf{Pour}} j > h$, $\epsilon_{n+h-j} \equiv \operatorname{\mathsf{erreurs}} \operatorname{\mathsf{de}} \operatorname{\mathsf{pr\'evisions}}$ observables et

$$\nu_n = \mathbb{E}(X_{n+h} - P_{n+h-1}(X_{n+h}))^2 = \kappa(n+h, n+h) - \sum_{j=h}^{n+h-1} \theta_{n+h-1,j}^2 \nu_{n+h-j-1}$$

Prédictions par récursion des ARMA(p,q)

- Soit un $\Phi(L)X_t = \Theta(L)\varepsilon_t$ un ARMA(p,q) stationnaire inversible
- Ansley (1979) a démontré une écriture générale pour \widehat{X}_{n+1}

$$\widehat{X}_{n+1} = \begin{cases} \sum_{j=1}^{n} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j}) & 1 \le n < m \\ \sum_{j=1}^{p} \phi_{j} X_{n+1-j} + \sum_{j=1}^{q} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j}) & n \ge m \end{cases}$$
(3)

avec $m = \max(p,q)$ et $\theta_{n,j} \to \theta_j$ pour $j = 1, \ldots, q$ si $n \to \infty$

· L'approche d'Ansley (1979) repose sur des ACovF de

$$W_t = \sigma_{\varepsilon}^{-1} \Phi(L) X_t$$
 si $t > m$ et $W_t = \sigma_{\varepsilon}^{-1} X_t$ sinon

Concernant la MSE, on peut montrer que

$$\sigma_{\epsilon}^2 = \mathbb{E}(X_{n+1} - \widehat{X}_{n+1})^2 = \sigma_{\epsilon}^2 \mathbb{E}(W_{n+1} - \widehat{W}_{n+1})^2 = \sigma_{\epsilon}^2 r_n$$

où $r_n \to 1$ si $n \to \infty$

Prédictions d'un $\mathsf{AR}(p)$ et d'un $\mathsf{MA}(q)$

 \Rightarrow Pour un AR(p), si $n \ge p$, d'après Eq.(3), on a directement que

$$\widehat{X}_{n+1} = \sum_{j=1}^{p} \phi_j X_{n+1-j}$$

 \Rightarrow Pour un MA $(q) \equiv$ ARMA(1,q) avec $\phi_1=0$, si $n\geq 1$, d'après Eq.(3), on a directement que

$$\widehat{X}_{n+1} = \sum_{j=1}^{\min(n,q)} \theta_{n,j} (X_{n+1-j} - \widehat{X}_{n+1-j})$$

où les coefficients $heta_{n,j} o heta_j$ pour $j=1,\dots,q$ si $n o \infty$

Prédictions d'un ARMA(1,1)

- Appliquons l'approche d'Ansley (1979) à un $\mathsf{ARMA}(1,1)$

$$X_t - \phi_1 X_{t-1} = \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

• Si $|\phi_1| < 1$ et $|\theta_1| < 1$ et $n \geq 1$, d'après Eq.(3) on a

$$\widehat{X}_{n+1} = \phi_1 X_n + \theta_{n,1} (X_n - \widehat{X}_n)$$

• Pour q=1, le calcul de $\theta_{n,1}$ est possible via le S64 qui donne

$$\gamma_{X}(0) = \sigma_{\varepsilon}^{2} \left(1 + \frac{(\phi_{1} + \theta_{1})^{2}}{1 - \phi_{1}^{2}} \right) = \sigma_{\varepsilon}^{2} (1 - \phi_{1}^{2})^{-1} (1 + 2\theta_{1}\phi_{1} + \theta_{1}^{2})$$

et en découle le calcule des

$$\kappa_{W}(i,j) = \begin{cases} (1 - \phi_{1}^{2})^{-1} (1 + 2\theta_{1}\phi_{1} + \theta_{1}^{2}) & i = j = 1\\ 1 + \theta_{1}^{2} & i = j \geq 2\\ \theta_{1} & |i - j| = 1, i \geq 1\\ 0 & \text{sinon} \end{cases}$$

• On obtient $r_0=(1-\phi_1^2)^{-1}(1+2\theta_1\phi_1+\theta_1^2)$, $r_n=1+\theta_1^2-r_{n-1}^{-1}\theta_1^2$ et

$$\theta_{n1} = r_{n-1}^{-1}\theta_1$$

par application de l'Al où r_n remplace ν_n

Prédictions par récursion à l'horizon h d'un ARMA(p,q)

• L'approche d'Ansley (1979) permet une écriture simple pour $P_n(X_{n+h})$

$$P_n(X_{n+h}) = \sum_{i=1}^p \phi_i P_n(X_{n+h-i}) + \sum_{j=h}^{n+h-1} \theta_{n+h-1,j} (X_{n+h-j} - \widehat{X}_{n+h-j})$$

si h > m - n

• Si $n>m=\max(p,q)$, comme souvent, alors $\forall h\geq 1$

$$P_n(X_{n+h}) = \sum_{i=1}^p \phi_i P_n(X_{n+h-i}) + \sum_{j=h}^q \theta_{n+h-1,j} (X_{n+h-j} - \widehat{X}_{n+h-j})$$

Prédictions dans un cas asymptotique : $n o \infty$

• Dans les équations d'Ansley (1979), $n o \infty$ simplifie les choses car

$$\widehat{X}_{n+h} = \sum_{j=1}^{p} \phi_j X_{n+h-j} + \sum_{j=h}^{q} \theta_j (X_{n+h-j} - \widehat{X}_{n+h-j})$$

e.g. 1 Pour un MA(2), $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$, on a directement que

$$\widehat{X}_{n+1} = \sum_{j=1}^{q} \theta_j (X_{n+1-j} - \widehat{X}_{n+1-j}) = \theta_1 \varepsilon_n + \theta_2 \varepsilon_{n-1}$$

$$\widehat{X}_{n+2} = \theta_2 \varepsilon_n$$

$$\widehat{X}_{n+h} = 0$$
, pour $h \ge 3$

e.g. 2 Pour un ARMA
$$(1,2)$$
, $X_t=\phi_1X_{t-1}+arepsilon_t+ heta_1arepsilon_{t-1}+ heta_2arepsilon_{t-2}$, on a

$$\widehat{X}_{n+1} = \phi_1 X_n + \theta_1 \varepsilon_n + \theta_2 \varepsilon_{n-1}$$

$$\widehat{X}_{n+2} = \phi_1 \widehat{X}_{n+1} + \theta_2 \varepsilon_n$$

$$\widehat{X}_{n+h} = \phi_1 \widehat{X}_{n+h-1}$$
, pour $h \ge 3$

Prédictions et Inférence

• Soit un $\mathsf{ARMA}(p,q)$ stationnaire causal

$$\Phi(L)X_t = \Theta(L)\varepsilon_t$$

dont les prévisions à l'ordre h>0 sont \widehat{X}_{n+h}

• On sait que les erreurs de prévisions

$$\epsilon = X_{n+h} - \widehat{X}_{n+h}$$

sont d'espérance nulle et de variance

$$\sigma_{\epsilon}^2 = \gamma(0) - \alpha_n' \gamma_n(h)$$

⇒ Sous une hypothèse de loi, on peut construire **l'intervalle de confiance**

$$\widehat{X}_{n+h} \pm \Phi_{1-\alpha/2} \sigma_{\epsilon}$$

pour un seuil de risque α

• Si ε_t est supposé Gaussien, X_{n+h} sera aussi Gaussien,

$$\frac{X_{n+h}-\widehat{X}_{n+h}}{\sigma_{\epsilon}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

et $\Phi_{1-\alpha/2}$ représentera le fractile d'ordre $1-\alpha/2$ de la loi $\mathcal{N}(0,1)$

Chapter 2

Estimation et Sélection de Modèles

Estimation des modèles linéaires

Objectif Identifier un modèle linéaire approprié pour une série $\{\tilde{X}_t\}_{t=1}^n$

- Cela implique de résoudre plusieurs problèmes itérativement
 - estimer μ_X (afin de travailler avec $X_t = \tilde{X}_t \mu_X$)
 - estimer les coefficients du modèle (dans la classe des ARMA(p,q))
 - sélectionner l'ordre des retards optimaux p et q
 - estimer la variance du bruit blanc σ_{ε}^2
- Dans un second temps, le modèle sélectionné devra être
 - soumis à des tests de diagnostic (e.g. sphéricité des erreurs)
 - être utilisé pour de la prédiction

Estimation de μ_X

• L'estimateur de la moyenne μ_X d'un processus stationnaire X_t est

$$\bar{X}_n = n^{-1} \sum_{j=1}^n X_j$$

• \bar{X}_n , la moyenne empirique, est un estimateur non-biaisé car

$$\mathbb{E}(\bar{X}_n) = n^{-1}(\mathbb{E}X_1 + \ldots + \mathbb{E}X_n) = \mu_X$$

• La MSE de \bar{X}_n est donnée par

$$\begin{split} \mathbb{E}(\bar{X}_n - \mu_X)^2 &= \mathbb{V}(\bar{X}_n) = n^{-2} \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j) \\ &= n^{-2} \sum_{h=-(n-1)}^{n-1} (n - |h|) \gamma_X(h), \quad h = i - j \\ &= n^{-1} \sum_{h=-(n-1)}^{n-1} \left(1 - n^{-1}|h|\right) \gamma_X(h) \end{split}$$

• Si $X_t \sim ARMA(p,q)$, $\gamma_X(h)$ est absolument sommable et

$$\lim_{n\to\infty}\mathbb{V}(\bar{X}_n)=n^{-1}\sum_{h=-\infty}^{\infty}\gamma_X(h)$$

Inférence autour de μ_X

· Sous certaines conditions on peut montrer que

$$n^{1/2}(\bar{X}_n - \mu_X) \sim \mathcal{N}\left(0, \sum_{|h| < n} \left(1 - n^{-1}|h|\right)\gamma(h)\right)$$

e.g. Si X_t est Gaussien ou linéaire ce résultat est valide

• Une approximation de l'intervalle de confiance (IC) à 95% est alors

$$(\bar{X}_n - 1.96 \frac{\nu^{1/2}}{n^{1/2}}, \bar{X}_n + 1.96 \frac{\nu^{1/2}}{n^{1/2}})$$

où $u = \sum_{h=-\infty}^{\infty} \gamma_{\rm X}(h)$, généralement inconnu, devra être estimé aussi

• Considérons un exemple : soit un $\mathsf{AR}(1)$ avec $|\phi_1| < 1$,

$$\begin{split} X_t - \mu_X &= \phi_1(X_{t-1} - \mu_X) + \varepsilon_t, \ \ \gamma_X(h) = \phi_1^{|h|} \sigma_\varepsilon^2 (1 - \phi_1^2)^{-1} \\ \text{et donc } \nu &= (1 + 2 \sum_{h=1}^\infty \phi^h) \sigma_\varepsilon^2 (1 - \phi_1^2)^{-1} = \sigma_\varepsilon^2 (1 - \phi_1)^{-2} \end{split}$$

• On peut alors construire l'IC à 95% pour μ_X :

$$\bar{\mathbf{x}}_n \pm 1.96 \sigma n^{-1/2} (1 - \phi_1)^{-1}$$

Estimateurs de $\gamma_X(.)$ et $\rho_X(.)$

• Les estimateurs de l'ACovF et l'ACF sont données par

$$\hat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-|h|} (X_{t+|h|} - \bar{X}_n)$$

et
$$\hat{\rho}(h) = \hat{\gamma}(h)/\hat{\gamma}(0)$$

• Ces estimateurs sont biaisés mais si on replace n^{-1} par

$$(n-h)^{-1}$$

ils sont presque pas biaisés pour n grand

• On peut montrer que pour $m{
ho}=(
ho(1),\dots,
ho(k))'$ les ACF empiriques sont approximativement Normales

$$\widehat{\boldsymbol{\rho}} \xrightarrow{a.a.d} \mathcal{N}(\boldsymbol{\rho}, n^{-1}W)$$

avec W une matrice de covariance dont les coefficients sont donnés par la formule de Bartlett

$$w_{ij} = \sum_{k=1}^{\infty} \left(\rho(k+i) + \rho(k-i) - 2\rho(i)\rho(k) \right)$$
 $\times \left(\rho(k+j) + \rho(k-j) - 2\rho(j)\rho(k) \right)$

Inférence autour de $\gamma_X(.)$ et $\rho_X(.)$

• Prenons l'exemple d'un $\mathsf{AR}(1)$ et comparons-le avec l'ACF empirique

$$X_t = \phi_1 X_{t-1} + \varepsilon_t$$

avec $|\phi_1| < 1|$ de sorte que nous savons que $ho_{\mathtt{X}}(h) = \phi_1^{|h|}$ et donc

$$w_{ii} = \sum_{k=1}^{i} \phi_1^{2i} (\phi_1^{-k} - \phi_1^k)^2 + \sum_{k=i+1}^{\infty} \phi_1^{2k} (\phi_1^{-i} - \phi_1^i)^2$$
$$= (1 - \phi_1^{2i})(1 + \phi_1^2)(1 - \phi_1^2)^{-1} - 2i\phi^{2i}$$

- Considérons le niveau annuel en "pieds" du Lac Huron (1875-1972)
- Supposons que l'estimation du modèle AR(1) donne

$$x_t - \bar{x} = 0.791(x_{t-1} - \bar{x}) + \varepsilon_t$$

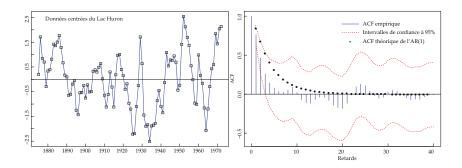
• On peut alors calculer $\hat{
ho}(h)$ et le comparer avec

$$\rho_X(h) = \phi_1^{|h|}$$

les intervals de confiance à 95% étant donnés par

$$\hat{\rho}(h) \pm 1.96 n^{-1/2} w_{ii}^{1/2}, \quad i = 1, \dots, h$$

Analyse graphique de $\rho_X(.)$ et $\hat{\rho}(h)$



- · L'allure des données :
- $\Rightarrow \,$ stationnarité et faible de dépendance donc l'AR(1) est un bon candidat
 - Analyse de l'ACF empirique et ses intervalles de confiance :
- ⇒ l'ACF théorique touche les intervalles aux retards 2 à 4
- ⇒ cela suggère une certaine incompatibilité entre les données et le modèle

Analyse graphique de $ho_{X}(.)$ et $\hat{ ho}(h)$

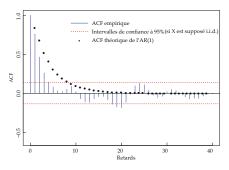
• Dans l'hypothèse où X_t serait une séquence $\mathrm{i.\,i.\,d.}\ (0,\sigma_X^2<\infty)$

$$\widehat{\boldsymbol{\rho}} \stackrel{a.a.d}{\longrightarrow} \mathcal{N}(\boldsymbol{\rho}, n^{-1}), \quad \boldsymbol{\rho} = 0$$

ce qui implique que 95% des fois, $\widehat{
ho}$ devrait tomber dans l'intervalle

$$\pm 1.96 n^{-1/2}$$

ce qui ici revient à ± 0.1990 car n=97



Les estimateurs de Yule-Walker d'un AR

- Soit un processus $\mathsf{AR}(p)$ stationnaire : $X_t = \sum_{j=1}^p \phi_j X_{t-j} + arepsilon_t$
- On a vu au Ch. 1 qu'en multipliant par X_{t-j} , de chaque côté ...
- ... et en prenant l'espérance, on obtenait les équations de Yule-Walker
- ⇒ Exprimées en terme d'ACovF sous forme matricielle on a

$$\Gamma_p \phi_p = \gamma_p$$

avec
$$\Gamma_p = [\gamma(i-j)]_{i,j=1}^p$$
 et $\boldsymbol{\gamma}_p = (\gamma(1),\ldots,\gamma(p))'$

• Dans la pratique on voudra remplacer $\gamma(j)$ par $\widehat{\gamma}(j)$ et construire

$$\widehat{\boldsymbol{\phi}}_p = \widehat{R}_p^{-1} \widehat{\boldsymbol{\rho}}_p$$

l'estimateur de Yule-Walker des p coefficients AR ainsi que

$$\widehat{\sigma}_{\varepsilon}^{2} = \widehat{\gamma}(0) \big(1 - \widehat{\boldsymbol{\rho}}_{p}^{\prime} \widehat{R}_{p}^{-1} \widehat{\boldsymbol{\rho}}_{p} \big)$$

où
$$\widehat{oldsymbol{
ho}}_p = (
ho(1), \ldots,
ho(p))' = oldsymbol{\gamma}_p/\gamma(0)$$

Inférence et équations de Yule-Walker

- On peut montrer que pour $n o \infty$ sous certaines conditions

$$\widehat{\boldsymbol{\phi}}_p \stackrel{a.a.d}{\longrightarrow} \mathcal{N}(\boldsymbol{\phi}, n^{-1} \sigma_{\varepsilon}^2 \Gamma_p^{-1})$$

• En remplaçant σ_{ε}^2 par $\hat{\sigma}_{\varepsilon}^2$, on peut écrire que l'intervalle

$$\widehat{\phi}_{j} \pm \Phi_{1-\alpha/2} n^{-1/2} \widehat{\sigma}_{\varepsilon}$$

contient ϕ_i avec une probabilité de $(1-\alpha)$ avec

$$\Phi_{1-\alpha/2}$$

le quantile à $(1-\alpha)$ d'une distribution normale centrée réduite

Les estimateurs de Yule-Walker en présence de composantes MA

• La limite de Yule-Walker se rencontre pour les $\mathsf{ARMA}(p,q>0)$

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

• En effet, les équations à solutionner pour p > 0 et q > 0 sont

$$\widehat{\gamma}(h) - \phi_1 \widehat{\gamma}(h-1) - \ldots - \phi_p \widehat{\gamma}(h-p) = \sigma_{\varepsilon}^2 \sum_{j=h}^q \theta_j \psi_{j-h}$$

où les $\Psi_z = \Theta(z)\Phi(z)^{-1}$ sont les coefficients de la forme $\mathsf{MA}(\infty)$

- · On voit que malgré son écriture simple, ce problème est non-linéaire
- ⇒ On ne peut garantir l'existence et l'unicité de la solution

Note Pour un processus MA pur, il est possible d'utiliser Yule-Walker

Les estimateurs de Yule-Walker d'un pure MA

- Soit un MA(1) avec $|\theta_1| < 1$: $X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1}$
- On sait que (cf. Ch1) $\widehat{\gamma}(0)=\widehat{\sigma}_{arepsilon}^2(1+\widehat{ heta}_1^2)$ et

$$\widehat{
ho}(1) = rac{\widehat{ heta}_1}{1 + \widehat{ heta}_1^2}$$

• On a vu qu'on peut en déduire $\widehat{ heta}_1\in\mathbb{R}$ si $|\widehat{
ho}(1)|\leq 1/2$ ($\widehat{ heta}_1\in\mathbb{C}$ sinon)

$$\widehat{\theta}(1) = (2\widehat{\rho}(1))^{-1}(1 - (1 - 4\widehat{\rho}^2(1))^{1/2})$$

et

$$\widehat{\sigma}_{\varepsilon}^2 = (1 + \widehat{\theta}_1^2)\widehat{\gamma}(0)$$

Note $\mbox{ Si }|\widehat{
ho}(1)|=0.5$ on trouve $|\widehat{ heta}_1|=1$ et le processus n'est pas inversible

PACF: estimation et inférence

- Comme énoncé au C1, Yule-Walker nous permet d'obtenir les PACFs
- Les PACFs empiriques peuvent également s'obtenir via la régression

$$x_t = \widehat{\phi}_{1,j} x_{t-j} + \dots + \widehat{\phi}_{j,j} x_{t-j} + \varepsilon_t$$

avec l'estimateur OLS (ou MLE Gaussien)

$$\widehat{\phi}_{j}$$

donnant la corrélation partielle d'ordre j

• La théorie limite de ces estimateurs nous révèle que pour j > p

$$\widehat{\phi}_{j,j} \xrightarrow{a.a.d} \mathcal{N}(0, n^{-1})$$

et donc qu'un intervalle de confiance à 95% construit autour de

$$\phi_{j,j}=0$$

est simplement donné par (formule de Quenouille)

$$\pm\frac{1.96}{\sqrt{n}}$$

Rappels MLE

- Vous connaissez déjà l'estimateur du Maximum de Vraisemble (MLE)
- Pour un ensemble de paramètres ϑ
 - le MLE est convergent

$$\hat{\vartheta} \xrightarrow{p} \vartheta_0$$

le MLE est asymptotiquement efficace

$$\mathbb{V}(\hat{\vartheta}) = I_n^{-1}(\vartheta_0)$$

— le MLE est asymptotiquement normalement distribué (pour des lois exp)

$$\sqrt{n}(\hat{\vartheta} - \vartheta_0) \xrightarrow{d} \mathcal{N}(0, I_n^{-1}(\vartheta_0))$$

où $I_n^{-1}(\vartheta_0)$ représente la matrice d'information de Fisher

• sous certaines hypothèse de régularité

Note l'élément crucial dans la construction de la vraisemblance étant le choix de la distribution

Densité conditionnelle Gaussienne et $\mathsf{AR}(1)$

• Soit un ARMA(p,q) dont on suppose $arepsilon_t \sim \mathcal{N}(0,\sigma_arepsilon^2)$

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

• Si on sait que p=1 et q=0, on a un AR(1) pour lequel on sait que

$$\begin{split} X_1 &\sim \mathcal{N}(0, \sigma_{\varepsilon}^2 (1 - \phi_1^2)^{-1}) \\ &\Rightarrow f_{X_1}(x_1; \phi_1) = (\sigma_{\mathbf{X}} \sqrt{2\pi})^{-1} \exp\left(-\frac{1}{2} \frac{x_1^2}{\sigma_{\mathbf{X}}^2}\right) \\ X_2 | X_1 &\sim \mathcal{N}(\phi_1 X_1, \sigma_{\varepsilon}^2) \\ &\Rightarrow f_{X_2 | X_1}(x_2 | x_1; \phi_1) = (\sigma_{\varepsilon} \sqrt{2\pi})^{-1} \exp\left(-\frac{1}{2} \frac{(x_2 - \phi_1 x_1)^2}{\sigma_{\varepsilon}}\right) \\ &\vdots \\ X_n | X_{n-1} &\sim \mathcal{N}(\phi_1 X_{n-1}, \sigma_{\varepsilon}^2) \\ &\Rightarrow f_{X_n | X_{n-1}}(x_n | x_{n-1}; \phi_1) = (\sigma_{\varepsilon} \sqrt{2\pi})^{-1} \exp\left(-\frac{1}{2} \frac{(x_n - \phi_1 x_{n-1})^2}{\sigma_{\varepsilon}}\right) \end{split}$$

Maximum de Vraisemblance Gaussien Exact et AR(1)

Des densités conditionnelles découle la fonction de vraisemblance

$$L_n(artheta; x_1, \dots, x_n) = rac{(1-\phi_1^2)^{1/2}}{(\sigma_arepsilon\sqrt{2\pi})^n} \expigg(-rac{(1-\phi_1^2)x_1^2}{2\sigma_arepsilon^2}igg) \prod_{t=2}^n \expigg(-rac{arepsilon_t^2}{2\sigma_arepsilon^2}igg)$$

• Dont l'écriture sous forme de log-vraisemblance donne

$$\ell_n(\vartheta;x_1,\ldots,x_n) = -\frac{1}{2}\ln\left(\frac{(1-\phi_1^2)}{(\sigma_\varepsilon\sqrt{2\pi})^n}\right) - \frac{1}{2\sigma_\varepsilon^2}\left((1-\phi_1^2)x_1^2 + \sum_{t=2}^n\varepsilon_t^2\right)$$

avec
$$\vartheta = (\phi_1, \sigma_\varepsilon^2)'$$

- Le second terme fait intervenir : $\mathit{RSS}_c := \sum_{t=2}^n \varepsilon_t^2$
- On peut constuire un OLS conditionnel basé sur la minisation de RSS_c
- Ou un OLS non-conditionnel basé sur $\mathit{RSS}_c + (1-\phi_1^2)x_1^2$

Note Seul le MLE permet de gérer la non-linéarité engendrée par q>0

$$\widehat{\vartheta} = \arg \max_{\vartheta \in \mathbb{R}} \ell_n(\vartheta; x_1, \dots, x_n)$$

Maximum de Vraisemblance Gaussien Exact et AR(p)

Dans le cas d'un AR(p), il nous faut isoler

$$f_{X_p,X_{p-1},\ldots,X_1}(x_p,x_{p-1},\ldots,y_1;\vartheta)$$

Rappel La vraissemblance Gaussienne de $\mathbf{X}_n = (X_1, \dots, X_n)'$ s'écrit

$$\ell_n(\vartheta; X_1, \dots, X_n) = (2\pi)^{-n/2} (|\Gamma_n|)^{-1/2} \exp\left(-1/2X_n'\Gamma_n^{-1}X_n\right)$$

• Pour $X_p = (X_1, \dots, X_p)'$ on a

$$\Gamma_{p} = \begin{pmatrix} \gamma_{0} & \gamma_{1} & \dots & \gamma_{p-1} \\ \gamma_{1} & \gamma_{0} & \dots & \gamma_{p-2} \\ \vdots & \vdots & \dots & \vdots \\ \gamma_{p-1} & \gamma_{p-2} & \dots & \gamma_{0} \end{pmatrix}$$

et donc la densité Gaussienne des p premières observations devient

$$f_{X_p,X_{p-1},...,X_1}(x_p,x_{p-1},...,x_1;\vartheta) = (2\pi)^{-p/2}(|\Gamma_p|)^{-1/2}\exp\left(-\frac{1}{2}\mathbf{X}_p'\Gamma_p^{-1}\mathbf{X}_p\right)$$

menant à la densité Gaussienne complète $f_{X_n,\dots,X_1}(x_n,\dots,x_1;\vartheta)=$

$$f_{X_{p},X_{p-1},...,X_{1}}(x_{p},x_{p-1},...,x_{1};\vartheta)\prod_{t=p+1}^{n}f_{X_{t}|X_{t-1},...,X_{t-p}}(x_{t}|x_{t-1},...,x_{t-p};\vartheta)$$

Maximum de Vraisemblance Gaussien conditionnel et AR(p)

- Il est possible de considérer les p observations comme déterministes
- En conditionnant la densité complète sur ces p observations on obtient

$$f_{X_n,\ldots,X_{p+1}|X_1,\ldots,X_p}(x_n,\ldots,x_{p+1}|x_1,\ldots,x_p;\vartheta) = \prod_{t=p+1}^n f_{X_t|X_{t-1},\ldots,X_{t-p}}(x_t|x_{t-1},\ldots,x_{t-p};\vartheta)$$

Dès lors, dans la construction de la vraisemblance, on sacrifiera

$$\mathbf{X}_p = (X_1, \ldots, X_p)'$$

· Mais le problème d'optimisation s'en trouvera simplifié

$$\ell_n(\vartheta; x_p, \dots, x_n) = -\frac{1}{2} \ln \left(\frac{1}{(\sigma_{\varepsilon} \sqrt{2\pi})^n} \right) - \frac{1}{2\sigma_{\varepsilon}^2} \left(\sum_{t=p+1}^n \varepsilon_t^2 \right)$$

et il y aura équivalence avec les OLS

Maximum de Vraisemblance Gaussien conditionnel et $\mathsf{MA}(q)$

• Partons de X_1 où

$$X_1 = \varepsilon_1 + \theta_1 \varepsilon_0 + \ldots + \theta_q \varepsilon_{-q+1}$$

sous l'hypothèse que $\varepsilon_0 = (\varepsilon_0, \varepsilon_{-1}, \dots, \varepsilon_{-q+1})' = 0$, qui nous donne

$$(X_1|\varepsilon_0=0) \sim \mathcal{N}(0,\sigma_{\varepsilon}^2) \Rightarrow f_{X_1|\varepsilon_0}(x_1|\varepsilon_0;\vartheta) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \exp\Big(-\frac{(X_1^2=\varepsilon_1^2)}{2\sigma_{\varepsilon}^2}\Big)$$

Pour X_2 , notons que X_1 et donc ε_1 est observable

$$X_2 = \varepsilon_2 + \theta_1 \varepsilon_1 + \ldots + \theta_q \varepsilon_{-q+2}$$

ce qui nous donne

$$(X_2|X_1=x_1, \varepsilon_0=0) \sim \mathcal{N}(\theta_1\varepsilon_1, \sigma_{\varepsilon}^2)$$

et donc $f_{\mathrm{X}_2|\mathrm{X}_1,arepsilon_0}(x_2|\mathrm{x}_1,arepsilon_0;artheta)=rac{1}{\sqrt{2\pi\sigma_arepsilon^2}}\exp\Big(-rac{(\mathrm{X}_2- heta_1arepsilon_1)^2}{2\sigma_arepsilon^2}\Big)$

$$=rac{1}{\sqrt{2\pi\sigma_arepsilon^2}}\exp\Big(-rac{(arepsilon_2)^2}{2\sigma_arepsilon^2}\Big)$$

En itérant on obtient, de la même manière que pour les AR, la vraisemblance conditionnelle

$$\ell_n(\vartheta; x_1, \dots, x_n) = -\frac{n}{2} \ln \left(\frac{1}{(\sigma_{\varepsilon} \sqrt{2\pi})} \right) - \frac{1}{2\sigma_{\varepsilon}^2} \left(\sum_{t=1}^n \varepsilon_t^2 \right)$$

Vraisemblance Gaussienne et ARMA(p,q)

• Pour p>0 et q>0, en se basant sur l'Al (Ch. 1) et

$$\mathbb{E}(X_{n+1}-\widehat{X}_{n+1})^2=\sigma_{\varepsilon}^2r_n$$

une écriture générale de la vraisemblance Gaussienne est possible

$$L_n(\vartheta; x_1, \dots, x_n) = rac{1}{\sqrt{(2\pi\sigma_arepsilon^2)r_0\dots r_{n-1}}} \exp\left(-rac{1}{2\sigma_arepsilon^2} \sum_{j=p+1}^n rac{(x_j-\widehat{x_j})^2}{r_{j-1}}
ight)$$

Les estimateurs du maximum de vraisemblance (Gaussien) sont alors

$$\widehat{\sigma}_{\varepsilon}^2 = n^{-1} S(\widehat{\vartheta}_{p,q}; x_1, \dots, x_n) \text{ où } S(\widehat{\vartheta}_{p,q}; x_1, \dots, x_n) = \frac{(x_j - \widehat{x}_j)^2}{r_{i-1}}$$

et

$$\widehat{\vartheta}_{p,q} = (\widehat{\phi}_1, \dots, \widehat{\phi}_p, \widehat{\theta}_1, \dots, \widehat{\theta}_q)'$$

sont les valeurs qui minimisent (l'opposée de) la log-vraisemblance Gaussienne concentrée

$$\ell_n(\vartheta_{p,q}; x_1, \dots, x_n) = \ln \left(n^{-1} S(\vartheta_{p,q}; x_1, \dots, x_n) \right) + n^{-1} \sum_{j=p+1}^n \ln r_{j-1}$$

Note Concentrer : résoudre sur un paramètre puis le faire dépendre des autres

Inférence et vraisemblance Gaussienne d'un ARMA(p,q)

• Pour $n o \infty$ on peut montrer que $r_n = 1$ et

$$\widehat{\vartheta} \stackrel{a.a.d}{\longrightarrow} \mathcal{N} \big(\vartheta, n^{-1} \mathbb{V} (\vartheta) \big)$$

La covariance $n^{-1}\mathbb{V}(\vartheta)$ peut être approximée via

$$\widehat{H}_n(\vartheta;x_1,\ldots,x_n)^{-1}$$

la Hessienne numérique évaluée par l'optimiseur à l'optimum

- ⇒ Les écarts-type seront donc aussi évaluables
 - Pour des ARMA simples, la variance asymptotique est disponible
- \Rightarrow Pour n grand, l'usage direct de $n^{-1}\mathbb{V}(\vartheta)$ sera donc possible

Note Si n est petit, vous verrez au S2 qu'il existe des techniques de Bootstrap

Variance asymptotique et vraisemblance Gaussienne

- Pour un $\mathsf{AR}(p)$ stationnaire, $\mathbb{V}(\vartheta)$ est identique à celle de Yule-Walker

$$\mathbb{V}(\vartheta_p) = \sigma_\varepsilon^2 \Gamma_p^{-1}$$

et plus particulièrement pour un AR(1) et un AR(2) on obtient

$$\mathbb{V}(\vartheta_1) = (1 - \phi_1^2) \text{ et } \mathbb{V}(\vartheta_2) = \begin{pmatrix} (1 - \phi_1^2) & -\phi_1(1 + \phi_2) \\ -\phi_1(1 + \phi_2) & (1 - \phi_2^2) \end{pmatrix}$$

• Pour un MA(q) inversible, il faut adopter une écriture en AR(q)

$$X_t + \theta_1 X_{t-1} + \ldots + \theta_q X_{t-q} = \varepsilon_t$$

et il peut être montré que $\mathbb{V}(\vartheta_q)=\sigma_{arepsilon}^2\Gamma_q^{-1}$ et e.g. pour q=1 et q=2

$$\mathbb{V}(\vartheta_1) = (1 - \theta_1^2) \text{ et } \mathbb{V}(\vartheta_2) = \begin{pmatrix} (1 - \theta_1^2) & \theta_1(1 - \theta_2) \\ \theta_1(1 - \theta_2) & (1 - \theta_2^2) \end{pmatrix}$$

• Pour un ARMA(1, 1) stationnaire causal on peut montrer que

$$\mathbb{V}(\vartheta_{1,1}) = \frac{1 + \phi_1 \theta_1}{(\phi_1 + \theta_1)^2} \begin{pmatrix} (1 - \phi_1^2)(1 + \phi_1 \theta_1) & -(1 - \theta_1^2)(1 - \phi_1^2) \\ -(1 - \theta_1^2)(1 - \phi_1^2) & (1 - \theta_1^2)(1 + \phi_1 \theta_1) \end{pmatrix}$$

Estimation d'un AR(1) et inférence

• Considérons les rendements du Dow Jones journalier sur quelques mois

$$n = 77$$

- L'ACF et la PACF nous révèlent une faible dépendance au passé
- L'estimation par MLE d'un AR(1) nous donne

$$X_t = 0.4471X_{t-1} + \varepsilon_t$$

et le logiciel utilisé nous retourne également $\widehat{\sigma}_{\phi_1}=0.1050$

• Pour l'écart-type asymptotique, $\sigma_{\phi_1} = \sqrt{\mathbb{V}(\phi_1)n^{-1}}$, on trouve

$$\sqrt{(1-0.4471^2)/77} = 0.1019$$

- $\Rightarrow \ \sigma_{\phi_1} \ {\sf et} \ \widehat{\sigma}_{\phi_1} \ {\sf sont} \ {\sf relativement} \ {\sf proches}$
 - Pour le calcul de l'intervalle de confiance à 95% on obtient

$$0.4471 \pm 1.96 \times 0.1050 = (0.2413, 0.6529)$$

ou

$$0.4471 \pm 1.96 \times 0.1019 = (0.2473, 0.6468)$$

Comment sélectionner un modèle

- Dans l'exemple S107, on peut se demander si l'AR(1) est approprié
- ⇒ plusieurs réponses existent à la question de la sélection des retards
 - 1 Dans un premier temps, les examens des ACF et PACF ont été utilisés
- \Rightarrow approche à la Box et Jenkins pour déterminer si MA, AR, ou ARMA
- 2 Les critères d'information sont plus fiables pour le choix de p et q
- \Rightarrow on présentera AIC, BIC et HQ
- 3 Des tests de validation suivent ces procédures d'identifications
- ⇒ divers tests sur les résidus

La méthodologie de Box et Jenkins

- L'approche Box et Jenkins s'inscrit dans la recherche de la parcimonie
- ⇒ comment prédire avec le minimum de paramètres
 - On peut résumer la méthodologie de BJ en 4 étapes
 - 1 Transformer les données pour satisfaire l'hypothèse de stationnarité
 - 2 Sélectionner p,q petits pour décrire la série à l'aide d'un ARMA(p,q)
 - 3 Estimer les paramètres AR et MA du modèle
 - 4 Procéder à une validation de la spécification retenue
 - 5 Prévisions
 - L'étape 1 sera détaillée au C3 et l'étape 3 relève de la section précédente
 - L'étape 2 est appelée étape d'identification par BJ et repose sur

$$\widehat{
ho}_{\!j}$$
 et $\widehat{\phi}_{\!j,j},\;\;j=1,2,\ldots$

dont les comportements peuvent nous renseigner sur p et q

· L'étape 4 est détaillée dans la section suivante

L'identification de p chez Box et Jenkins

Rappel Au C1 nous avions vu que pour un ${\rm AR}(p>0)$

$$p=\inf\{j|\phi_{j,j}=0\}$$

• Dans la pratique il faut donc estimer $\phi_{j,j}$ pour $j=1,2,\ldots,h$ et tester

$$H_0: \phi_{1,1} = 0 \text{ versus } H_1: \phi_{1,1} \neq 0$$

- D'après le S19 on sait que si $|\widehat{\phi}_{1,1}|>1.96/\sqrt{n}$ on rejette H_0
- \Rightarrow si H_0 n'est pas rejeté on conclu que p < 1, mais si on rejette, on teste

$$\mathit{H}_0:\phi_{2,2}=0$$
 versus $\mathit{H}_1:\phi_{2,2}\neq 0$

- De nouveau, si $|\widehat{\phi}_{2,2}|>1.96/\sqrt{n}$ on rejette H_0
- \Rightarrow si on ne rejette pas, p=1, mais si on rejette, on teste

$$H_0: \phi_{3,3} = 0 \text{ versus } H_1: \phi_{3,3} \neq 0$$

· Cette procédure se prolonge ainsi jusqu'à arriver à

$$H_0: \phi_{h,h} = 0 \text{ versus } H_1: \phi_{h,h} \neq 0$$

avec
$$h = p + 1$$

L'identification de q chez Box et Jenkins

Rappel Au C1 nous avions vu que pour un MA(q>0), $q=\inf\{j|
ho_j=0\}$

- La même stratégie peut donc être mise en place en estimant ho_j
- Pour un $\mathsf{MA}(q)$ Gaussien, la formule de Bartlett (cf. S89) nous donne

$$\mathbb{V}(\widehat{
ho_j}) = rac{1}{n}igg(1+2\sum_{i=1}^q
ho_i^2igg), \ \ j=q+1,q+2,\ldots$$

où dans la pratique on remplacera ρ_i par $\widehat{\rho}_i$

• La procédure sera alors de commencer par estimer ρ_1 et de tester

$$\mathit{H}_0:
ho_1 = 0$$
 versus $\mathit{H}_1:
ho_1
eq 0$

sachant que si $|\widehat{\rho}_1| > 1.96/\sqrt{n}$ on rejette H_0

 \Rightarrow si H_0 n'est pas rejeté on conclu que q < 1, mais si on rejette, on teste

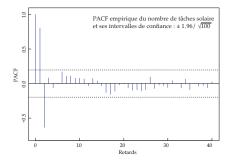
$$H_0: \rho_2 = 0 \text{ versus } H_1: \rho_2 \neq 0$$

sachant que si $|\widehat{
ho}_2|>1.96\sqrt{n^{-1}(1+2\widehat{
ho}_1^2)}=1.96\sqrt{\mathbb{V}(\widehat{
ho}_2)}$ on rejette H_0

Cette procédure se prolonge ainsi jusqu'à

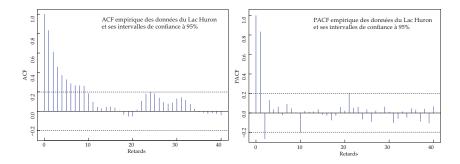
$$H_0: \rho_h = 0$$
 versus $H_1: \rho_h \neq 0$, avec $h = q + 1$

Exemple d'analyse de la PACF chez Box et Jenkins



- Soit la séquence du nombre de Wolf (1770-1869) et sa PACF
- Analysons les PACFs significatives (attention, $\phi_{0,0}=\rho_0=1$)
- Au delà de 2 retards ($\phi_{1,1}$ et $\phi_{2,2}$), les PACFs sont dans les intervalles
- \Rightarrow Cela suggère qu'un modèle candidat est serait l'AR(2)

Exemple d'analyse graphique chez Box et Jenkins



- Soit les données du Lac Huron vues au S90
- Analysons les ACFs et PACFs significatives
- La décroissance de l'ACF est graduelle ne suggérant pas un MA
- Inversement, une rupture dans la PACF s'observe au delà de 2 retards
- \Rightarrow Cela suggère de nouveau qu'un modèle candidat serait l'AR(2)

La philosophie du critère AIC (Akaike Information Criterion)

• L'idée de l'AIC est de minimiser une divergence distributionnelle (Kullback-Leibler)

$$d(\tilde{\vartheta}|\vartheta) = \Delta(\tilde{\vartheta}|\vartheta) - \Delta(\vartheta|\vartheta)$$

οù

$$\Delta(\tilde{\vartheta}|\vartheta) = \mathbb{E}(-2\ln f(\mathbf{X};\tilde{\vartheta})) = \int_{\mathbb{R}^n} -2f(\mathbf{x};\vartheta)\ln f(\mathbf{x};\tilde{\vartheta})d\mathbf{x}$$

mesure la dissimilarité entre la famille de fonctions de densités

$$\{f(\mathbf{x}; \tilde{\vartheta}), \tilde{\vartheta} \in \Theta\}$$

dont on suppose que $\mathbf{X} = (X_1, \dots, X_n)'$ est tiré, et $f(\mathbf{x}; \vartheta)$

• En effet on peut voir que par l'inégalité de Jensen,

$$d(\tilde{\vartheta}|\vartheta) = \int_{\mathbb{R}^n} -2f(\mathbf{x};\vartheta) \ln\left(\frac{f(\mathbf{x};\tilde{\vartheta})}{f(\mathbf{x};\vartheta)}\right) d\mathbf{x}$$

$$\geq -2 \ln\left(\int_{\mathbb{R}^n} \frac{f(\mathbf{x};\tilde{\vartheta})}{f(\mathbf{x};\vartheta)} f(\mathbf{x};\vartheta) d\mathbf{x}\right)$$

$$= -2 \ln\left(\int_{\mathbb{R}^n} f(\mathbf{x};\tilde{\vartheta}) d\mathbf{x}\right) = 0$$

où l'inégalité de Jensen devient une égalité si $f(\mathbf{x}; \tilde{\vartheta}) = f(\mathbf{x}; \vartheta)$

La construction du critère AIC corrigé

- Bien sur $d(\tilde{\vartheta}|\vartheta)$ doit être estimé et pour cela on suppose la Normalité
- \Rightarrow Pour $\vartheta=(\vartheta_{p,q},\sigma_{\varepsilon}^2)'$, $f(.;\vartheta)$ est la fonction de densité de

$$\mathbf{Y}=(Y_1,\ldots,Y_n)'$$

où Y_t est un ARMA(p,q) Gaussien de paramètre $\vartheta_{p,q}$ et $\sigma_{arepsilon}^2$

- Supposons que $\mathbf{x} = (x_1, \dots, x_n)'$ provient d'un ARMA Gaussien avec p, q et ϑ ses vrais paramètres
- Notons $\widehat{\vartheta}$ l'estimateur MLE basé sur X, alors

$$-2\ln L_n(\widehat{\vartheta};\boldsymbol{\gamma}) = -2\ln L_n(\widehat{\vartheta};\boldsymbol{x}) + \widehat{\sigma}_{\varepsilon}^{-2}S(\widehat{\vartheta}_{p,q};\boldsymbol{\gamma}) - n$$

et donc on peut écrire $\mathbb{E}_{\vartheta}(\Delta(\tilde{\vartheta}|\vartheta))$ comme

$$\mathbb{E}_{\vartheta}\big(-2\ln L_n(\widehat{\vartheta};\boldsymbol{\gamma})\big) = \mathbb{E}_{\vartheta}\big(-2\ln L_n(\widehat{\vartheta};\boldsymbol{x})\big) + \mathbb{E}_{\vartheta}\big(\widehat{\sigma}_{\varepsilon}^{-2}S(\widehat{\vartheta}_{p,q};\boldsymbol{\gamma})\big) - n$$

dont l'approximation asymptotique du terme

$$\mathbb{E}_{\vartheta}\left(\widehat{\sigma}_{\varepsilon}^{-2}S(\widehat{\vartheta}_{p,q};\boldsymbol{\gamma})\right) = \frac{2(p+q+1)n}{n-p-q-2}$$

nous fourni un estimateur non-biaisé de la distance de KL espérée

$$AICc = -2 \ln L_n(\widehat{\vartheta}; \mathbf{x}) + \frac{2(p+q+1)n}{n-p-q-2}$$

Critère AIC versus AICc

• A l'origine, le critère AIC fut proposé comme

$$AIC = -2 \ln L_n(\widehat{\vartheta}; \mathbf{x}) + 2(p+q+1)$$

⇒ Asymptotiquement AIC et AICc sont équivalent

Note 1 En échantillon fini, des simulations montrent que l'AIC surestime p

- ⇒ phénomène d'overfitting
- Note 2 Si le vrai p est grand, l'AlCc sous-estime souvent p
 - $\Rightarrow\;$ phénomène overfitting inverse
- Note 3 Les deux critères sont basés sur deux éléments
 - ⇒ "qualité d'ajustement" (vraisemblance) + "pénalité" (# de paramètres)

Critères BIC et HQ

De nombreux autres critères existent dont le BIC et l'HQ

BIC Le Bayesian Information Criterion se distingue par sa pénalité

$$BIC = -2 \ln L_n(\widehat{\vartheta}; \mathbf{x}) + (p+q+1) \ln(n)$$

HQ Le critère d'Hannan-Quinn se distingue aussi par sa pénalité

$$HQ = -2 \ln L_n(\widehat{\vartheta}; \mathbf{x}) + (p+q+1) \ln(\ln(n))$$

- · Comparaison avec AICc:
 - BIC et HQ sont consistants (pas AICc): $\tilde{\vartheta} \in \Theta$
 - $\Rightarrow \; \hat{p}
 ightarrow p \; ext{et} \; \hat{q}
 ightarrow q \; ext{avec une probabilité unitaire}$
 - AICc est efficace, i.e. minimise la MSE (pas BIC ni HQ) : $\tilde{\vartheta} \notin \Theta$
 - ⇒ il minimise le risque de choisir un très mauvais modèle

Comparaison par simulation

- Soit des simulations Monte Carlo : AR(1), AR(2), MA(2), ARMA(1,1)
- \Rightarrow 10000 simulations de $n \in \{30, 60, 180, 500\}$ observations
 - On fixe $p_{
 m max}=q_{
 m max}=4$ et on applique chacun des 3 critères
- \Rightarrow les tableaux suivants reportent les % de sélection de p et q par critère

Note V désigne le nombre de procédures d'estimation ayant abouti

	DGP:	AR(1)			P		
			0	1	2	3	4
		AIC	1%	71%	14%	7%	7%
	n = 30	BIC	2%	87%	7%	2%	1%
ı		HQ	1%	79%	11%	5%	4%
		AIC	0%	75%	13%	7%	6%
	n = 60	BIC	0%	94%	5%	1%	0%
ı		HQ	0%	86 %	9%	3%	2%
		AIC	0%	75%	13%	7%	6%
n = 3 n = 6 n = 1	n = 180	BIC	0%	97%	2%	0%	0%
		HQ	0%	90%	7%	2%	1%
		AIC	0%	77 %	12%	6%	5%
	n = 500	BIC	0%	98%	2%	0%	0%
		HQ	0%	93%	5%	1%	0%

DGP:	AR(2)	P												
		0	1	2	3	4								
	AIC	11%	28%	42 %	11%	8%								
n = 30	BIC	21%	39 %	34%	4%	2%								
	HQ	14%	33%	40 %	8%	5%								
	AIC	1%	8%	70 %	12%	9%								
n = 60	BIC	3%	22%	71%	3%	1%								
	HQ	1%	14%	74 %	7%	4%								
	AIC	0%	0%	78%	14%	8%								
n = 180	BIC	0%	0%	97%	2%	0%								
	HQ	0%	0%	91%	7%	2%								
	AIC	0%	0%	78%	13%	9%								
n = 500	BIC	0%	0%	99 %	1%	0%								
	HQ	0%	0%	93 %	5%	2%								

DGP:	MA(2)			q		
		0	1	2	3	4
	AIC	17%	15%	42%	14%	12%
n = 30	BIC	36%	18%	35%	6%	5%
	HQ	23%	16%	41%	11%	9%
	V	10000	9977	9902	9245	8076
	AIC	2%	5%	67%	15%	11%
n = 60	BIC	12%	13%	69%	4%	2%
	HQ	5%	8%	72%	9%	6%
	V	10000	10000	9995	9961	9802
	AIC	0%	0%	77%	13%	9%
n = 180	BIC	0%	0%	97%	3%	0%
	HQ	0%	0%	90%	7%	3%
	V	10000	10000	10000	10000	10000
	AIC	0%	0%	78%	14%	8%
n = 500	BIC	0%	0%	99%	1%	0%
	HQ	0%	0%	93%	5%	2%
	V	10000	10000	10000	10000	10000

Comparaison par simulation : $\mathsf{ARMA}(1,1)$

DGP: ARMA(1,1)													DGP: ARMA(1,1)														
Г	n = 30			q			q						n	n = 180 q								q					
	AIC	0	1	2	3	4	1	HQ	0	1	2	3	4		AIC	0	1	2	3	4		HQ	0	1	2	3	4
Г	0	0%	1%	4%	2%	9%		0	16%	0%	0%	0%	0%		0	0%	0%	0%	0%	0%		0	0%	0%	0%	0%	0%
	1	4%	28 %	5%	2%	4%		1	41 %	0%	0%	0%	0%		1	0%	46 %	4%	2%	2%	ıl	1	79 %	0%	0%	0%	0%
P	2	9%	6%	1%	2%	1%	р		0%	0%	0%	0%	l p	2	0%	5%	9%	2%	2%	Р	2	12%	0%	0%	0%	0%	
	3	8%	1%	1%	0%	0%	1	3	10%	0%	0%	0%	0%		3	0%	2%	2%	11%	3%	1	3	7%	0%	0%	0%	0%
	4	13%	3%	1%	0%	0%		4	13%	0%	0%	0%	0%		4	0%	2%	1%	3%	3%		4	3%	0%	0%	0%	0%
				q							q		. –					q							q		
	BIC	0	1	2	3	4		V	0	1	2	3	4		BIC	0	1	2	3	4		V	0	1	2	3	4
	0	0%	1%	6%	2%	6%		0	10000	7676	7514	5159	5050		0	0%	0%	0%	0%	0%		0	10000	9711	9958	9663	9911
	1	2%	39 %	3%	1%	2%		1	10000	8066	7247	4955	3755		1	0%	92 %	1%	0%	0%		1	10000	9996	9989	9948	9935
P	2	17%	4%	1%	1%	1%	p	2	10000	6726	2411	1937	993	P	2	0%	2%	2%	0%	0%	p	2	10000	9908	7304	7870	7451
	3	6%	1%	0%	0%	0%		3	10000	6089	2432	608	248		3	0%	0%	0%	1%	0%		3	10000	9913	8500	6059	5577
ш	4	6%	0%	0%	0%	0%		4	10000	5489	1790	452	99		4	0%	0%	0%	0%	0%		4	10000	9796	7739	5674	3250
	n = 60			q			П				q			n = 500 q q													
	AIC	0	1	2	3	4		HQ	0	1	2	3	4		AIC	0	1	2	3	4		HQ	0	1	2	3	4
	0	0%	0%	0%	1%	5%		0	6%	0%	0%	0%	0%		0	0%	0%	0%	0%	0%		0	0%	0%	0%	0%	0%
	1	0%	44 %	5%	2%	3%		1	66 %	0%	0%	0%	0%		1	0%	41 %	3%	2%	1%		1	82 %	0%	0%	0%	0%
P	2	1%	7%	4%	3%	3%	P	2	13%	0%	0%	0%	0%	P	2	0%	4%	9%	2%	1%	р	2	9%	0%	0%	0%	0%
	3	3%	2%	1%	2%	1%		3	7%	0%	0%	0%	0%		3	0%	2%	2%	17%	5%		3	7%	0%	0%	0%	0%
╙	4	7%	3%	1%	1%	0%	_	4	8%	0%	0%	0%	0%		4	0%	1%	1%	4%	6%	_	4	2%	0%	0%	0%	0%
	nic							, q , ,						_	, q , ,												
\vdash	BIC	0	1	2	3	4		V	0	1	2	3	4	\perp	BIC	0	- 1	2	3	4	_	V	0	1	2	3	4
	0	0%	0% 73 %	1%	1%	3% 1%		0	10000 10000	8599 9444	9271 9228	7843 8261	8215 7667		0	0%	0%	0%	0%	0%		0	10000	9991	9997	9954	9994
١	2	3%	4%	1%	1%	1%		2	10000	8713	4472	4697	3861		1	0%	96%	1%	0%	0%		1	10000	10000	10000	10000	10000
P			0%				Р							P	2	0%	1%	1%	0%	0%	p	2	10000	9998 9997	8650	9002	8717
	3	3%	0%	0%	0% 0%	0% 0%		3	10000 10000	8432 7867	5193 4381	2165 1902	1520 698		3	0%	0% 0%	0% 0%	0%	0% 0%		3	10000 10000	9997	9380 8983	8143 7967	7778 5808
\Box	14	3%	0%	υ%	υ%	υ%	ш	4	10000	/06/	4581	1902	098	\Box	4	υ%	U%	0%	0%	υ%		4	10000	2294	0983	/96/	3608

Limites de l'utilisation des critères

- On considère de nouveau les données du lac Huron (cf. S90)
- Si l'économètre balaye uniquement sur p>0 :
- \Rightarrow Les AICc et BIC minimum sont trouvés pour p=2 et on obtient

$$X_t - 1.0441X_{t-1} + 0.2503X_{t-2} = \varepsilon_t, \ \varepsilon_t \sim \mathcal{N}(0, 0.4789)$$

avec
$$AICc = 213.54$$
 et $BIC = 217.63$

- Si l'économètre balaye sur p>0 et q>0 :
- \Rightarrow Les AlCc et BlC minimum sont trouvés pour p=1 et q=1 et on obtient

$$\textbf{X}_t - 0.7446\textbf{X}_{t-1} = \varepsilon_t + 0.3213\varepsilon_{t-1}, \ \varepsilon_t \sim \mathcal{N}(0, 0.4750)$$

avec
$$AICc = 212.77$$
 et $BIC = 217.86$

Note Les critères étant très proches, difficile de déterminer le meilleur modèle

Identification

- Il est possible d'intégrer des variables exogènes, $extbf{ extit{X}}_t$ dans un ARMA
- ⇒ mais l'identification et l'estimation du processus se complexifient
 - · Pour comprendre cela considérons l'ARMAX suivant

$$Y_t = \alpha_0 X_t + \alpha_1 X_{t-1} + \ldots + \alpha_m X_{t-m} + \nu_t$$

où ν_t suit un ARMA(p,q) indépendant $\forall t$ de X_t

• Sous l'hypothèse que $X_t \sim \mathit{WN}(0, \sigma_X^2)$, on a

$$\mathbb{E}(Y_{t}X_{t}) = \alpha_{0}\sigma_{X}^{2} \Rightarrow Corr(Y_{t}, X_{t}) = \alpha_{0}\sigma_{X}\sigma_{Y}^{-1}$$

$$\mathbb{E}(Y_{t}X_{t-1}) = \alpha_{1}\sigma_{X}^{2} \Rightarrow Corr(Y_{t}, X_{t-1}) = \alpha_{1}\sigma_{X}\sigma_{Y}^{-1}$$

$$\mathbb{E}(Y_{t}X_{t-2}) = \alpha_{2}\sigma_{X}^{2} \Rightarrow Corr(Y_{t}, X_{t-2}) = \alpha_{2}\sigma_{X}\sigma_{Y}^{-1}$$

ce qui implique que $Corr(Y_t, X_{t-j})$ est proportionnelle à $\partial Y_t/(\partial X_{t-j})$

 \Rightarrow on peut identifier les retards de X_t entrant dans le modèle de Y_t

Pre-whitening

- Mais cette identification n'est possible que si $\mathit{X}_t \sim \mathit{WN}(0, \sigma_{\mathit{X}}^2)$
- \Rightarrow Si ce n'est pas le cas, il faut blanchir X_t de toute dépendance ...
- \dots sans affecter sa relation avec Y_t , c'est le **pre-whitening**
- Pour comprendre cette étape considérons à présent que $X_t \sim ARMA(p,q)$

$$Y_t = \alpha(L)X_t + \nu_t, \quad \Phi_X(L)X_t = \Theta_X(L)u_t$$

où $\nu_t \sim ARMA(p,q)$ indépendant $\forall t \text{ de } X_t, u_t \text{ est un bruit blanc et}$

$$u_t = \Theta_X(L)^{-1} \Phi_X(L) X_t$$

Il suffit alors de multiplier Y_t par le filtre $\Theta_X(L)^{-1}\Phi_X(L)$ pour obtenir

$$\Theta_X(L)^{-1}\Phi_X(L)Y_t = \alpha(L)\Theta_X(L)^{-1}\Phi_X(L)X_t + \Theta_X(L)^{-1}\Phi_X(L)\nu_t$$

ce qui nous donne

$$\tilde{\mathbf{Y}}_t = \alpha(\mathbf{L})\mathbf{u}_t + \tilde{\nu}_t$$

où u_t est bien un bruit blanc et les $\alpha(L)$ sont donc identifiables

Estimation en étapes

- L'estimation des ARMAX nécessite donc plusieurs étapes
 - identification du processus ARMA afférent X_t pour déterminer

$$\Theta_X(L)^{-1}\Phi_X(L)$$

- blanchiment de X_t par application du filtre $\Theta_X(L)^{-1}\Phi_X(L)$ à X_t et Y_t
- calcul des corrélations croisées entre \tilde{Y}_t et u_t
- ⇒ les corrélations non-nulles signalent les lags devant intégrer le modèle
- $-\,\,$ identification du processus ARMA afférent à $ilde{\mathrm{Y}}_t$

Note 1 L'inférence sur les corrélations croisées est simplifiées puisque

$$u_t \sim WN(0, \sigma_u^2)$$

⇒ ce qui nous ramène à la formule de Bartlett simplifiée vue au S91

Fonction de transfert générale

- Soit $X_t = X_{1,t}, \dots, X_{k,t}$ dont tous les éléments sont orthogonaux
- La fonction de transfert d'un ARMAX sur Y_t sera alors

$$Y_{t} = \frac{\alpha_{1}(L)}{\beta_{1}(L)} X_{1,t-d_{1}} + \ldots + \frac{\alpha_{k}(L)}{\beta_{k}(L)} X_{k,t-d_{k}} + \frac{\Theta_{Y}(L)}{\Phi_{Y}(L)} \varepsilon_{t}$$

où $X_{i,t-d_i}$ indique que l'exogène rentre dans le modèle avec un retard qui lui est propre

Note 1 Les polynômes $\beta_k(L)$ ajoute de la généralité mais le plus souvent

$$\beta(L) = \Phi_{Y}(L)^{-1}, \quad \forall k$$

Note 2 En effet rappelons que si l'on part du modèle

$$\Phi_{Y}(L)Y_{t} = \alpha(L)X_{t} + \Theta_{Y}(L)\varepsilon_{t}$$

et donc

$$Y_t = \alpha(L)\Phi_{Y}(L)^{-1}X_t + \Theta_{Y}(L)\Phi_{Y}(L)^{-1}\varepsilon_t$$

Exemple de fonction de transfert

- Soit $Y_t = 0.6Y_{t-1} + 1.2X_{t-2} + \varepsilon_t$ et $X_t = 0.8X_{t-1} + u_t + 0.5u_{t-1}$
 - En utilisant la représentation en fonction de transfert on obtient

$$Y_t = \frac{1.2}{1 - 0.6L} X_{t-2} + \frac{1}{1 - 0.6L} \varepsilon_t$$

Les divisions polynômiales engendrent une décroissance infinie

$$\begin{split} Y_t &= 1.2(1 + 0.6L + 0.6^2L^2 + 0.6^3L^3 + \dots)X_{t-2} \\ &+ (1 + 0.6L + 0.6^2L^2 + 0.6^3L^3 + \dots)\varepsilon_t \\ &= 1.2X_{t-2} + 0.72X_{t-3} + 0.432X_{t-4} + 0.2592X_{t-5} + \dots \\ &+ \varepsilon_t + 0.6\varepsilon_{t-1} + 0.36\varepsilon_{t-2} + 0.216\varepsilon_{t-3} + 0.1296\varepsilon_{t-4} + \dots \end{split}$$

dans la dépendance entre Y_t et X_{t-i} , i > 2

 \Rightarrow On s'attend donc à voir une fonction d'autocorrélation croisée nulle en i=0,1 et non-nulle pour i>2

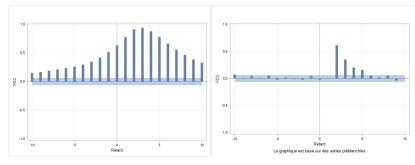
Importance du prewhitening

- Poursuivons avec l'exemple précédent et construisons $ilde{\mathbf{Y}}_t$ et u_t

$$\tilde{Y}_t = (1 + 0.5L)^{-1} (1 - 0.8L) Y_t$$

$$u_t = (1 + 0.5L)^{-1}(1 - 0.8L)X_t$$

• Comparons à présent $ho(ilde{\mathtt{Y}}_t,u_{t-i})$ et $ho(\mathtt{Y}_t,X_{t-i})$



Tests de validation

- Les procédures d'identification ne suffisent pas ...
- ... et doivent être couplées à des tests de validation sur les résidus :
 - Test de significativité et nullité jointe (pour rappel)
 - Coefficient de détermination
 - Test de nullité de moyenne des résidus
 - Tests de Ljung-Box et de Box-Pierce
 - Test de Jarque-Bera
- \Rightarrow En effet, si le modèle est bien spécifié on devrait avoir $\widehat{arepsilon}_t \sim \mathit{WN}(0,\widehat{\sigma}^2)$

Note Ces tests pourraient également s'appliquer sur les observées

Test de significativité et nullité jointe

· Sous certaines hypothèses de régularité on a vu que le MLE

$$\sqrt{n}(\hat{\vartheta}-\vartheta_0) \mathop{\longrightarrow}\limits^d \mathcal{N}(0,\mathbb{V}(\hat{\vartheta}))$$

⇒ cela autorise la construction de tests inférenciels usuels car

$$\sqrt{n}((\hat{\vartheta}-\vartheta_0)/\sigma_{\hat{\vartheta}})\sim\mathcal{N}(0,1)$$

- Dans la pratique $\sigma_{\hat{artheta}}$ est inconnu et on considère $\widehat{\sigma}_{\hat{artheta}}^2 \sim \chi^2(n-1)$

Rappel Si
$$X\sim \mathcal{N}(0,1)$$
 et $Y\sim \chi^2(\nu)$, alors $Z=X(\sqrt{Y/\nu})^{-1}\sim t(\nu)$

⇒ Le test de Student est alors ainsi formulé :

$$\frac{\hat{\vartheta}-\vartheta_{H0}}{\widehat{\sigma}_{\hat{\vartheta}}/n}\sim t(n-1)$$

- · Le test de nullité jointe de Fisher s'applique de façon standard
- ⇒ si l'on souhaite tester

$$H_0: \vartheta_1 = \ldots = \vartheta_{n+q} = 0$$

contre $H_1: \exists j$ tel que $\vartheta_i \neq 0$ la statistique de Fisher est

$$\frac{(\mathit{SST}-\mathit{RSS})/(p+q)}{\mathit{RSS}/(n-(p+q)-1)} \sim \mathit{F}(p+q,n-(p+q)-1)$$

Coefficients de détermination

· Les coefficients de détermination usuels sont donnés par

$$R^{2} = 1 - \frac{\sum_{t=1}^{n} \widehat{\varepsilon}_{t}^{2}}{\sum_{t=1}^{n} X_{t}^{2}}$$
 (4)

$$\bar{R}^2 = 1 - \frac{n-1}{n-p-q} \frac{\sum_{t=1}^n \hat{\varepsilon}_t^2}{\sum_{t=1}^n X_t^2}$$
 (5)

où l'on préférera \bar{R}^2 qui tient compte des retards AR et MA

Test de nullité de moyenne des résidus

• Si $arepsilon_t \sim \mathit{WN}(0,\sigma_arepsilon^2)$, on s'attend à ce que $\mathbb{E}(\widehat{arepsilon}_t)=0$, et donc

$$\bar{\varepsilon} = n^{-1} \sum_{t=1}^{n} \widehat{\varepsilon}_{t} \stackrel{p}{\longrightarrow} 0$$

Par application du théorème central limite on a donc

$$n^{1/2} \frac{\bar{\varepsilon}}{\sigma_{\varepsilon}^2} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

• On donc peut tester la nullité de $\bar{\varepsilon}$ en construisant

$$\bar{\varepsilon} \pm \Phi_{1-\alpha/2} n^{-1/2} \widehat{\sigma}_{\varepsilon}$$

Tests de Ljung-Box et de Box-Pierce

- Si $arepsilon_t \sim \mathit{WN}(0,\sigma_arepsilon^2)$, on s'attend à ce que $\gamma(j) =
 ho(j) = 0$, orall j > 0
- Plutôt qu'étudier chaque IC autour de ho(j) comme au S90...
- ... on peut construire une seule statistique (de type portmanteau):

$$Q = n \sum_{j=1}^{h} \hat{\rho}^2(j)$$

• La statistique de Box-Pierce étudie le comportement limite de ${\it Q}$

$$Q_{BP} = n \sum_{j=1}^h \hat{\rho}^2(j) \sim \chi^2(h-p-q)$$

si on test $H_0: \rho_1 = \ldots = \rho_h = 0$ contre $H_1: \exists j$ tel que $\rho_j \neq 0$

• La statistique de Ljung-Box est un rafinement de Q où

$$Q_{LB} = n(n+2) \sum_{j=1}^{h} \hat{
ho}^2(j)/(n-j) \sim \chi^2(h-p-q)$$

si on test $H_0: \rho_1 = \ldots = \rho_h = 0$ contre $H_1: \exists j$ tel que $\rho_j \neq 0$

Note Si ces tests sont appliqués sur les observés, les distributions sont $\chi^2(h)$

Test de Jarque-Bera

- Si on suppose que $\varepsilon_t \sim \text{ i. i. d. } \mathcal{N}(0, \sigma_\varepsilon^2)$, on peut tester cette hypothèse
- Le test de Jarque-Bera permet cela à travers une unique statistique

$$S_{JB} = \frac{n}{6}S_k + \frac{n}{24}(K_u - 3)^2 \xrightarrow{d} \chi^2(2)$$

où S_k et K_u représentent les coefficients de Skewness et Kurtosis resp.

 \Rightarrow Si $S_{JB} \geq \chi^2_{1-lpha}(2)$ on rejette H_0 de normalité des résidus au seuil de lpha%

Méthode du Maximum de Vraisemblance

- Partons d'un exemple: soit un échantillon $X_t = X_1, \dots, X_n \sim P(\vartheta)$
 - $-P(\vartheta)$ dénote la distribution de Poisson dont la fonction de masse est

$$\Pr(X_i = x) = \frac{\exp(-\vartheta)\vartheta^x}{x!}, \ \vartheta > 0, \ \forall x \in \mathbb{N}$$

- Soit une réalisation de l'échantillon $x_t = x_1, \cdots, x_n$
- · La probabilité d'observer cette réalisation est

$$\Pr\left((X_1=x_1)\cap,\cdots,\cap(X_n=x_n)\right)$$

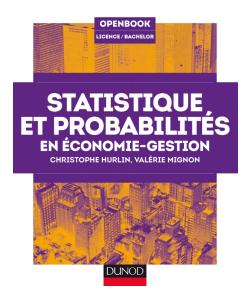
L'indépendance des tirages donne l'équivalence avec le produit des probabilités marginales

$$\Pr\left((X_1=x_1)\cap,\cdots,\cap(X_n=x_n)\right)=\prod_{i=1}^n\Pr(X_i=x_i)$$

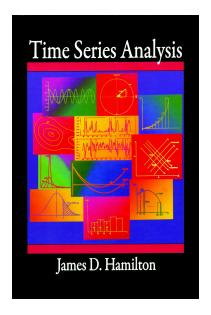
Chapter 3

Les Processus Monstationnaire

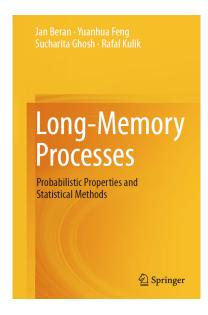
Références



Références



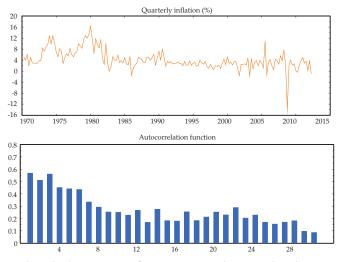
Références

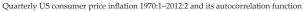


Non-linéarité et cycles

- Question centrale: la non-stationnarité des séries temporelles
 - De nombreuses de séries économiques semblent non-stationnaires
 - La non-stationnarité est complexe à définir car protéiforme
 - La non-stationnarité engendre des complications importantes dans la théorie limite des estimateurs
- Quelques exemples:
 - Inflation: Non-stationnarité globale/ locale? Racine unitaire?
 - Volatilité financière: Stationnarité? Non-stationnarité?

Variables macroéconomiques

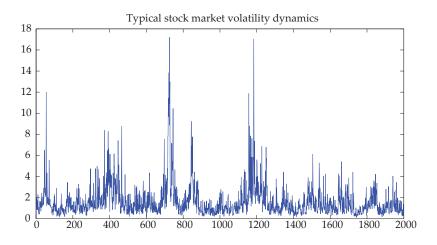




Dynamique persistante

- Difficile de déterminer visuellement si l'inflation est non-stationnaire
 - La fonction d'autocorrélation de l'inflation indique une très forte persistance
 - Pour autant, la séries semble stable autour d'une moyenne de long terme

Variables financières



Dynamique extrême

- Difficile de déterminer visuellement si la volatilité est non-stationnaire
 - La série est animée par de nombreux événements extrêmes
 - Pour autant, la séries semble stable autour d'une moyenne de long terme

Définir la non-stationnarité

- Plusieurs phénomènes peuvent mener à la non-stationnarité
 - ⇒ tendance déterministe
 - ⇒ saisonnalité
 - \Rightarrow tendance stochastique
 - ⇒ non-linéarités (dépasse le niveau M1)
 - $\Rightarrow \,$ chocs de grandes valeurs et non-causalité (dépasse le niveau M1)

Tendance déterministe

- Il existe de nombreuses façons de violer les hypothèses d'ergodicité et de stationnarité
- Il existe donc tout autant de type de processus non-stationnaires
- Le plus simple d'entre eux: la tendance déterministe linéaire

$$- \ \ X_t = \mu + \delta t + \varepsilon_t \ \text{avec} \ \varepsilon_t \sim \text{i.i.d.} \ (0, \sigma_\varepsilon^2 < \infty)$$

- on voit immédiatement que $\mathbb{V}(X_t) = \sigma_{arepsilon}^2$ mais $\mathbb{E}(X_t) = \mu + \delta t$
- \Rightarrow l'espérance dépendant du temps, X_t est non-stationnaire
- Ce raisonnement tient pour des fonctions **nonlinéaires** du temps

$$X_t = \mu + \delta(t) + \varepsilon_t$$

avec e.g. $\delta(.)$ une fonction polynomiale

Tendance déterministe et estimation

- Soit $X_t = \phi_0 + \delta t + \phi_1 X_{t-1} + \varepsilon_t$ un AR(1) avec tendance et $|\phi_1| < 1$
- Malgré sa non-stationnarité, ce modèle peut s'estimer par OLS car

$$Z_{t} = \left(\phi_{0} - \delta \frac{\phi_{1}}{(1 - \phi_{1})}\right) + \phi_{1}Z_{t-1} + \varepsilon_{t}$$

est une réécriture, valide si $|\phi_1| < 1$, qui s'obtient en considérant

$$Y_t = X_t - \delta \left(\sum_{i=1}^{t-1} \phi_1^i \right) \times t$$

i.e. l'écart à la tendance, dont on prendra l'espérance de la limite

⇒ la théorie limite reste standard et les tests usuels s'appliquent

Note Cela peut être généralisé au cas d'un AR(p)

Tendance déterministe et prévision

· La tendance affecte trivialement l'espérance conditionnelle

$$\widehat{X}_{n+h} = \mathbb{E}(X_{n+h}|X_n,\ldots,X_1) = \delta(n)_{n+h} + \mathbb{E}(\widetilde{X}_{n+h}|X_n,\ldots,X_1)$$

où $\delta(n)_{n+h}$ est la prévision de la tendance pour n+h et

$$\tilde{X}_t = X_t - \delta(t)$$

• Par sa nature déterministe, la tendance n'affecte pas la variance

$$\mathbb{V}(X_{n+h}|X_n,\ldots,X_1)=\mathbb{V}(\tilde{X}_{n+h}|X_n,\ldots,X_1)$$

Tendance stochastique et racine unitaire

- Soit un AR(1): $X_t = \rho X_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim i.i.d. \ (0, \sigma_\varepsilon^2 < \infty)$
- Si ho=1 on a $X_t=X_0+\sum_{j=0}^{t-1}arepsilon_{t-j}$ (supposons $X_0=0$) et donc

$$\mathit{Cov}(X_t, X_{t-j}) = (t-j)\sigma_{\varepsilon}^2 ext{ et } \mathbb{V}(X_t) = \mathbb{V}\Bigg(\sum_{j=0}^{t-1} arepsilon_{t-j}\Bigg) = t\sigma_{\varepsilon}^2$$

- \Rightarrow La variance de X_t dépend de $t \Rightarrow X_t$ est **non-stationnaire**
- $\Rightarrow
 ho = 1$ place une solution du polynome de retard sur le cercle unité donc X_t est un processus **racine unitaire**
- $\Rightarrow X_t$ est une **marche aléatoire** d'espérance conditionnelle

$$\mathbb{E}(X_t|X_{t-1},X_{t-2},\cdots,X_0)=X_{t-1}=\sum_{j=1}^{t-1}\varepsilon_{t-j}=\mathsf{stochastic}$$
 trend

 $\Rightarrow X_t$ est une **martingale** de **tendance stochastique** $\sum_j arepsilon_{t-j}$

Tendance stochastique et différenciation

- Soit un AR(1): $X_t = \mu + \rho X_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim i.i.d. \ (0, \sigma_\varepsilon^2 < \infty)$
- Si ho=1 et $X_0=0$, la représentation $M\!A(\infty)$ nous donne

$$X_{t} = \rho^{t} X_{0} + \mu \sum_{j=0}^{t} \rho^{j} + \sum_{j=0}^{t-1} \rho^{j} \varepsilon_{t-j} = \mu t + \sum_{j=0}^{t-1} \varepsilon_{t-j}$$

· On constate alors que

$$\mathbb{E}(X_t) = \mu t$$

- La variance et l'espérance ne sont pas indépendantes de t
- $\Rightarrow X_t$ est un processus **explosif** de type **marche aléatoire** et de **dérive** μ
 - *X_t* est **stationnaire** en première différence car

$$\Delta X_t = (1 - L)X_t = X_t - X_{t-1} = \mu + \varepsilon_t$$

Non-stationnarité globale

- Les processus de type tendance déterministe ou stochastique sont globalement non-stationnaires
 - le processus viole les conditions de stationnarité
 - les paramètres du processus sont invariants
 - ⇒ la non-stationnarité existe pour toute évolution du processus

Non-stationnarité locale

- Les processus dont les paramètres évoluent dans le temps sont possiblement localement non-stationnaires
- · Par exemple, un modèle à changement de régime peut être
 - stationnaire dans un régime
 - non-stationnaire dans autre régime (localement non-stationnaire)
 - ⇒ globalement stationnaire ou non-stationnaire
- Ce type de processus étant non-linéaire \Rightarrow cours d'économétrie non-linéaire

Stationnarité locale

- Les processus dont les paramètres évoluent dans le temps sont possiblement localement stationnaires
- Par exemple, un modèle à coefficients aléatoires dépendant du temps
 - est non-linéaire et globalement non-stationnaire
 - peut s'approximer localement par des processus stationnaires
 - ⇒ concept de **stationnarité locale** (dépasse le niveau M2)
- Références: Rao (2006), Dahlhaus et Rao (2006)

ARMA stationnaire

- Au Chapitre 1 nous avons introduit les ARMA leurs propriétés
- Supposons $X_t \sim ARMA(p,q)$

$$X_{t} = \sum_{j=1}^{p} \phi_{j} X_{t-j} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}, \quad \varepsilon_{t} \sim WN(0, \sigma_{\varepsilon}^{2} < \infty)$$

$$= \frac{1 - \theta_{1} L + \ldots + \theta_{q} L^{q}}{1 - \phi_{1} L + \ldots + \phi_{p} L^{p}} \varepsilon_{t} = \frac{\Theta(L)}{\Phi(L)} \varepsilon_{t} = \psi(L) \varepsilon_{t} = \sum_{j=1}^{\infty} \psi_{j} \varepsilon_{t-j}$$

dont les racines du polynôme

$$\Phi(L) = (1 - \phi_1 L + \ldots + \phi_p L^p)$$

ne sont pas situées sur le cercle unité et avec L l'opérateur retard

· On sait que sous cette condition de stationnarité

$$\sum_{i=0}^{\infty} |\psi_j| < \infty$$

Rappel sur l'érgodicité des ARMA

• Or, à partir de la forme $\mathsf{MA}(\infty)$ de X_t on a

$$\gamma(h) = \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}$$

• En valeur absolue et par l'inégalité triangulaire on obtient

$$|\gamma(h)| = \sigma_{\varepsilon}^2 \Big| \sum_{j=0}^{\infty} \psi_j \psi_{j+h} \Big| \leq \sigma_{\varepsilon}^2 \sum_{j=0}^{\infty} \Big| \psi_j \psi_{j+h} \Big|$$

On constate alors que les ARMA sont ergodiques car

$$\sum_{h=0}^{\infty} |\gamma(h)| \le \sigma_{\varepsilon}^2 \sum_{h=0}^{\infty} \sum_{j=0}^{\infty} \left| \psi_j \psi_{j+h} \right| \tag{6}$$

$$=\sigma_{\varepsilon}^{2}\sum_{j=0}^{\infty}|\psi_{j}|\sum_{h=0}^{\infty}|\psi_{j+h}|<\infty,$$
(7)

et la convolution de deux séries absolument sommables est absolument sommable

Integration

Definition (17)

Un processus stationnaire d'autocovariance $\gamma(h)$ absolumment sommable est dit **faiblement dépendant**

Definition (18)

Si un processus est **faiblement dépendant** après δ différenciations, il est dit intégré d'ordre δ ou $I(\delta)$

- Exemple: si $X_t = \mu + X_{t-1} + \varepsilon_t$ avec $\varepsilon_t \sim i.i.d.(0, \sigma_\varepsilon^2 < \infty)$
- $\Rightarrow \Delta X_t = \mu + \varepsilon_t$ est faiblement dépendant
- $\Rightarrow X_t$ est intégré d'ordre 1 également noté $X_t \sim I(1)$
- $\Rightarrow \ \Delta \textit{X}_t$ est intégré d'ordre nul également noté $\Delta \textit{X}_t \sim \textit{I}(0)$

ARIMA

Definition (19)

Un processus X_t est un ARIMA (p, δ, q) si une fois différencié δ fois il peut s'exprimer comme un processus stationnaire et invertible de type ARMA(p, q)

$$\phi(L)\Delta^{\delta}X_{t} = \alpha + \theta(L)\varepsilon_{t}, \quad \varepsilon_{t} \sim i.i.d.(0, \sigma_{\varepsilon}^{2} < \infty)$$

• Exemple: en cas de racine unitaire on a $\delta=1$ et donc

$$\phi(L)\Delta X_t=\alpha+\theta(L)\varepsilon_t \Leftrightarrow \Delta X_t=\mu+\psi(L)\varepsilon_t$$
 avec $\mu=\phi(L)^{-1}\alpha$ et $\psi(L)=\phi(L)^{-1}\theta(L)$

• Dans le même esprit que la marche aléatoire on observe que

$$X_t = X_0 + \mu t + \psi(L) \sum_{j=1}^{\infty} \varepsilon_{t-j}$$

 \Rightarrow Dans les cas simples $\delta \in \mathbb{Z}$, mais que se passe-t-il si $\delta \in \mathbb{R}$?

Intégration fractionnaire

- Soit un processus $(1-L)^\delta X_t = arepsilon_t$ avec $\delta > -1/2$
 - $-X_t$ est un **bruit blanc fractionnaire** si $\varepsilon_t \sim \mathit{WN}(0, \sigma_\varepsilon^2 < \infty)$
- Une représentation $MA(\infty)$ nous donne

$$X_{t} = (1 - L)^{-\delta} \varepsilon_{t} = \sum_{j=0}^{\infty} \frac{\Gamma(j+\delta)}{\Gamma(j+1)\Gamma(\delta)} L^{j} \varepsilon_{t} = \sum_{j=0}^{\infty} \alpha_{j} (-\delta) \varepsilon_{t-j}$$

- Le polynôme de différenciation fractionnaire $(1-L)^{-\delta}$

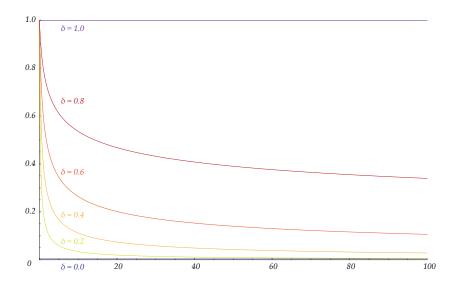
$$(1-L)^{-\delta} = 1 + \delta L + \frac{\delta(1+\delta)}{2!}L^2 + \frac{\delta(1+\delta)(2+\delta)}{3!}L^3 + \dots$$

chaque numérateur est un symbole de Pochhammer

$$(\delta)_n = \delta(\delta+1)(\delta+2)\dots(\delta+n-1) = \Gamma(n+\delta)\Gamma(\delta)^{-1}$$

- chaque dénominateur est une **factorielle**, or $n! = \Gamma(n+1)$
- le j-ième terme de la suite est donc $(\delta)_j imes \Gamma(j+1)^{-1} L^j$

Filtre fractionnaire



Analyse du filtre fractionnaire

• Une analyse à la limite nous apprend que

$$\alpha_{j}(-\delta) \sim \frac{1}{\Gamma(\delta)} j^{-1+\delta} \left(1 + O(j^{-1})\right), \quad j \to \infty$$

• Granger et Joyeux (1980) soulignent alors que

$$-\,\,$$
 si $\delta=1/2$ on a $\sum_{j=1}^{\infty}lpha_{j}(-\delta)^{2}=\infty$

 $\Rightarrow \;$ en effet $lpha_j(-\delta)^2pprox j^{-1}$ décrit une **série Harmonique** (divergente)

—
$$\operatorname{si}\delta>1/2$$
 on a $\sum_{j=1}^{\infty}lpha_{j}(-\delta)^{2}=\infty$

 $\Rightarrow j^{2(\delta-1)=p>-1}$ est une p-série (hyper-Harmonique) divergente

— si
$$\delta < 1/2$$
 on a $\sum_{j=1}^{\infty} lpha_j (-\delta)^2 < \infty$

 $\Rightarrow j^{2(\delta-1)=p<-1}$ est une p-série (hyper-Harmonique) convergente

Bruit blanc fractionnaire et non-stationnarité

• Une représentation $MA(\infty)$ alternative de X_t est alors

$$X_{t} = \sum_{j=0}^{\infty} \alpha_{j}(-\delta)\varepsilon_{t-j} \approx \frac{1}{\Gamma(\delta)} \left(\sum_{j=1}^{\infty} j^{-1+\delta}\varepsilon_{t-j} + \varepsilon_{t}\right)$$

· La variance apparaît alors sous une forme simple

$$\mathbb{V}(X_t) = \sigma_{\varepsilon}^2 \left(\frac{1}{\Gamma^2(\delta)} + \sum_{j=1}^{\infty} \alpha_j (-\delta)^2 \right) = \frac{1}{\Gamma^2(\delta)} \sigma_{\varepsilon}^2 \left(1 + \sum_{j=1}^{\infty} j^{2(\delta-1)} \right)$$

- $\ \mathbb{V}(X_t)$ sera finie si $\delta < 1/2 \Rightarrow X_t$ **stationnaire**
- $\mathbb{V}(X_t)$ sera infinie si $\delta \ge 1/2 \Rightarrow X_t$ **non-stationnaire**
- Il existe une formulation non-asymptotique de la variance

$$\mathbb{V}(X_t) = \sigma_{\varepsilon}^2 \frac{\Gamma(1-2\delta)}{\Gamma^2(1-\delta)} = \sigma_{\varepsilon}^2 v_{\delta}$$

où $v_{\delta}=1$ si $\delta=0$ et $v_{\delta}=\infty$ si $\delta\geq 1/2$

Bruit blanc fractionnaire et autocovariance

Les calcules d'autocovariance obtenus par Hosking (1981) donnent

$$\begin{split} \gamma(h) &= \mathbb{E}\Big((X_t X_{t-h}\Big) \\ &= \sigma_{\varepsilon}^2 \frac{\Gamma(h+\delta)\Gamma(1-2\delta)}{\Gamma(h+1-\delta)\Gamma(1-\delta)\Gamma(\delta)} \\ &= \frac{(\sigma_{\varepsilon}^2/2\pi)\sin(\pi\delta)\Gamma(h+\delta)\Gamma(1-2\delta)}{\Gamma(h+1-\delta)} \end{split}$$

avec $\delta \in (-1/2,1/2)$

Approximation asymptotique de Lieberman et Phillips (2008)

$$\gamma(h) \sim rac{\sigma_arepsilon^2}{\pi} rac{\Gamma(1-2\delta)\sin(\pi\delta)}{h^{1-2\delta}} + \mathcal{O}(h^{2\delta-3}), \quad h o \infty$$

avec $\delta \in (-1/2,0) \cup (0,1/2)$

Bruit blanc fractionnaire et sommabilité

· Via Lieberman et Phillips (2008) on constate que

$$\gamma(h) \sim Ch^{2\delta-1}, \quad C > 0$$

- Or pour $\delta \in (0,1/2)$ on a $2\delta-1 \in (-1,0)$ et donc

$$\sum_{j=0}^{\infty} |\gamma(j)| = \infty$$
 bien que $\mathbb{V}(X_t) < \infty$

- En revanche, pour $\delta \in (-1/2,0)$, $2\delta - 1 \in (-2,-1)$ et donc

$$\sum_{j=0}^{\infty} |\gamma(j)| < \infty$$

- Si $\delta \in (-1/2,0)$, $\gamma(j)$ est absolument sommable
 - $\Rightarrow X_t$ est dit **faiblement dépendant** et à **mémoire courte**
- Si $\delta \in (0,1/2)$, X_t , $\gamma(j)$ n'est pas absolument sommable
 - $\Rightarrow X_t$ est dit fortement dépendant et à mémoire longue

Bruit blanc fractionnaire et mean reversion

Definition (20)

Un processus X_t est **mean-reverting** (revient vers sa moyenne) si sa fonction de réponse impulsionnelle cumulée (CIR) à l'infini tend vers zéro.

- Soit $(1-L)^\delta X_t = \varepsilon_t$ un bruit blanc fractionnaire avec $\delta > 1/2$
- Considérons à présent la représentation $MA(\infty)$ de $(1-L)X_t$

$$(1-L)X_t = (1-L)^{1-\delta}\varepsilon_t$$

• On a alors l'impact d'un choc unitaire en t sur X en t+h

$$\mathit{CIR}_h = \sum_{j=0}^h lpha_j (1-\delta) \sim \mathit{C} \sum_{j=1}^h j^{\delta-2}, \quad \mathit{C} > 0$$

dont la convergence est vérifiée pour $\delta < 1$ quand $h o \infty$

ARFIMA

• On peut généraliser le bruit blanc fractionnaire en ajoutant de la dynamique de court terme

Definition (21)

Un processus X_t est un ARFIMA (p, δ, q) si une fois différencié δ fois il peut s'exprimer comme un processus stationnaire et invertible de type ARMA(p, q)

$$\phi(L)\Delta^{\delta}X_t = \alpha + \theta(L)\varepsilon_t$$

Note 1 Les démonstrations précédentes tiennent pour un ARFIMA bien que les formules se complexifient

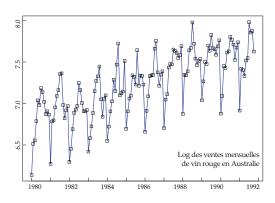
Note 2 Pour $\delta = 1$, une racine unitaire est présente et on parle d'ARIMA

ARFIMA

- A la différence des processus $\mathsf{ARIMA}(p,\delta,q)$
 - $\Rightarrow X_t$ est stationnaire à mémoire longue si $\delta < 1/2$
 - $\Rightarrow X_t$ est non-stationnaire à mémoire longue si $\delta > 1/2$
 - $\Rightarrow X_t$ est non-stationnaire mean-reverting si $1/2 \le \delta < 1$
 - $\Rightarrow X_t$ est stationnaire à mémoire courte si $\delta \leq 0$
 - $\Rightarrow X_t$ est dit anti-persistant si $\delta < 0$
 - $\Rightarrow X_t$ possède une représentation $\mathsf{MA}(\infty)$ si $\delta > -1/2$
 - $\Rightarrow X_t$ possède une représentation $\mathsf{AR}(\infty)$ si $\delta < 1/2$
- Les deux derniers points sont discutés par Hosking (1981)

Saisonnalité

- La saisonnalité stochastique n'implique pas la non-stationnarité
- ⇒ mais s'analyse à travers un modèle général : Seasonal ARIMA
- e.g. les ventes mensuelles de vin montrent une forte saisonnalité
- ⇒ pic en juillet et creux en janvier en plus d'une tendance haussière



Dépendance saisonnière

La dépendance au passé sera donc importante à 12 mois

$$\rho_{12}, \rho_{24}, \rho_{36}, \dots$$

entre juillet (janvier) de l'année en cours et l'année passée

 \Rightarrow Un modèle ARMA $(P,Q)_s$ troué de **span** s=12 sera approprié

e.g. 1 dans le cas d'un $MA(1)_{12}$ on aura

$$X_t = (1 + \vartheta_1 L^{12})\varepsilon_t \Leftrightarrow X_t = \varepsilon_t + \vartheta_1 \varepsilon_{t-12}$$

e.g. 2 dans le cas d'un $AR(1)_{12}$ on aura

$$(1 - \varphi_1 L^{12}) X_t = \varepsilon_t \Leftrightarrow X_t = \varphi_1 X_{t-12} + \varepsilon_t$$

Note Le span dépend de la fréquence :

$$\mathit{s}=2$$
 (semestriel), $\mathit{s}=4$ (trimestriel), $\mathit{s}=52$ (hebdomadaire)

Filtre saisonnier et SARMA

- Après application d'un $ARMA(P,Q)_s$, une dépendance peut rester
- L'ARMA $(P,Q)_s$ agit comme un filtre qui retourne Y_t

$$\Phi(L)_s X_t = \Theta(L)_s Y_t$$

• Un second filtre de type $\mathsf{ARMA}(p,q)$ est donc nécessaire

$$\Phi(L)Y_t = \Theta(L)\varepsilon_t$$

afin que la dépendance disparaisse et de récupérer $arepsilon_t \sim \mathit{WN}(0,\sigma_arepsilon^2)$

 \Rightarrow Le produit des deux filtres donne le modèle SARMA $(p,q) imes (P,Q)_s$

$$\Phi(L)\Phi(L)_{s}X_{t} = \Theta(L)\Theta(L)_{s}\varepsilon_{t}$$

Note Les conditions de stationnarité et inversibilité usuelles s'appliquent

$\text{SARMA}(0,0)\times(0,1)_4$

Il s'agit d'un SMA du type

$$X_t = \varepsilon_t + \vartheta_1 \varepsilon_{t-4}$$

approprié pour des données trimestrielles par exemple

Type $MA(q) \Rightarrow$ inversible si ses 4 racines

$$-i\sqrt[4]{\frac{1}{\vartheta_1}},\quad i\sqrt[4]{\frac{1}{\vartheta_1}},\quad \sqrt[4]{\frac{1}{\vartheta_1}},\quad -\sqrt[4]{\frac{1}{\vartheta_1}}$$

sont en dehors du cercle unitaire et donc $|\vartheta_1| < 1$

• Si $|\vartheta_1| < 1$, X_t possèdent une forme $\mathsf{AR}(\infty)$

$$X_t = -\sum_{j=1}^{\infty} \vartheta_1^j X_{t-4j} + \varepsilon_t$$

• On peut aisément vérifier que $\gamma_0 = (1+\vartheta_1^2)\sigma_{arepsilon}^2$

$$\gamma_4 = \vartheta_1 \sigma_\varepsilon^2$$

et $\gamma_i = 0$ pour $i \neq 0, 4$

$$\text{SARMA}(0,1)\times(0,1)_5$$

Il s'agit d'un SARMA du type

$$X_{t} = (1 + \theta_{1}L)(1 + \vartheta_{1}L^{5})\varepsilon_{t} = \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \vartheta_{1}\varepsilon_{t-5} + \theta_{1}\vartheta_{1}\varepsilon_{t-6}$$

approprié pour des données journalières (jours ouvrés)

Type $MA(6) \Rightarrow$ inversible si ses 6 racines

- ... sont en dehors du cercle unitaire
- · On peut aisément vérifier que

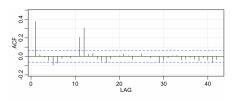
$$\begin{split} \gamma_0 &= (1 + \theta_1^2 + \vartheta_1^2 + \theta_1^2 \vartheta_1^2) \sigma_\varepsilon^2 = (1 + \theta_1^2) (1 + \vartheta_1^2) \sigma_\varepsilon^2 \\ \gamma_1 &= (\theta_1 + \theta_1 \vartheta_1^2) \sigma_\varepsilon^2 = \theta_1 (1 + \vartheta_1^2) \sigma_\varepsilon^2 \\ \gamma_4 &= (\theta_1 \vartheta_1) \sigma_\varepsilon^2 \\ \gamma_5 &= (\vartheta_1 + \theta_1^2 \vartheta_1) \sigma_\varepsilon^2 = \vartheta_1 (1 + \theta_1^2) \sigma_\varepsilon^2 \\ \gamma_6 &= (\theta_1 \vartheta_1) \sigma_\varepsilon^2 \end{split}$$

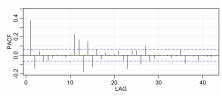
et $\gamma_j = 0$ pour $j \neq 0, 1, 4, 5, 6$ et j > 6

$\text{SARMA}(0,1)\times(0,1)_{12}$

• Etudions le comportement (simulé) des ACFs et PACFs si

$$heta_1=0.7$$
 et $heta_1=0.6$ et $\sigma_{arepsilon}^2=1$





$SARMA(0,q) \times (0,Q)_s$

- · Quelques généralités se dégage de l'exemple précédent
- L'ACovF et l'ACF sont atypique autour de s
- \Rightarrow Autour de s, les q autocovariances sont symétriques
 - Comme pour tout MA(q), la PACF ne s'annule pas
- $\Rightarrow\;$ Elle décroît vers 0 quand $h o \infty$
- \Rightarrow Des résurgences apparaîtront autour $s, 2s, 3s, \dots$

$$\text{SARMA}(0,1)\times(1,0)_7$$

Il s'agit d'un SARMA du type

$$(1 - \varphi_1 L^7) X_t = (1 + \theta_1 L) \varepsilon_t$$

approprié pour des données journalières (semaine pleine)

Type $AR(7) + MA(1) \Rightarrow$ stationnaire et inversible si les 7 racines

... de $(1-\varphi_1L^7)$ sont en dehors du cercle unitaire et si $|\theta_1|<1$

· On peut vérifier que

$$\begin{split} \gamma_0 &= (1 + \theta_1^2)(1 - \varphi_1^2)^{-1} \sigma_{\varepsilon}^2 \\ \gamma_1 &= \varphi_1 \mathbb{E}(X_{t-7} X_{t-1}) + \mathbb{E}(\varepsilon_t X_{t-1}) - \theta_1 \mathbb{E}(\varepsilon_{t-1} X_{t-1}) = \varphi_1 \gamma_6 - \theta_1 \sigma_{\varepsilon}^2 \\ \gamma_j &= \varphi_1 \gamma_{j-7}, \ \forall j > 2 \\ \gamma_6 &= \varphi_1 \gamma_1 \Rightarrow \gamma_1 = -\theta_1 \sigma_{\varepsilon}^2 (1 - \varphi_1^2)^{-1} \\ \gamma_k &= \varphi_1^j \gamma_1, \ \forall k = 7j \pm 1, \ j = 1, 2, \dots \text{ et} \\ \gamma_k &= \varphi_1^j \gamma_0, \ \forall k = 7j, \ j = 0, 1, 2, \dots \end{split}$$

et $\gamma_k = 0$ pour les k non considérés ci-dessus

SARMA $(1,1) \times (2,1)_{12}$

- · Ici les filtres sont multiplicatifs mais il existe des filtres additifs
- ⇒ Cela va impacter l'écriture des polynômes
- e.g. L'écriture d'un SARMA(1,1)×(2,1)₁₂ sera

$$(1 - \varphi_1 L)(1 - \phi_1 L^{12} - \phi_2 L^{24})X_t = (1 + \theta_1 L)(1 + \vartheta_1 L^{12})\varepsilon_t$$

e.g. L'écriture d'un SARMA $(1,1)+(2,1)_{12}$ sera

$$(1 - \varphi_1 L - \phi_1 L^{12} - \phi_2 L^{24}) X_t = (1 + \theta_1 L + \vartheta_1 L^{12}) \varepsilon_t$$

$\mathbf{SARIMA}(p,\delta,q)\times(P,D,Q)_{s}$

- On a vu que Δ^δ était important pour stationnariser une série
- · On peut également construire un opérateur

$$\Delta_s^D = (1 - L^s)^D$$

de différenciation saisonnière

• En effet, certaines séries sont cyclo-stationnaires et avec D=1, si

$$\Delta_s X_t = X_t - X_{t-s}$$

est stationnaire, c'est que X_t était une marche aléatoire saisonnière

- e.g. $X_{01/2021}=X_{01/2020}+arepsilon_{01/2021}$ suit une marche aléatoire saisonnière
 - Plus généralement, $X_t \sim \mathit{SARIMA}(p,\delta,q) imes (P,D,Q)_s$ si

$$Y_t = \Delta^{\delta} \Delta_s^D X_t \sim SARMA(p,q) \times (P,Q)_s$$

X13-ARIMA-SEATS

- · La filtration de la saisonnalité est une tâche fastidieuse
- Des procédures de traitement automatique existent depuis 1970
- $\Rightarrow X11$ -ARIMA, TRAMO-SEATS, X12-ARIMA (dispo sous SAS)

Réf. Une revue de ses méthodes est faite par Darné (2004)

- La plus récente et populaire : la procédure X13-ARIMA-SEATS
- ⇒ basée sur des régressions de SARIMA, elle peut aussi traiter
- ... des effets très spécifiques comme
 - valeurs aberrantes
 - jours ouvrables
 - effets de Pâques
 - traitement spectral de la saisonnalité résiduelle
 - ..

Rappels sur les OLS

- La non-stationnarité impact la **théorie limite** des estimateurs
- · Pour comprendre cela repartons des OLS dans le modèle linéaire

$$Y_t = X_t \beta + \varepsilon_t \quad \varepsilon_t \sim \text{ i. i. d. } (0, \sigma_{\varepsilon}^2)$$

- Supposons $X_t \perp \varepsilon_t$
- · L'estimateur OLS est alors donné par

$$\widehat{\beta} = \frac{Cov(Y, X)}{\mathbb{V}(X)} = \left(\frac{1}{n} \sum_{t=1}^{n} X_{t}^{2}\right)^{-1} \frac{1}{n} \sum_{t=1}^{n} X_{t} Y_{t}$$

$$= \left(\frac{1}{n} \sum_{t=1}^{n} X_{t}^{2}\right)^{-1} \frac{1}{n} \sum_{t=1}^{n} (\beta X_{t} + \varepsilon_{t}) X_{t} = \beta + \frac{n^{-1} \sum_{t=1}^{n} X_{t} \varepsilon_{t}}{n^{-1} \sum_{t=1}^{n} X_{t}^{2}}$$

Consistance des OLS

• Analysons la **consistance** de $\widehat{\beta}$ si $X_t \sim \mathrm{~i.~ni.~d.~} (0, \sigma_X^2 < \infty)$

$$\operatorname{plim} \widehat{\beta} = \beta + \frac{\operatorname{plim} n^{-1} \sum_{t=1}^{n} X_{t} \varepsilon_{t}}{\operatorname{plim} n^{-1} \sum_{t=1}^{n} X_{t}^{2}}$$

- On observe que $\mathbb{E}(X_t \varepsilon_t) = \mathbb{E}(X_t) \mathbb{E}(\varepsilon_t) = 0$ et $\mathbb{V}(X_t \varepsilon_t) = \sigma_X^2 \sigma_\varepsilon^2$
 - $\ \mathbb{V}(X_t \varepsilon_t) = \mathbb{E}(X_t)^2 \mathbb{E}(\varepsilon_t)^2 \mathbb{E}(X_t)^2 \mathbb{V}(\varepsilon_t) \mathbb{E}(\varepsilon_t)^2 \mathbb{V}(X_t) + \mathbb{V}(X_t) \mathbb{V}(\varepsilon_t)$
 - dans la LLN de Markov (10), $\sum \sigma_X^2 \sigma_{arepsilon}^2/t^2 < \infty$ pour m=1

$$\Rightarrow n^{-1} \sum_{t=1}^{n} X_t \varepsilon_t \stackrel{p}{\longrightarrow} \mathbb{E}(X_t \varepsilon_t) = 0$$

• On suppose que $\mathbb{E}(X_t^4) < \infty$ existe et par la LLN de Markov,

$$n^{-1} \sum_{t=1}^{n} X_t^2 \stackrel{p}{\longrightarrow} \sigma_X^2$$

• Par application du théorème de Mann-Wald (13) on a

$$plim \ \widehat{\beta} = \beta + \frac{0}{plim \ n^{-1} \sum_{t=1}^{n} X_t^2} = \beta$$

Distribution limite des OLS

- La consistance donne une distribution dégénérée: $\widehat{\beta} \overset{p}{\longrightarrow} \beta$
- Avec un transformation $\mathbb{T}(\widehat{\beta}) \overset{d}{\longrightarrow} \mathcal{L}$ on peut montrer que

$$\sqrt{n}(\widehat{\beta} - \beta) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

• Commençons par analyser $n^{-1}\sum_{t=1}^n X_t \varepsilon_t$ sachant $\mathbb{E}(X_t \varepsilon_t) = 0$ et

$$\mathbb{V}(X_t\varepsilon_t)=\sigma_X^2\sigma_\varepsilon^2$$

⇒ L'application du TCL de Lyapunov (12) donne

$$\sqrt{n}(n^{-1}\sum_{t=1}^{n}X_{t}\varepsilon_{t}-0)=n^{-1/2}\sum_{t=1}^{n}X_{t}\varepsilon_{t}\stackrel{d}{\longrightarrow}\mathcal{N}(0,\sigma_{X}^{2}\sigma_{\varepsilon}^{2})$$

- La consistance a montré que $n^{-1}\sum_{t=1}^{n}X_{t}^{2}\overset{p}{\longrightarrow}\sigma_{X}^{2}$
- ⇒ D'après le théorème de **Slutsky** (14) on a alors

$$\sqrt{n}(\widehat{\beta} - \beta) = \sqrt{n} \frac{n^{-1} \sum_{t=1}^{n} X_{t} \varepsilon_{t}}{n^{-1} \sum_{t=1}^{n} X_{t}^{2}} \xrightarrow{d} \frac{\mathcal{N}(0, \sigma_{X}^{2} \sigma_{\varepsilon}^{2})}{\sigma_{X}^{2}} \xrightarrow{d} \mathcal{N}(0, \sigma_{\varepsilon}^{2} \sigma_{X}^{-2})$$

Théorie limite dans le cas d'un AR(1)

- Soit $X_t = \rho X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{ i. i. d. } (0, \sigma_{\varepsilon}^2) \text{ et } X_0 = 0$
- · L'estimateur OLS est donné par

$$\hat{\rho} = \rho + \left(\sum_{t=1}^{n} X_{t}^{2}\right)^{-1} \left(\sum_{t=1}^{n} X_{t-1} \varepsilon_{t}\right)$$

• Sous l'hypothèse que $|\rho| < 1$, X_t est stationnaire et

$$\frac{1}{n}\sum_{t=1}^{n}X_{t}^{2} \xrightarrow{p} \sigma_{X}^{2} = \mathbb{E}\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}^{2}\right) = \frac{\sigma_{\varepsilon}^{2}}{1-\rho^{2}} < \infty$$

⇒ D'après le théorème de Slutsky (14) on a alors

$$\sqrt{n}(\widehat{\rho} - \rho) \xrightarrow{d} \frac{\mathcal{N}(0, \sigma_{\varepsilon}^2 \sigma_X^2)}{\sigma_X^2} \stackrel{d}{=} \mathcal{N}(0, 1 - \rho^2)$$
(8)

• Qu'observez-vous si $\rho = 1$?

Limite de la théorie asymptotique standard

- Soit $X_t = \rho X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{ i. i. d. } (0, \sigma_{\varepsilon}^2)$, $X_0 = 0$ et $\rho = 1$
- X_t est donc une marche aléatoire de variance $\mathbb{V}(X_t) = t\sigma_{\varepsilon}^2$
- Impossible alors d'appliquer un TCL comme dans (8) puisque

$$\frac{1}{n}\sum_{t=1}^{n}X_{t}^{2} \xrightarrow{p} \mathbb{E}\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}^{2}\right) = \frac{1}{n}\sum_{t=1}^{n}\mathbb{E}\left(X_{t}^{2}\right) = \frac{\sigma_{\varepsilon}^{2}\sum_{t=1}^{n}t}{n} \to \infty$$

· Pour autant une théorie limite non-standard est possible si

$$\mathbb{T}(\hat{\rho}) = n(\hat{\rho} - \rho) \neq \sqrt{n}(\hat{\rho} - \rho)$$

- \Rightarrow Théorie asymptotique applicable dans le cas **non-stationnaire**
 - Ce type de théorie fait intervenir les processus de Wiener

Marche aléatoire et TCL

- Soit $X_t = \rho X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{ i. i. d. } (0, \sigma_{\varepsilon}^2) \text{ et } X_0 = 0$
- On a vu que si ho=1 alors $X_n=\sum_{t=1}^n arepsilon_t$
- · On considère à présent

$$\mathbb{T}(X_n) = \sqrt{n} \frac{1}{n} X_n \sigma_{\mathbb{T}(X)}^{-1} = \sqrt{n} (\bar{\varepsilon}) \sigma_{\mathbb{T}(X)}^{-1} = n^{-1/2} X_n \sigma_{\mathbb{T}(X)}^{-1}$$

avec

$$\sigma_{\mathbb{T}(X)}^2 = \mathbb{V}(\mathbb{T}(X_n)) = \mathbb{E}\left(n^{-1}\left(\sum_{t=1}^n \varepsilon_t\right)^2\right) = n^{-1}n\sigma_{\varepsilon}^2 = \sigma_{\varepsilon}^2 \tag{9}$$

• D'après le TCL de Lindeberg-Lévy (11), on constate alors que

Les sommes partielles

• Poursuivons ce raisonnement sur une somme partielle de X_n

$$X_n(r) = \sum_{s=1}^{[nr]} \varepsilon_s$$

avec $0 \le r < 1$ et [nr] le plus grand entier $\le nr$

• Après transformation de $X_n(r)$ on a donc

$$W_n(r) = n^{-1/2} X_n(r) \sigma_{\mathbb{T}(X)}^{-1} = n^{-1/2} \sum_{s=1}^{[nr]} \varepsilon_s \sigma_{\mathbb{T}(X)}^{-1}$$

... que l'on peut réécrire

$$W_n(r) = \underbrace{\left(n^{-1/2}[nr]^{1/2}
ight)}_{
ightarrow r^{1/2}} imes \underbrace{\left([nr]^{-1/2}\sum_{s=1}^{[nr]}arepsilon_s\sigma_{\mathbb{T}(X)}^{-1}
ight)}_{\stackrel{d}{\longrightarrow}\mathcal{N}(0,1)}$$

$$\Rightarrow W_n(r) \stackrel{d}{\longrightarrow} r^{1/2} \mathcal{N}(0,1) \stackrel{d}{\longrightarrow} \mathcal{N}(0,r)$$

Vers les processus de Wiener

• A présent définissons $r_t = t/n$ de telle sorte que $[nr_t] = t$ et

$$W_n(r) = n^{-1/2} \sum_{s=1}^{r} \varepsilon_s \sigma_{\mathbb{T}(X)}^{-1}$$

• Si $t/n < r_i < (t+1)/n$ on a également $[nr_i] = t$ et donc

$$W_n(r) = n^{-1/2} \sum_{s=1}^t arepsilon_s \sigma_{\mathbb{T}(X)}^{-1}$$

• Mais si $r_i=(t+1)/n$ on a

$$W_n(r) = n^{-1/2} \sum_{s=1}^{t+1} \varepsilon_s \sigma_{\mathbb{T}(X)}^{-1}$$

 \Rightarrow par définition $r \in [0,1]$ et

$$W_n(1) = n^{-1/2} \sum_{s=1}^n \varepsilon_s \sigma_{\mathbb{T}(X)}^{-1}$$
 (10)

Les processus de Wiener

• $W_n(1) \stackrel{d}{\longrightarrow} W(1)$ avec W(1) un processus de Wiener

Definition (22)

Soit un espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. $W: \Omega \times [0,1] \to \mathbb{R}^1$ est un processus de Wiener standard si pour chaque $r \in [0,1]$, W(r) est \mathcal{F} -mesurable et si

le processus W(r) débute en 0: $\mathbb{P}(W(0)=0)=1$

le processus W(r) possède des incréments indépendants: si $0 \le t_0 \le t_1 \le \ldots \le t_k \le k$, $W(t_i) - W(t_{i-1})$ est indépendant de $W(t_j) - W(t_{j-1})$ pour $j = 1, \ldots, k$, $j \ne i, \forall i = 1, \ldots, k$

le processus W(r) possède des incréments normalement distribués: pour $0 \le a \le b \le 1$, l'incrément $W(b) - W(a) \sim \mathcal{N}(0,b-a)$

• Mais vers quoi converge $W_n(r)$?

Théorème central limite fonctionnel

• $W_n(r)$ est une **fonction aléatoire** (via $arepsilon_t$) de r

Theorem (4: Théorème de Donsker)

Soit ε_t une séquence de variables aléatoires telle que $\varepsilon_t \sim \mathrm{i.\,i.\,d.}\ (0,\sigma_\varepsilon^2 < \infty)$, alors

$$W_n \stackrel{d}{\longrightarrow} W$$

• Le TCL fonctionnel requiert (pas suffisant) la convergence point par point de $W_n(r)$

$$W_n(r) \stackrel{d}{\longrightarrow} W(r)$$

Théorème de Mann-Wald fonctionnel

Theorem (5: Functional Continuous Mapping Theorem)

Soit $X_n(.) \xrightarrow{d} X(.)$ une fonction aléatoire convergente et g(.) une fonction continue à valeur dans \mathbb{R} en X(.). Alors,

$$X_n(.) \xrightarrow{d} X(.) \Rightarrow g(X_n) \xrightarrow{d} g(X)$$

$$X_n(.) \stackrel{p}{\longrightarrow} X(.) \Rightarrow g(X_n) \stackrel{p}{\longrightarrow} g(X)$$

$$X_n(.) \xrightarrow{a.s.} X(.) \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$$

Théorie limite non standard des OLS

Theorem (6)

Soit $X_t = \rho X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim \text{i. i. d. } (0, \sigma_{\varepsilon}^2)$ et $X_0 = 0$. Si $\rho = 1$, la distribution limite de l'estimateur OLS est donnée par

$$n(\widehat{
ho}-1) \stackrel{d}{\longrightarrow} rac{1/2\sigma_{arepsilon}^2ig(W(1)^2-1ig)}{\int_0^1 W(r)^2 dr}$$

- Il s'agit d'une distribution non-standard complexe à manipuler
- En présence de non-stationnarité, ce type de distribution survient souvent

Théorie limite non standard des OLS: démonstration

· L'estimateur OLS est donnée par

$$\widehat{\rho} = \rho + \frac{n^{-1} \sum_{t=1}^{n} X_{t-1} \varepsilon_t}{n^{-1} \sum_{t=1}^{n} X_t^2}$$

• Si ho=1 et via une normalisation en \emph{n} on a

$$n(\widehat{\rho} - 1) = \frac{n^{-1} \sum_{t=1}^{n} X_{t-1} \varepsilon_t}{n^{-2} \sum_{t=1}^{n} X_t^2}$$

A partir des lemmes (2) et (3) on obtient alors

$$n(\widehat{\rho}-1) \stackrel{d}{\longrightarrow} \frac{1/2(W(1)^2-1)}{\int_0^1 W(r)^2 dr}$$

• On peut également démontrer (un peu plus fastidieux) que

$$\widehat{t_{\rho}} = \frac{(\widehat{\rho} - 1)}{\widehat{\sigma_{\rho}}} \xrightarrow{d} \frac{1/2(W(1)^2 - 1)}{\left(\int_0^1 W(r)^2 dr\right)^{1/2}}$$

$$\tag{11}$$

Théorie limite non standard des OLS: lemmes

Lemma (1)

Soit $X_t = \rho X_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \text{ i. i. d. } (0, \sigma_\varepsilon^2) \text{ et } X_0 = 0.$ Si $\rho = 1$, alors

$$n^{-1/2} \sum_{t=1}^{n} \varepsilon_t \xrightarrow{d} \sigma_{\varepsilon} W(1)$$

• Voir le CLT de l'équation (10) pour la démonstration

Théorie limite non standard des OLS: lemmes

Lemma (2)

Soit $X_t = \rho X_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \text{ i. i. d. } (0, \sigma_\varepsilon^2) \text{ et } X_0 = 0. \text{ Si } \rho = 1$, alors

$$n^{-2}\sum_{t=1}^{n}X_{t-1}^{2}\stackrel{d}{\longrightarrow}\sigma_{\varepsilon}^{2}\int_{0}^{1}W(r)^{2}dr$$

• Voir (12) pour la démonstration

Théorie limite non standard des OLS: lemmes

Lemma (3)

Soit $X_t = \rho X_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \text{ i. i. d. } (0, \sigma_\varepsilon^2) \text{ et } X_0 = 0. \text{ Si } \rho = 1$, alors

$$n^{-1}\sum_{t=1}^n X_{t-1}arepsilon_t \stackrel{d}{\longrightarrow} rac{1}{2}\sigma_arepsilon^2ig(W(1)^2-1ig)$$

• Voir (13) pour la démonstration

Théorie limite non standard: Lemme 2

• Si $(t-1)/n \le r_{t-1} < t/n$ on sait que

$$W_n(r) = n^{-1/2} X_{t-1} \sigma_{\mathbb{T}(X)}^{-1} \Rightarrow \sum_{t=1}^n W_n(r) = n^{-1/2} \sigma_{\mathbb{T}(X)}^{-1} \sum_{t=1}^n X_{t-1}$$

- On en déduit alors que $n^{-2}\sum_t^n X_{t-1}^2 = n^{-1}\sigma_{\mathbb{T}(X)}^2\sum_{t=1}^n W_n(r)^2$
- On sait que $W_n(r)$ est constant si $(t-1)/n \le r_{t-1} < t/n$ et donc

$$n^{-1}\sum_{t=1}^{n}W_{n}(r)^{2}=\sum_{t=1}^{n}\int_{(t-1)/n}^{t/n}W_{n}(r)^{2}dr=\int_{0}^{1}W_{n}(r)^{2}dr$$

· Le théorème de Mann-Wald fonctionnel nous assure alors que

$$n^{-2} \sum_{t}^{n} X_{t-1}^{2} \xrightarrow{d} \sigma_{\mathbb{T}(X)}^{2} \int_{0}^{1} W(r)^{2} dr$$
 (12)

avec $\sigma_{\mathbb{T}(X)} = \sigma_{\varepsilon}$ (voir équation 9)

Théorie limite non standard: Lemme 3

- Si ho=1 dans X_t alors $X_t^2=(X_{t-1}+arepsilon_t)^2=X_{t-1}^2+2X_{t-1}arepsilon_t+arepsilon_t^2$
- · Il vient immédiatement que

$$X_{t-1}\varepsilon_t = \frac{1}{2}(X_t^2 - X_{t-1}^2 - \varepsilon_t^2) \Rightarrow \sum_{t=1}^n X_{t-1}\varepsilon_t = \frac{1}{2}\left(X_n^2 - X_0^2 - \sum_{t=1}^n \varepsilon_t^2\right)$$

• Sous l'hypothèse que $X_0=0$ et en multipliant tout par n^{-1} on a

$$n^{-1} \sum_{t=1}^{n} X_{t-1} \varepsilon_t = \frac{1}{2} \left(n^{-1} X_n^2 - n^{-1} \sum_{t=1}^{n} \varepsilon_t^2 \right)$$

· Via le lemme (1), le premier terme nous donne

$$\mathbf{n}^{-1}X_{\mathbf{n}}^{2} = (\mathbf{n}^{-1/2}\sum_{t=1}^{n}\varepsilon_{t})^{2} \stackrel{d}{\longrightarrow} \sigma_{\varepsilon}^{2}W(1)^{2}$$

• Via le théorème de Kolmogorov (9), $n^{-1}\sum_{t=1}^n \varepsilon_t^2 \xrightarrow{a.s.} \sigma_\varepsilon^2$ et

$$n^{-1} \sum_{t=1}^{n} X_{t-1} \varepsilon_t \xrightarrow{d} \frac{1}{2} \sigma_{\varepsilon}^2 (W(1)^2 - 1)$$
(13)

Généralité sur les tests de racine unitaire

- Soit un AR(1) dont on souhaite tester si $\rho=1$
- Les difficultés résident dans la formulation d'un test car
 - la distribution limite ne sera pas standard
- Dickey-Fuller ont proposé deux tests : DF et DF augmenté (ADF)
- Phillips-Perron ont proposé une alternative non-paramétrique d'ADF

Un premier test de racine unitaire

- Soit x_t le taux de change journalier EUR/USD sur 2000-2014
- On sait que si $x_t = \rho x_{t-1} + \varepsilon_t$ avec $\rho = 1$, d'après Th.6

$$z_{\widehat{
ho}} = n(\widehat{
ho} - 1) \stackrel{d}{\longrightarrow} \frac{1/2 \left(W(1)^2 - 1\right)}{\int_0^1 W(r)^2 dr} = \mathcal{L}(\widehat{
ho})$$

- $\mathcal{L}(\widehat{
 ho})$ est tabulée au S196 et peut servir pour tester $H_0:
 ho=1$
- Calculons la statistique $z_{\widehat{\rho}}$ pour n=3760 sachant que

$$\widehat{\rho} = 0.9999919311 \Rightarrow z_{\widehat{\rho}} = n(\widehat{\rho} - 1) = -0.03033893$$

- Dans la table, pour $n>500\equiv\infty$, 95% des fois lorsque le processus est vraiment une marche aléatoire, $s_{\widehat{o}}$ est supérieur à -8.1
- \Rightarrow puisque -0.03 > -8.1, l'hypothèse nulle ho = 1 est acceptée au seuil de 5% et $x_t \sim I(1)$

Un premier test de racine unitaire : annexe

TABLE B.5 Critical Values for the Phillips-Perron Z_p Test and for the Dickey-Fuller Test Based on Estimated OLS Autoregressive Coefficient

Sample	Probability that $T(\hat{\rho} - 1)$ is less than entry										
size T	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99			
Case 1											
25	-11.9	-9.3	-7.3	-5.3	1.01	1.40	1.79	2.28			
50	-12.9	-9.9	-7.7	-5.5	0.97	1.35	1.70	2.16			
100	-13.3	-10.2	-7.9	-5.6	0.95	1.31	1.65	2.09			
250	-13.6	-10.3	-8.0	-5.7	0.93	1.28	1.62	2.04			
500	-13.7	-10.4	-8.0	-5.7	0.93	1.28	1.61	2.04			
œ	-13.8	~ 10.5	-8.1	-5.7	0.93	1.28	1.60	2.03			
Case 2											
25	-17.2	-14.6	-12.5	-10.2	-0.76	0.01	0.65	1.40			
50	-18.9	-15.7	-13.3	-10.7	-0.81	-0.07	0.53	1.22			
100	-19.8	-16.3	-13.7	-11.0	-0.83	-0.10	0.47	1.14			
250	-20.3	16.6	14.0	-11.2	-0.84	-0.12	0.43	1.09			
500	-20.5	-16.8	-14.0	-11.2	-0.84	-0.13	0.42	1.06			
œ	-20.7	-16.9	-14.1	-11.3	-0.85	-0.13	0.41	1.04			
Case 4											
25	-22.5	-19.9	-17.9	-15.6	-3.66	-2.51	-1.53	-0.43			
50	-25.7	-22.4	-19.8	-16.8	-3.71	-2.60	-1.66	-0.65			
100	-27.4	-23.6	-20.7	-17.5	-3.74	-2.62	-1.73	-0.75			
250	-28.4	-24.4	-21.3	-18.0	-3.75	-2.64	-1.78	-0.82			
500	-28.9	-24.8	-21.5	-18.1	-3.76	-2.65	-1.78	-0.84			
00	-29.5	-25.1	-21.8	-18.3	-3.77	-2.66	-1.79	-0.87			

The probability shown at the head of the column is the area in the left-hand tail.

Source: Wayne A. Fuller, Introduction to Statistical Time Series, Wiley, New York, 1976, p. 371.

Le test de Dickey-Fuller : intuition

- Dans un premier temps, considérons un ${\sf AR}(1)$ simple

$$X_t = \rho X_{t-1} + \varepsilon_t$$

Dickey-Fuller (DF) proposent la reformulation suivante

$$\Delta X_t = (\rho - 1)X_{t-1} + \varepsilon_t = \phi X_{t-1} + \varepsilon_t$$

• La formulation du test de racine unitaire devient alors

$$H_0: \phi = 0 \text{ versus } H_1: \phi < 0$$

• Grâce au Th.6, on connaît la distribution limite des OLS pour

$$\phi = (\rho - 1)$$

⇒ la distribution de la statistique de "type" Student

$$\widehat{ au}_3 = rac{\widehat{\phi}}{\widehat{\sigma}_{\phi}}$$

ne sera pas standard non plus (voir Eq. 11)

Le test de Dickey-Fuller : cas général

• Dans la pratique il convient d'envisager la présence de

$$\mu
eq 0$$
 et/ou $\delta
eq 0$

⇒ 3 modèles distinct sont alors envisageables

M1 Le modèle le plus général, avec $\mu \neq 0$ et/ou $\delta \neq 0$

$$\Delta X_t = \mu + \delta t + \phi_1 X_{t-1} + \varepsilon_t$$

M2 Le modèle sans tendance mais avec $\mu \neq 0$

$$\Delta X_t = \mu + \phi_2 X_{t-1} + \varepsilon_t$$

M3 Le modèle le plus spécifique décrivant une simple marche aléatoire

$$\Delta X_t = \phi_3 X_{t-1} + \varepsilon_t$$

• Comme sous H_0 on a une racine unitaire, les distributions de

$$\widehat{\phi}_1, \ \widehat{\phi}_2, \ \widehat{\phi}_3$$

sont non-standards, tout comme les distributions de

$$\widehat{ au}_1 = \widehat{\phi}_1/\widehat{\sigma}_{\phi}, \ \widehat{ au}_2 = \widehat{\phi}_2/\widehat{\sigma}_{\phi}, \ \widehat{ au}_3 = \widehat{\phi}_3/\widehat{\sigma}_{\phi}$$

Le test de Dickey-Fuller : les alternatives

- L'existence de plusieurs alternatives complique l'implémentation
- e.g. Supposons que l'observation des données révèle une tendance
- \Rightarrow la question est alors de savoir si cette tendance vient de

$$\Delta X_t = \mu + \phi X_{t-1} + \varepsilon_t \Leftrightarrow X_t = \mu + X_{t-1} + \varepsilon_t \text{ sous } H_0$$

i.e. une marche aléatoire avec dérive, ou si elle vient de

$$\Delta X_t = \mu + \delta t + \phi X_{t-1} + \varepsilon_t \Leftrightarrow X_t = \mu + \delta t + \rho X_{t-1} + \varepsilon_t \text{ sous } H_1$$

i.e. un AR(1) stationnaire ($\phi < 0 \Leftrightarrow \rho < 1$) autour d'un trend

• Dans cette situation, il est préférable de tester $\phi=0$ via

$$\widehat{\tau}_1 = \widehat{\phi}_1 / \widehat{\sigma}_{\phi}$$

et de compléter cela par un test de nullité jointe (type Fisher)

$$F_1:=\widehat{\phi}_1=\widehat{\delta}=0$$

ou

$$F_2 := \widehat{\phi}_1 = \widehat{\delta} = \widehat{\mu} = 0$$

Le test de Dickey-Fuller : méthodologie

- L'étape 1 de la procédure à suivre en absence d'à priori sera
- 1.a Estimer M1 et tester $H_0:\phi_1=0$ avec $\widehat{ au}_1$
- 1.b Si rejet de H_0 , $(X_t \delta t) \sim I(0)$
- \Rightarrow on peut tester $\delta=0$ et $\mu=0$ avec des valeurs critiques usuelles
- 1.c Si non-rejet de H_0 , X_t possède une racine unitaire
- \Rightarrow il faut tester $\widehat{\phi}_1 = \widehat{\delta} = 0$ avec F_1 (valeurs critiques tabulées)
- 1.d Si rejet, on garde M1 et on recommence la procédure sur ΔX_t
- 1.e Si non-rejet, on peut soit considérer F_2 , soit passer à l'étape 2
- \Rightarrow Si non-rejet avec F_2 , on retient M3

Le test de Dickey-Fuller : méthodologie

- L'étape 2 de la procédure à suivre en absence d'à priori sera
- 2.a Estimer M2 et tester $H_0: \phi_2 = 0$ avec $\widehat{\tau}_2$
- 2.b Si rejet de H_0 , $X_t \sim I(0)$
- \Rightarrow on peut tester $\mu=0$ avec des valeurs critiques usuelles
- 2.c Si non-rejet de H_0 , X_t possède une racine unitaire
- \Rightarrow il faut tester $\widehat{\phi}_2 = \widehat{\mu} = 0$ avec F_3 (valeurs critiques tabulées)
- 2.d Si rejet, on garde M2 et on recommence la procédure sur ΔX_t
- 2.e Si non-rejet, on peut passer à l'étape 3
- 3.a Estimer M3 et tester $H_0:\phi_3=0$ avec $\widehat{ au}_3$
- 3.b Si rejet de H_0 , $X_t \sim I(0)$
- 3.c Si non-rejet, on garde M3 on recommence la procédure sur ΔX_t

Les valeurs critiques de Dickey-Fuller

· La forme non-standard des distributions limites de

$$\widehat{ au}_1, \ \widehat{ au}_2, \ \widehat{ au}_3, \ \widehat{ au}_1, \ \widehat{ au}_2, \ \widehat{ au}_3$$

empêchent le calcul analytique de valeurs critiques

• Dickey-Fuller proposent des valeurs critiques tabulées pour

$$F_i = \frac{(SSR_c - SSR_{nc})/r}{SSR_{nc}/(n-k)}$$

avec r et k les # de restrictions et paramètres (modèle non-contraint)

		Étape (1)						Étape (2)			
	$\widehat{F}_2 := \widehat{\phi}_1 = \widehat{\mu} = \widehat{\delta} = 0$			\widehat{F}_1 :=	$=\widehat{\phi}_1=\widehat{\mu}$	$\hat{\epsilon} = 0$	$\widehat{F}_3 := \widehat{\phi}_2 = \widehat{\mu} = 0$				
T	1%	5%	10%	1%	5%	10%	1%	5%	10%		
50	9.31	6.73	5.61	7.02	5.13	4.31	7.06	4.86	3.94		
100	8.73	6.49	5.47	6.50	4.88	4.16	6.70	4.71	3.86		
250	8.43	6.34	5.39	6.22	4.75	4.07	6.52	4.63	3.81		
500	8.34	6.30	5.36	6.15	4.71	4.05	6.47	4.61	3.79		
∞	8.27	6.25	5.34	6.09	4.68	4.03	6.43	4.59	3.78		

Les valeurs critiques de Dickey-Fuller

• Dickey-Fuller proposent des valeurs critiques tabulées pour

$$\widehat{\tau}_1, \ \widehat{\tau}_2, \ \widehat{\tau}_3$$

Note 1 Les distributions limites ressemblent toutes à l'Eq. 11

Note 2 Elles diffèrent légèrement selon la présence de $\mu \neq 0$ et/ou $\delta \neq 0$,

		$M1:\widehat{ au}_1$			M2 : $\widehat{ au}_2$			M3 : $\widehat{ au}_3$		
T	1%	5%	10%	1%	5%	10%	1%	5%	10%	
50	-4.15	-3.50	-3.18	-3.58	-2.93	-2.60	-2.62	-1.95	-1.61	
100	-4.04	-3.45	-3.15	-3.51	-2.89	-2.58	-2.6	-1.95	-1.61	
250	-3.99	-3.43	-3.13	-3.46	-2.88	-2.57	-2.58	-1.95	-1.62	
500	-3.98	-3.42	-3.13	-3.44	-2.87	-2.57	-2.58	-1.95	-1.62	
∞	-3.96	-3.41	-3.12	-3.43	-2.86	-2.57	-2.58	-1.95	-1.62	

Le test de Dickey-Fuller Augmenté : le modèle AR(p)

- Le test précédent se limite au modèle $\mathsf{AR}(1)$ mais qu'en est-il si

$$X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + \varepsilon_t$$

car déterminer et tester les p racines est un tâche complexe?

• Pour simplifier le problème introduisons $\rho \equiv \phi_1 + \ldots + \phi_p$ et

$$\xi_j \equiv -(\phi_{j+1} + \phi_{j+2} + \ldots + \phi_p)$$

 $\mathsf{pour}\, j = 1, 2, \dots, p-1$ de sortent qu'on puisse écrire

$$\varepsilon_t = \left((1 - \rho L) - (\xi_1 L + \xi_2 L^2 + \dots + \xi_{p-1} L^{p-1}) (1 - L) \right) X_t$$

= $X_t - \rho X_{t-1} - \xi_1 \Delta X_{t-1} - \xi_2 \Delta X_{t-2} - \dots - \xi_{p-1} \Delta X_{t-p+1}$

et $X_t = \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + \varepsilon_t$ de manière équivalente car

$$(1 - \rho L) - (\xi_1 L + \xi_2 L^2 + \ldots + \xi_{p-1} L^{p-1})(1 - L) = 1 - \phi_1 L - \phi_2 L^2 - \ldots - \phi_p L^p$$

Le test de Dickey-Fuller Augmenté : intuition

· La reformulation nous ramène vers un modèle proche du test DF

$$X_{t} = \rho X_{t-1} + \sum_{j=1}^{p} \xi_{j} \Delta X_{t-j} + \varepsilon_{t}$$

• Si une des racine de $1-\phi_1z-\ldots-\phi_pz^p$ est z=1, $\rho=1$ ou $\phi=0$

$$\Delta X_t = (\rho - 1)X_{t-1} + \sum_{j=1}^p \xi_j \Delta X_{t-j} + \varepsilon_t = \phi X_{t-1} + \sum_{j=1}^p \xi_j \Delta X_{t-j} + \varepsilon_t$$

La formulation du test de racine unitaire reste alors

$$H_0: \phi = 0 \text{ versus } H_1: \phi < 0$$

- La distribution limite des OLS pour ϕ reste celle du Th.6
- ⇒ la distribution de la statistique de "type" Student

$$\widehat{ au}_3 = rac{\widehat{\phi}_3}{\widehat{\sigma}_\phi}$$

reste celle de l'Eq. 11 mais les $\widehat{ au}_{\xi_i}$ ont une distribution standard

La procédure de Dickey-Fuller Augmenté

- · La procédure du test ADF est identique à celle du test DF
- Il est néanmoins crucial ici de déterminer *p* auparavant
- 0.a. Estimer le modèle

$$\Delta X_t = \mu + \delta t + \phi X_{t-1} + \sum_{j=1}^{pmax} \xi_j \Delta X_{t-j} + \varepsilon_t$$

- 0.b. Contrôler la présence d'auto-corrélation sérielle des résidus (test de Ljung-Box)
- 0.c. Si les résidus sont auto-corrélés on augmente *pmax*
- 0.d. Si les résidus sont non auto-corrélés on teste avec p < pmax
- 0.e. On garde le plus petit *p* qui satisfait 0.d. et on passe à l'étape 1.a.
- Note L'utilisation des critères de sélection est aussi possible

La procédure ADF en présence d'ARMA(p,q)

- La procédure du test ADF reste identique
- \Rightarrow Elle repose la représentation $AR(\infty)$ des ARMA(p,q)
 - Il faut chercher une **l'approximation** par un $\mathsf{AR}(p < \infty)$
 - · Dans ce context les critères AIC ou BIC sont à privilégier

Note La procédure de sélection de *p* est importante pour que

$$\widehat{\tau}_1, \ \widehat{\tau}_2, \ \widehat{\tau}_3$$

possèdent les distributions (non-standard) attendues

Le test de Phillips-Perron (PP): intuition

- L'éradication de l'autocorrélation sérielle de ε_t peut être délicate
- ⇒ PP proposent une correction non-paramétrique basée sur

$$\lambda_n^2$$

la variance de long terme de ε_t

• L'estimateur proposé repose sur les autocovariances empiriques

$$\widehat{\gamma}_n(j) = n^{-1} \sum_{t=j+1}^n \widehat{\varepsilon}_t \widehat{\varepsilon}_{t-j}$$

et s'exprime comme (l'estimateur de Newey-West)

$$\widehat{\lambda}_n^2 = \widehat{\gamma}_n(0) + 2\sum_{j=1}^q \left(1 - rac{j}{q+1}
ight)\widehat{\gamma}_n(j)$$

• Une statistique corrigée de type Student en découle

$$\widehat{\tau}_{j}^{*} = \sqrt{\frac{\widehat{\gamma}_{n}(0)}{\widehat{\lambda}_{n}^{2}}} \frac{\widehat{\rho} - 1}{\widehat{\sigma}_{\widehat{\rho}}} - \frac{1}{2} (\widehat{\lambda}_{n}^{2} - \widehat{\gamma}_{n}(0)) \frac{1}{\widehat{\lambda}_{n}} \frac{n\widehat{\sigma}_{\widehat{\rho}}}{\widehat{\sigma}_{\widehat{\varepsilon}}}, \quad j = 1, 2, 3$$

Le test de Phillips-Perron (PP) : implémentation

- Le test de PP s'applique de manière identique au test de DF
- La correction dépend en revanche d'un paramètre de tuning q
- ⇒ ce paramètre de troncature ne doit pas croître plus vite que

$$n^{1/4}$$

sous peine de non-convergence de $\widehat{\lambda}_n^2$ vers λ_n^2

⇒ Sous cette condition, la correction est valide, et

$$\widehat{\tau}_j^* \stackrel{d}{=} \widehat{\tau}_j$$

Note Les distributions des statistiques de type Student sont identiques à DF et ADF pour chacun des 3 modèles

Le concept de régression factice

- La non-stationnarité n'a pas pour seule conséquence l'émergence de distributions limites non-standards
- Supposons que l'on cherche à estimer le modèle

$$Y_t = \beta X_t + \varepsilon_t$$

$$\operatorname{avec}\beta=0$$

- Si Y_t et X_t sont des marches aléatoires, l'estimateur **OLS n'est pas consistant**
 - $\Rightarrow \; \hat{eta}$ converge vers une **variable aléatoire non-dégénérée**
- $\hat{\beta}$ ne pouvant révéler l'absence de relation entre Y_t et X_t on parle de **régression factice**

Théorie limite et régression factice

Theorem (7)

Soit Y_t et X_t des marches aléatoires indépendantes, $Y_t = Y_{t-1} + \eta_t$ et $X_t = X_{t-1} + \nu_t$ avec $\eta_t \perp \nu_t$. On considère la régression

$$Y_t = \beta X_t + \varepsilon_t$$

avec $\beta=0$. Alors la théorie limite de l'estimateur OLS de β

$$\widehat{eta} = 0 + \left(n^{-1}\sum_{t}^{n}X_{t-1}^{2}\right)^{-1}\left(n^{-1}\sum_{t}^{n}X_{t-1}Y_{t-1}\right)$$

nous donne après normalisation par n

$$\widehat{eta} - 0 \stackrel{d}{\longrightarrow} \left(\sigma_{
u} \int_{0}^{1} W_{X}(r)^{2} dr
ight)^{-1} \left(\sigma_{\eta} \int_{0}^{1} W_{X}(r) W_{Y}(r) dr
ight)$$

et révèle donc l'inconsistance de \widehat{eta} si eta=0

Théorie limite et régression factice : normalisation

• En multipliant $\widehat{\beta}$ par n de chaque côté on obtient

$$n(\widehat{\beta} - \beta) = \frac{1}{n^{-1}} \left(n^{-1} \sum_{t=0}^{n} X_{t-1}^{2} \right)^{-1} \left(n^{-1} \sum_{t=0}^{n} X_{t-1} Y_{t-1} \right)$$

· Ce qui nous donne

$$n(\widehat{\beta} - 0) = \left(n^{-2} \sum_{t=0}^{n} X_{t-1}^{2}\right)^{-1} \left(n^{-1} \sum_{t=0}^{n} X_{t-1} Y_{t-1}\right)$$

 \Rightarrow En faisant passer le facteur n du terme de gauche, à droite

$$\widehat{\beta} = \left(n^{-2} \sum_{t=0}^{n} X_{t-1}^{2}\right)^{-1} \left(n^{-2} \sum_{t=0}^{n} X_{t-1} Y_{t-1}\right)$$

- La normalisation par *n* avait fonctionné pour la marche aléatoire
- Ici, n va disparaître et annihiler la vitesse de convergence

Théorie limite et régression factice : démonstration

• En posant $r=r_{t-1}=(t-1)/n$, on sait que

$$n^{-1/2}X_{t-1}\sigma_{\nu}^{-1} = W_{X_n}(r)$$
 et $n^{-1/2}Y_{t-1}\sigma_{\eta}^{-1} = W_{Y_n}(r)$

· Par le Lemme (2) on obtient

$$n^{-2} \sum_{t}^{n} X_{t-1}^{2} \xrightarrow{d} \sigma_{\nu}^{2} \int_{0}^{1} W(r)^{2} dr$$

• Puisque $\eta_t \perp
u_t$, une application multivariée du TCLF donne

$$\begin{pmatrix} \sigma_{\eta}^{2} & 0 \\ 0 & \sigma_{\nu}^{2} \end{pmatrix}^{-1/2} n^{-1/2} \sum_{t=1}^{[nr]} \begin{pmatrix} \eta_{t} \\ \nu_{t} \end{pmatrix} \xrightarrow{d} \begin{pmatrix} W_{Y}(r) \\ W_{X}(r) \end{pmatrix}$$
(14)

• Nous pouvons alors à analyser le dénominateur $n^{-2} \sum_{t=0}^{n} X_{t-1} Y_{t-1}$

Théorie limite et régression factice : démonstration

- Sachant
 - le Lemme (1) qui nécessite un $n^{-1}=n^{-1/2}n^{-1/2}$ car X_{t-1} ET Y_{t-1}
 - que $\eta_t \perp \nu_t$ et l'équation (14)
 - que $W_n(r)$ est constant si $(t-1)/n \le r_{t-1} < t/n$
 - le théorème de Mann-Wald fonctionnel
 - que l'astuce du Lemme (3) n'est pas possible ici (pas les bons chocs)

$$\begin{split} \boldsymbol{n}^{-2} \sum_{t}^{n} \boldsymbol{X}_{t-1} \boldsymbol{Y}_{t-1} &= \boldsymbol{n}^{-1} \sum_{t=1}^{n} \sigma_{\eta} \boldsymbol{W}_{\boldsymbol{Y}_{n}}(r) \sigma_{\nu} \boldsymbol{W}_{\boldsymbol{X}_{n}}(r) \\ &= \sigma_{\eta} \sigma_{\nu} \sum_{t=1}^{n} \int_{(t-1)/n}^{t/n} \boldsymbol{W}_{\boldsymbol{Y}_{n}}(r) \boldsymbol{W}_{\boldsymbol{X}_{n}}(r) dr \\ &= \sigma_{\eta} \sigma_{\nu} \int_{0}^{1} \boldsymbol{W}_{\boldsymbol{Y}_{n}}(r) \boldsymbol{W}_{\boldsymbol{X}_{n}}(r) dr \\ &\stackrel{d}{\longrightarrow} \sigma_{\eta} \sigma_{\nu} \int_{0}^{1} \boldsymbol{W}_{\boldsymbol{Y}}(r) \boldsymbol{W}_{\boldsymbol{X}}(r) dr \end{split}$$

• n^{-1} disparaît pour faire apparaître l'intégrale

Théorie limite et régression factice : démonstration

· On constate alors que

$$\widehat{\beta} = \left(n^{-2} \sum_{t}^{n} X_{t-1}^{2}\right)^{-1} \left(n^{-2} \sum_{t}^{n} X_{t-1} Y_{t-1}\right)$$

$$= \left(\sigma_{\nu}^{2} \int_{0}^{1} W_{X}(r)^{2} dr\right)^{-1} \left(\sigma_{\eta} \sigma_{\nu} \int_{0}^{1} W_{Y}(r) W_{X}(r) dr\right)$$

$$\stackrel{d}{\longrightarrow} \left(\sigma_{\nu} \int_{0}^{1} W_{X}(r)^{2} dr\right)^{-1} \left(\sigma_{\eta} \int_{0}^{1} W_{X}(r) W_{Y}(r) dr\right)$$

- Phillips (1986) démontre un résultat similaire pour $n^{-1/2}\widehat{t_{eta}}$
 - \Rightarrow Si $n o \infty$ la probabilité de trouver $\widehat{\beta}$ significatif approche 1 car la distribution de $\widehat{t_{eta}}$ diverge à une vitesse $n^{1/2}$
- Phillips (1986) montre également qu'en présence d'une constante α dans la régression, la distribution de $\widehat{\alpha}$ diverge

Rappels : test de Durbin-Watson et R^2

Le test DW est un test d'autocorrélation à l'ordre 1 pour

$$y_t = \beta x_t + u_t, \quad u_t = \varphi u_{t-1} + \varepsilon_t$$

avec |arphi| < 1 et $arepsilon_t \sim \mathit{WN}(0, \sigma_arepsilon^2)$

• Le test requiert également que $x_t
eq y_{t-1}$ et sous

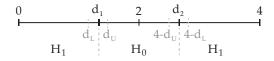
$$H_0: \varphi = 0$$
 versus $H_1: \varphi \neq 0$

voit sa statistique de test

$$DW = \frac{\sum_{t=2}^{n} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=2}^{n} \hat{u}_t^2} \approx 2(1 - \widehat{\varphi}) \in [0, 4]$$

suivre une distribution non standard dont les valeurs critiques d_U et d_L sont tabulées et encadrent des seuils inconnus d_1 et d_2

 \Rightarrow Une lecture rapide pointera vers un non rejet de H_0 si $DW \approx 2$



Rappels: R^2

• Le coefficient de détermination est donné par

$$\widehat{R}^2 = 1 - \left(\sum_{t=1}^n y_t^2\right)^{-1} \left(\sum_{t=1}^n \widehat{\varepsilon}_t^2\right)$$

• La statistique \widehat{R}^2 un estimateur de la quantité théorique

$$R^2 = 1 - rac{\sigma_arepsilon^2}{\sigma_\gamma^2}$$

- Dans le cadre des $\mathsf{ARMA}(p,q)$, on ne connaît sa distribution limite

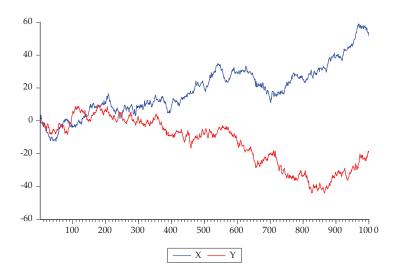
$$\sqrt{n}(\widehat{R}^2 - R^2) \sim \mathcal{N}\Big(0, 4\sigma_{arepsilon}^2(\sigma_{\gamma}^2)^{-1}\sum_{i=1}^{\infty}
ho_i^2\Big)$$

que pour q=0 et dans un cadre non-stationnaire, elle devient non-standard

- En présence de régression fallacieuse, elle est non-dégénérée
- $\Rightarrow \widehat{R}^2$ pointe vers des valeurs > 0 et donc erronées
- ⇒ *DW* pointe vers des valeurs anormalement basses

Exemple: régression factice

• Soit X_t et Y_t deux marches aléatoires indépendantes



Exemple: régression factice

· Estimons le modèle

$$X_t = \beta_0 + \beta_1 Y_t + \varepsilon_t$$

pour lequel on s'attend à trouver $\widehat{eta}_1=0$

⇒ pourtant les résultats indiquent un relation significative

Included observations: 1000

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C Y	9.557269 -0.700810	0.482904 0.024364	19.79125 -28.76363	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.453254 0.452707 11.32547 128009.8 -3844.992 827.3464 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Du rbin-Watson stat		18.87462 15.30898 7.693984 7.703799 7.697714 0.011903

Exemple: régression factice

• Estimons à présent le modèle

$$\Delta X_t = \beta_1 \Delta Y_t + u_t$$

pour lequel on s'attend à trouver $\widehat{\beta}_1=0$

 \Rightarrow à présent on constate qu'il n'y a aucune relation entre X_t et Y_t

Included observations: 999 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C DY	0.051278 0.035033	0.031154 0.030722	1.645935 1.140296	0.1001 0.2544
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.001302 0.000301 0.984505 966.3420 -1400.918 1.300276 0.254437	Mean depender S.D. dependen Akaike info cr Schwarz criterio Hannan-Quinr Durbin-Watso	it var iterion on i criter.	0.050595 0.984653 2.808644 2.818467 2.812378 2.072721

Régression factice et intégration fractionnaire

- Tsay et Chung (2000) étendent les résultats de Phillips (1986) au cas fractionnaire
- · Soit deux processus à mémoire longue

$$\gamma_t \sim I(\delta_{\mathtt{Y}})$$
 et $x_t \sim I(\delta_{\mathtt{X}})$ avec $\delta_{\mathtt{Y}}, \delta_{\mathtt{X}} \in (0, 1/2)$

- Tsay et Chung (2000) montrent que
 - le risque de régression factice existe dès lors que $\delta_{
 m y}+\delta_{
 m x}>1/2$
 - ⇒ même si les deux processus sont stationnaires!
- La démonstration de ce résultat est bien plus complexe et dépasse de loin le niveau M2

Ce qu'il faut retenir

- La notion de non-stationnarité est protéiforme
- Dans un cadre linéaire, la stationnarité disparaît si $\gamma(h)^2=\infty$
- Il existe des processus stationnaires dont $\gamma(h)^2<\infty$ mais $|\gamma(h)|=\infty$, on parle de processus mémoire longue
- Plus généralement les processus sont $I(\delta \in \mathbb{R})$ et $\delta = 0$ ou $\delta = 1$ sont des cas particuliers
- Si $\delta \geq 1/2$, la non-stationnarité survient car $\gamma(h)^2 = \infty$
- Si $\delta=0$ on connaît la théorie limite des OLS
- Si $\delta=1$ la théorie limite des OLS devient non standard et le risque de régression factice émerge
- Ce risque émerge en réalité pour $\delta_{\rm x}+\delta_{\rm y}>1/2$

Les concepts de convergences

- Soit X_i une fonction de n variables aléatoires $X_n = f(Y_1, \dots, Y_n)$
 - L'étude du comportement de X_n quand $n \to \infty$ est cruciale
 - -f(.) sera souvent un **estimateur**
 - L'étude de ce comportement limite repose sur différentes notions de convergence
 - o convergence presque sûre
 - o convergence en **probabilité**
 - o convergence en **moyenne quadratique**
 - o convergence en loi

Convergence presque sûre

• Implications: quand $n \to \infty$, X_n tend de façon certaine vers une constante (i.e. une variable aléatoire dégénérée)

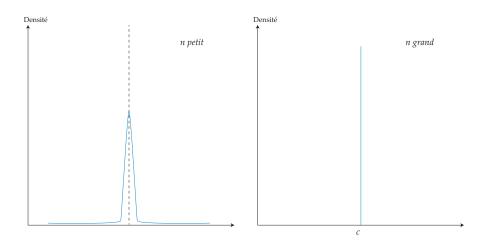
Definition (23)

 x_n converge presque sûrement vers une constante c si,

$$\Pr\left(\lim_{n\to\infty}X_n=c\right)=1$$

- Notation mathématique: $X_n \stackrel{a.s.}{\longrightarrow} c$
- Explications: Comme X_n tend vers une valeur constante de manière certaine, sa distribution asymptotique est une masse ponctuelle

Convergence presque sûre: Illustration



Convergence en probabilité

• **Implications:** quand $n \to \infty$, X_n tend vers une constante

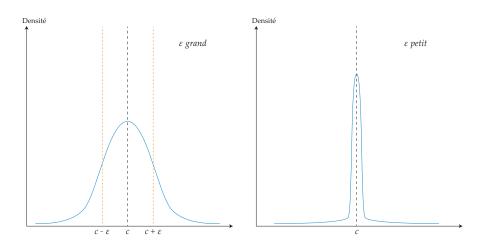
Definition (24)

 $X_{
m n}$ converge en probabilité vers une constante c, si pour toute valeur de $\epsilon>0$,

$$\lim_{n\to\infty} \Pr\left(|X_n - c| > \epsilon\right) = 0$$

- Notation mathématique: $X_n \stackrel{p}{\longrightarrow} c$ ou $\operatorname{plim} X_n = c$
- **Explications:** La convergence en probabilité n'est pas stricte comme la convergence presque sûre et on parle également de convergence au sens faible. Par conséquent, X_n converge asymptotiquement vers une quantité aléatoire dont la densité est très concentrée autour de c

Convergence en probabilité: Illustration



Convergence en moyenne quadratique

• **Implications:** quand $n \to \infty$, X_n tend vers une constante

Definition (25)

 X_n converge en moyenne quadratique vers une constante c, si $\mathbb{E}\left(|X_n|^2\right)<\infty$ et si pour toute valeur de $\gamma>0$,

$$\mathbb{E}\left(\left|X_{n}-c\right|^{2}\right)<\gamma$$

- Notation mathématique: $X_n \stackrel{m.s.}{\longrightarrow} c$
- **Explications:** X_n converge en moyenne quadratique si sa distribution est centrée sur c, i.e. $\mathbb{E}(X_n) = c$ et si sa variance tend vers 0 asymptotiquement, impliquant une densité très concentrée autour de c

Convergence en loi

• Implications: quand $n \to \infty$, X_n tend vers une autre variable aléatoire et dont la distribution est asymptotiquement équivalente

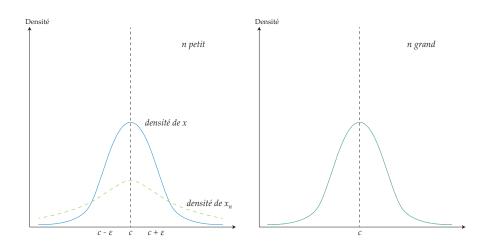
Definition (26)

Soit $F_n(.)$ la fonction de répartition de X_n . X_n converge en loi vers une variable aléatoire X définie sur un support $X(\Omega)$ et ayant pour fonction de répartition F(.) si,

$$\lim_{n\to\infty} F_n(z) = F(z), \ \forall z \in X(\Omega)$$

- Notation mathématique: $X_n \stackrel{d}{\longrightarrow} X$ ou $X_n \stackrel{d}{\longrightarrow} \mathcal{L}$
- **Explications:** Asymptotiquement la distribution de X_n est donc identique à celle de X, ce qui implique des fonctions de densité et de répartition identiques: X_n et X sont identiquement distribuées

Convergence en loi: Illustration



Loi faible des grands nombres

- Implications: il s'agit d'un théorème portant sur une séquence de variables aléatoires $\ i.\ i.\ d.$

Theorem (8: Weak Law of Large Numbers)

Pour une séquence de variables aléatoires i.i.d., $X_t = X_1, \dots, X_n$, la moyenne empirique de ces variables converge en probabilité vers l'espérance de X_t

$$ar{X} = rac{1}{n} \sum_{t=1}^{n} X_t \stackrel{p}{\longrightarrow} \mathbb{E}(X_t)$$

• Par la suite on notera **LLN** la loi des grands nombres

Loi forte des grands nombres

Notes: Il existe des versions fortes de cette loi

$$\operatorname{plim} \, \bar{X} = \lim_{n \to \infty} n^{-1} \sum_{t=1}^n \mathbb{E}(X_t) \operatorname{si} X_t \operatorname{indépendant} \, \forall t \tag{15}$$

$$=\mu \operatorname{si} X_t \sim \mathrm{i.\,i.\,d.}$$
 (16)

Theorem (9: LLN Kolmogorov)

Pour une séquence de variables aléatoires i.i.d., $X_t = X_1, \dots, X_n$, si $\mathbb{E}(|X_t|) < \infty$, la moyenne empirique de ces variables converge presque sûrement vers l'espérance de X_t

$$\bar{X} = \frac{1}{n} \sum_{t=1}^{n} X_t \xrightarrow{a.s.} \mathbb{E}(X_t)$$

Loi forte des grands nombres

 Le théorème LLN de Markov relâche l'hypothèse de distribution identique au coût de conditions sur les moments plus élevés

Theorem (10: LLN Markov)

Pour une séquence de variables aléatoires indépendamment mais non-identiquement distribuées, $X_t = X_1, \ldots, X_n$, avec $\mathbb{E}(X_t) = \mu_t$ et $\mathbb{V}(X_t) = \sigma_r^2$, si

$$\sum_{t=1}^{\infty} \left(\mathbb{E}(|X_t - \mu_t|^{1+m})/t^{1+m} \right) < \infty$$

pour m > 0, alors

$$ar{X} = rac{1}{n} \sum_{t=1}^{n} X_t \stackrel{a.s.}{\longrightarrow} rac{1}{n} \sum_{t=1}^{n} \mathbb{E}(X_t)$$

Vers un théorème de la limite centrée

• Soit une séquence i.i.d., $X_t = X_1, \dots, X_n$ de moyenne

$$\bar{X} = n^{-1} \sum_{t=1}^{n} X_t$$

- D'après la LLN de Kolmogorov, $ar{X} \overset{a.s.}{\longrightarrow} \mathbb{E}(X_t)$ si $n o \infty$
 - la distribution asymptotique de \bar{X} est dégénérée
 - ⇒ Comment construire une statistique inférentielle?
- La logique consiste à opérer une transformation de \bar{X} tel que

$$\mathbb{T}(\bar{X}) \stackrel{d}{\longrightarrow} \mathcal{L}$$

avec $\mathcal L$ une distribution non dégénérée

Cette transformation sera généralement de la forme

$$\mathbb{T}(\bar{X}) = \sqrt{n} \left(\bar{X} - \mathbb{E}(X_t) \right)$$

Pourquoi une telle transformation?

• Pour simplifier supposons $\mathbb{E}(X_t)=0$ et $\mathbb{T}(ar{X})=n^{lpha}ar{X}$

— Comme
$$X_t \sim \text{ i. i. d.}$$
, $\mathbb{E}(X_t) = 0$, $\mathbb{V}(X_t) = \sigma_X^2$ et $\mathbb{C}ov(X_i, X_j) = 0$, $i \neq j$

· On en déduit alors

$$\mathbb{E}(n^{\alpha}\bar{X}) = n^{\alpha}\mathbb{E}(\bar{X}) = 0 , \quad \mathbb{V}(n^{\alpha}\bar{X}) = n^{2\alpha - 1}\sigma_X^2$$

· Car:

$$\begin{split} \mathbb{V}(\bar{X}) &= \mathbb{V}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\mathbb{V}\left(\sum_{i=1}^{n}X_{i}\right) \\ &= \frac{1}{n^{2}}\left(\sum_{i=1}^{n}\mathbb{V}(X_{i}) + 2\sum_{i=1}^{n}\sum_{j=i+1}^{n-1}\mathbb{C}ov(X_{i},X_{j})\right) \\ &= \frac{1}{n^{2}}\sum_{i=1}^{n}\mathbb{V}(X_{i}) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma_{X}^{2} = \frac{n\sigma_{X}^{2}}{n^{2}} = \frac{\sigma_{X}^{2}}{n} \end{split}$$

La vitesse de convergence

$$\begin{array}{l} \bullet \ \ \text{Pour } \alpha \geq 0 \ \text{considérons trois cas} \\ - \ \alpha > 1/2 \ \text{et donc } 2\alpha - 1 > 0 \\ & \lim_{n \to \infty} \mathbb{V} \left(n^{\alpha} \bar{X} \right) = \sigma^2 \lim_{n \to \infty} n^{2\alpha - 1} = \infty \\ - \ \alpha < 1/2 \ \text{et donc } 2\alpha - 1 < 0 \\ & \lim_{n \to \infty} \mathbb{V} \left(n^{\alpha} \bar{X} \right) = \sigma^2 \lim_{n \to \infty} n^{2\alpha - 1} = 0 \\ - \ \alpha = 1/2 \ \text{et donc } 2\alpha - 1 = 0 \\ & \lim_{n \to \infty} \mathbb{V} \left(n^{\alpha} \bar{X} \right) = \sigma^2 \lim_{n \to \infty} n^{2\alpha - 1} = \sigma^2 \end{array}$$

- \Rightarrow La **normalisation** \sqrt{n} préserve la variance de X_t
- \Rightarrow On dit que $ar{X} \mathbb{E}(X_t)$ converge à la vitesse \sqrt{n}

Le théorème central limite

Theorem (11: TCL de Lindeberg-Levy)

Soit une séquence i.i.d., $X_t = X_1, \ldots, X_n$ d'espérance $\mathbb{E}(X_t) = m$ et de variance finies $\mathbb{V}(X_t) = \sigma^2$. D'après le théorème central limite de Lindeberg-Levy,

$$egin{aligned} ilde{Z}_n = \sqrt{n}\,(ar{X} - m) & \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2) \equiv Z_n = rac{ ilde{Z}_n}{\sigma} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1) \end{aligned}$$

avec $n o \infty$ et $ilde{Z}_n$ s'exprimant également comme

$$\sqrt{n}\frac{1}{n}\sum_{t=1}^{n}(X_{t}-m)=n^{-1/2}\sum_{t=1}^{n}(X_{t}-m)=\sqrt{n}\left(\underbrace{\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}\right)}_{\bar{X}}-\underbrace{\frac{1}{n}nm}_{m}\right)$$

- D'autres théorèmes centraux limites existent.
 - TCL de Lyapunov (développé par la suite)
 - TCL pour martingales et processus mélangeants (non présentés)

Le théorème central limite

Theorem (12: TCL de Lyapunov)

Soit une séquence i. ni. d. , $X_t = X_1, \dots, X_n$ d'espérance $\mathbb{E}(X_t) = \mu_t$ et de variance finies $\mathbb{V}(X_t) = \sigma_t^2$. D'après le théorème central limite de Lyapunov, si

$$\lim_{n\to\infty}\frac{1}{s_n^{2+m}}\Bigg(\sum_{t=1}^n\mathbb{E}(|X_t-\mu_t|^{2+m})\Bigg)<\infty,\quad s_n^2=\sum_{t=1}^n\sigma_t^2$$

pour m > 0,

$$Z_n = rac{\sum_{t=1}^n \left(X_t - \mu_t
ight)}{\sqrt{\sum_{t=1}^n \sigma_t^2}} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

La distribution asymptotique

• Soit une séquence i. i. d. , $X_t = X_1, \dots, X_n$ convergeant en loi vers X, une variable ayant pour fonction de répartition F(.)

$$X_n \stackrel{d}{\longrightarrow} \mathcal{L}_X$$

- -F(.) est donc la fonction de répartition de la **distribution asymptotique** de X_n
- Dans le cadre du TCL, supposons

$$\sqrt{n}\,(X_n-m)\stackrel{\text{d}}{\longrightarrow} \mathcal{N}(0,\sigma^2)$$

- Peut-on en conclure que $X_n \stackrel{d}{\longrightarrow} \mathcal{N}(m,\sigma^2/n)$?
- ⇒ En fait, on peut uniquement dire que

$$X_n \xrightarrow{a.a.d} \mathcal{N}(m, \sigma^2/n)$$

et que
$$\mathbb{V}_{asy}(X_n) = \sigma^2/n$$
 et $\mathbb{E}_{asy}(X_n) = m$

Théorème de Mann-Wald

Theorem (13: Continuous Mapping Theorem)

Soit $X_t = X_1, \dots, X_n$ une séquence de variables aléatoires et g(.) une fonction continue à valeur dans $\mathbb R$ en X. Alors,

$$X_n \stackrel{d}{\longrightarrow} X \Rightarrow g(X_n) \stackrel{d}{\longrightarrow} g(X)$$

$$X_n \stackrel{p}{\longrightarrow} X \Rightarrow g(X_n) \stackrel{p}{\longrightarrow} g(X)$$

$$X_n \xrightarrow{a.s.} X \Rightarrow g(X_n) \xrightarrow{a.s.} g(X)$$

Exemples

$$-(X_n, Y_n) \xrightarrow{p} (X, Y) \text{ implique } (X_n Y_n) \xrightarrow{p} XY$$

$$-(X_n,Y_n) \xrightarrow{p} (X,Y)$$
 implique $(X_n/Y_n) \xrightarrow{p} X/Y$ si $Y \neq 0$

Théorème de Slutsky

Theorem (14: Théorème de Slutsky)

Soit $X_t = X_1, \dots, X_n$ et $Y_t = Y_1, \dots, Y_n$ deux séquences de variables aléatoires telles que $X_t \stackrel{d}{\longrightarrow} X$ et $Y_t \stackrel{p}{\longrightarrow} c \neq 0$. Alors,

$$X_t + Y_t \xrightarrow{d} X + c$$
, $X_t Y_t \xrightarrow{d} X_c$, $X_t \xrightarrow{q} X_t \xrightarrow{d} X_t$

• En supposant que $X_t \stackrel{d}{\longrightarrow} \mathcal{N}(m, \sigma^2)$ et que $Y_t \stackrel{p}{\longrightarrow} 2$, le théorème nous apprend que

$$\frac{X_t}{Y_t} \stackrel{d}{\longrightarrow} \mathcal{N}(m/2, \sigma^2/4)$$

References

A.	Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive-moving average process. Biometrika, 66(1), 59-65.
N	Dahlhaus, R., Rao, S. S. (2006). Statistical inference for time-varying ARCH processes. The Annals of Statistics, 34(3), 1075-1114.
N.	Granger, C. W., Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of time series analysis, 1(1), 15-29.
Λ	Hosking, J. R. (1981). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series. Journal of Econometrics, 73(1), 261-284.
λ	Lieberman, O., Phillips, P.C.B. (2008). A complete asymptotic series for the autocovariance function of a long memory process. Journal of Econometrics 147, 99-103.
Λ	Phillips, P.C.B. (1986). Understanding spurious regressions in econometrics. Journal of Econometrics 33, 311-340.
λ	Rao, S. S. (2006). On some nonstationary, nonlinear random processes and their stationary approximations. Advances in Applied Probability, 38(4), 1155-1172.
N	Tsay, WJ., Chung, CF. (2000). The spurious regression of fractionally integrated processes. Journal of Econometrics, 96(1), 155–182

