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Chapter 1

Chapitre 1 : Survival Data



Survival Analysis
Placeholder

• Study of survival times of a particular phenomenon...

... and the factor that influence them

• Data with survival outcomes are numerous

⇒ Clinical trials

⇒ Biomedical studies

⇒ Industrial settings (failure of a device)

⇒ Labor market

⇒ Credit default

• Statistical analysis of survival data requires

⇒ Estimation of survival distribution

⇒ Comparisons of various survival distributions

⇒ Elucidations of the factors that influence survival times (regressions)
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Survival Data
Placeholder

• The variable of interest has key characteristics

⇒ Non-negative discrete (or continuous) random variable

⇒ Represents the time from a well-defined origin to a well-defined event

⇒ Often subject to censoring : the starting or ending event is not observed

• Example of right censoring

— Let T∗ be a random variable representing the time to failure

— Let U be a random variable representing the time to censoring event

— The recorded event will be T = min(T∗,U) and we can define
δ = I(T∗ < U)

a censoring indicator taking value 1 or 0

⇒ δ = 1 if T is an observed failure time and δ = 0 if T is a censored time

Note 1 Left censoring are possible albeit less frequent

Note 2 Interval censoring are also possible : the failure time has occurred within an unobserved time
interval
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Censoring classification
Placeholder

• There are 3 types of censoring times :

Type I Pre-specified censored times

e.g. In a study with a pre-specified ending time, if an individual has not experienced the event of interest
before the end, it is censored at that time

Type II Pre-specified fraction of failure

e.g. If the study runs until a pre-specified fraction of failure is reached (e.g. 25 %), individuals or objects
that have not failed (75%) are censored

Random Censoring that occurs randomly and independently of the study

e.g. In a biomedical study, patient dropout that are unrelated to the disease process (e.g. death unrelated
to the disease under investigation)

Note The random nature of this type of censoring is crucial to avoid bias
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Type I censored data
Placeholder

• In biomedical studies, administrative censoring is of type I
⇒ It occurs when patients are still alive at the end of the follow-up period

Year of entry
2000 2002 2004 2006 2008 2010

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Accrual Follow−up

Censored event

Death event
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Patient time structure
Placeholder

• Survival database are generally structured as follows

⇒ For each individual, the survival time and δ (“Status”) are reported

Table: Survival data example

Patient Survtime Status
1 7 0
2 6 1
3 6 0
4 5 0
5 2 1
6 4 1
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Patient time representation
Placeholder

• The patient time graphical representation is as follows

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient time

0      1       2       3      4       5      6       7      8
Survival time in year
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Database example (1)
Placeholder

• Additional informations can include additional outcomes

— individual characteristics

— competing risks factors

⇒ Below, δ ∈ {0, 1, 2} where 2 to indicate death from other causes

Table: Survival prospects of prostate cancer patients with high-risk disease

Patient grade stage ageGroup survTime status
88 poor T2 75-79 33 0
89 mode T2 75-79 6 0
90 mode T1c 75-79 15 2
91 mode T2 70-74 6 2
92 mode T1ab 80+ 93 1
93 poor T2 80+ 60 2
94 mode T2 80+ 1 0
95 mode T1ab 75-79 34 0
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Database example (2)
Placeholder

• Comparisons survival data is also of crucial interest

e.g. triple-medication v.s. nicotine patch therapy alone

Note 1 δ is set to 0 for individuals who remained non-smokers for 6 months

Note 2 Below, the variable ttr is time until return to smoking

⇒ The objective is to compare the two treatment therapies by identifying the factors related to this
outcome

Table: Comparison of medical therapies to aid smokers to quit

ttr relapse grp age gender morphotype employment
1 182 0 patchOnly 36 Male white ft
2 14 1 patchOnly 41 Male white other
3 5 1 combination 25 Female white other
4 16 1 combination 54 Male white ft
5 0 1 combination 45 Male white other
6 182 0 combination 43 Male hispanic ft
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Hazard and Survival Functions
Placeholder

• Survival Analysis relies on the survival distribution that is specified by

either the Survival Function (SF)

or the Hazard Function (HF)

• The SF is defined as the probability of surviving up to a point t

S(t) = P(T > t), 0 < t <∞

⇒ S(t) is right continuous, equals 1 at time 0 and decreases over time

Note In some cases, S(t) can also remain constant and never reach 0

• The HF is defined as the instantaneous failure rate

h(t) = lim
∆→0

P(t < T < t +∆|T > t)
∆

⇒ h(t) is the probability of failing in the next interval of time ∆, given that the subject has survived
up to time t, divided by that interval
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Hazard and Survival Functions representation
Placeholder

Data: the daily hazard rates of men and women by age from 1940 to 2004

• The initial days and weeks of life are particularly dangerous

• The hazard increases during the teen years, then levels off

• It starts a steady increase in midlife
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Other representations of the Survival Distribution
Placeholder

• The complement of the SF is just the so-called CDF

F(t) = P(T ≤ t), 0 < t <∞

⇒ known as cumulative risk function in the survival analysis

• The PDF is also an obvious alternative representation

f (t) = − d
dt S(t) = d

dt F(t)

⇒ it is the rate of change of F(t) or minus the rate of change of S(t)

• f (t) is also related to h(t) by

h(t) = f (t)
S(t)

⇒ the hazard at time t is the probability that an event occurs in the neighborhood of t divided by
the probability that the subject is alive at t
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The Survival Function as function of the Hazard Function
Placeholder

• The area under the HF up to time t is the cumulative HF

H (t) =
∫ t

0
h(u)du

• Then, one can define the survival function in terms of the CHF

S(t) = exp

(
−
∫ t

0
h(u)du

)
= exp(−HF)
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Mean and Median Survival time
Placeholder

• The expected value of the survival time is simply

E(T) =

∫ ∞

0
tf (t)dt = µ

• An alternative equivalent measurement is

µ =

∫ ∞

0
S(t)dt

Note 1 it is defined (µ <∞) only if S(∞) = 0 : all subjects eventually fail

⇒ this might not be the case if, e.g., the survival outcome is time to cancer recurrence and a fraction
c of subjects are completely cured

• The Median survival time is the time τ such that S(τ) = 1/2

Note 2 If S(t) is a step function, it is not continuous at 1/2 and the Median is the smallest t such that
S(t) ≤ 1/2

Note 3 If S(t) never drop below c = 1/2 during the observation period, the Median is undefined
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Introduction to parametric Survival Distributions
Placeholder

• In view of modeling the survival process, we need to specify a distribution

• The simplest survival distribution is the exponential one

f (t) = λe−λt,

• The definitions of S12 allows to compute the SF

S(t) = e−λt

and alternative representations of S14 give

h(t) = λ

⇒ This SD has constant hazard function h(t) = λ
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The Exponential Survival Distribution
Placeholder

• The cumulative hazard function is hence

H (t) =
∫ t

0
h(u)du =

∫ t

0
λdu = λt

and is represented by the shaded area below
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Exponential hazard

• The mean survival time is simply

E(T) =

∫ ∞

0
S(t)dt =

∫ ∞

0
e−λtdt = 1/λ

and the median survival time is obtained for e−λτ = 0.5, i.e. τ = log(2)/λESA
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The Weibull Survival Distribution
Placeholder

• The constant hazard is a strong assumption in many practical cases

⇒ a first generalization is obtained by considering

h(t) = αλαtα−1

the hazard function derived from the Weibull distribution

Note For α = 1 it comes down to the exponential distribution

• From h(t) one can easily derive H (t) = (λt)α and hence

S(t) = e−(λt)α
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The Weibull Hazard Function
Placeholder

• For several parameter choices the behavior of h(t) is represented below
Weibull hazard functions
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• The mean survival time formula is not obvious

E(T) =

∫ ∞

0
S(t)dt = Γ(1 + 1/α)

λ

and the median survival time is given by τ = log(2)1/α/λ

Note The Gamma function generalizes the factorial function to real numbersESA
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The Gamma Hazard Function
Placeholder

• Another choice for survival modeling is the Gamma distribution

f (t) = λβtβ−1 exp(−λt)
Γ(β)

which comes down to the exponential one for β = 1 as Γ(1) = 1

Gamma hazard functions
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Note No closed form exist for the HF and SF ⇒ numerical computations
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Numerical approximation to the Hazard and Survival Functions
Placeholder

• In some cases (see e.g. S13), the distribution is much more complicated

• An alternative way is numerical computation :

1 Take people dead at birth, after 1 day, week, month, year, 2 years, ...

2 Take the data in difference to obtained rectangles

3 Compute the cumulated sum of data in each rectangle to get Ĥ(t)

4 The SF is simply given by Ŝ(t) = exp(−Ĥ(t))

• One can use Ŝ(t) to compute the mean that is

73.80

for the male and
78.90

for the women when considering the US lifetime data of S13
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Example of CHF approximation
Placeholder

• Step 1 to 3 allow to approximate the integral of H (t)

e.g. The male lifetime CHF up to 1.5 years is given by the blue area

⇒ Applying this method beyond 2 years leads to the blue CHF curve in S13
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Unknown distribution parameters
Placeholder

• In general, we have poor knowledge upon
S(t)

the underlying Survival Distribution

• We only have realizations
t1, t2, . . . , tn

of random variables for which a distributional assumption is done

e.g. Under exponential distribution hypothesis, the parameter

λ

is unobserved and we would like to estimate it

⇒ A natural candidate is the Maximum Likelihood estimator
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MLE principle for Survival data
Placeholder

• As in time series analysis, the likelihood function take the general form

L(θ; t1, t2, . . . , tn) = f (t1, θ) · f (t2, θ) . . . f (tn, θ) =

n∏
i=1

f (ti, θ)

with θ = λ in the exponential distribution case

Note However, particular attention has to be paid to censored data

e.g. For right-censored data we use δ and the Survival Function

S(ti, θ)
1−δi

to indicate that observation i is known only to exceed ti as

S(ti, θ) = P(Ti > ti)

⇒ The likelihood is hence transformed to

L(θ; t1, t2, . . . , tn) =

n∏
i=1

f (ti, θ)
δi S(ti, θ)

1−δi =

n∏
i=1

h(ti, θ)
δi S(ti, θ)

Note For left-censored data we use δ and 1 − S(ti, θ) = P(Ti ≥ ti) = F(ti, θ)
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MLE principle for exponential distribution
Placeholder

• In the particular case of the exponential distribution,

L(θ; t1, t2, . . . , tn) =

n∏
i=1

(
λe−ti/µ

)δi(
e−λti

)1−δi
= λde−λV

where d = δ1 + . . .+ δn is the total number of failure and

V = t1 + . . .+ tn

is the total amount of time of patients

• The MLE is given by the value of λ that maximizes L(λ; t1, t2, . . . , tn)

• As log-transformation simplifies the likelihood function we prefer

`(λ) = logL(θ; t1, t2, . . . , tn) = d log λ− λV

• Under regularity conditions, the MLE is asymptotically Gaussian
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Solution of exponential-based MLE
Placeholder

• The first derivative (score function) give

`′(λ) =
d
λ
− V

and hence the maximum likelihood estimate is λ̂ = d/V

• The second derivative (Hessian function) is

`′′(λ) = − d
λ2 = −I (λ)

where I (λ) > 0 is the Fisher information

• As `′′(λ) < 0 the solution is a maximum and inversing I (λ) we obtain

V(λ̂) = σ2
λ ≈ I−1(λ) = λ2/d

• In practice we will use
σ̂2
λ ≈ I−1(λ) = λ̂2/d = d/V 2

Note For most of distributions, no explicit solutions exist ⇒ numerical resolution
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Exercise
Placeholder

• Consider the data of Table 1
• Plot the log-likelihood and compute the MLE of λ and V(λ̂)

• Simple observation of the data gives d = 3 and V = 7 + 6 + 6 + 5 + 2 + 4 = 30
⇒ The log-likelihood function is

`(λ) = 3 log λ− 30λ
and hence we obtain λ̂ = 3/30 = 0.1 with σ̂2

λ ≈ 3/(302) = 0.0033
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The Kaplan-Meier estimator (KPE)
Placeholder

• In practice, the distribution/survival/hazard function is hard to choose

⇒ The parametric approach is likely to be misspecified

• Nonparametric estimation procedures offer more flexibility

⇒ The most widely used of these procedures is the Kaplan-Meier estimator

Ŝ(t) =
∏
ti≤t

(1 − q̂i) =
∏
ti≤t

(
1 − di

ni

)
where di is the number of failure at time ti and ni the number of individuals at risk at that time

⇒ Ŝ(t) is the product over failure times of the conditional probabilities of surviving to the next
failure time
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Application of the KPE
Placeholder

• By using the data of the Table 1, one can easily obtain

Table: Kaplan-Meier estimator

ti ni di qi 1 − qi Ŝi

2 6 1 0.167 0.833 0.833
4 5 1 0.200 0.800 0.667
6 3 1 0.333 0.667 0.444

• One can use Ŝi to reconstruct graphically the Survival Function
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Interpretation of Ŝt
Placeholder

• Ŝt is a non-increasing right continuous step function

— ti is the failure time

— ni is the number of individuals at risk at time ti

— di is the number of individuals who fail at time ti

— qi = di/ni is the failure probability

— 1 − qi is the conditional survival probability

— Si is the Survival Function at time ti

• The right-continuity is illustrated by open and closed circles

e.g. S(4) = 0.667 while S(3.99) = 0.833

Note The median is obtained for
ti = τ̂ = 6,

that is the smallest time such that S(t) ≤ 1/2 (Ŝ(τ) = 0.444)
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KPE and inference
Placeholder

• The variance of the KPE can be approximated by

V(Ŝt) ≈ Ŝ2
t
∑
ti≤t

di

ni(ni − di)

• Unfortunately, CI derived from V(Ŝt) may extend above 1 or below 0 but S(t) ∈ [0, 1]

⇒ One often overcome this issue by using a log-log transformation of Ŝ(t)

V(log(− log Ŝt)) ≈
1

(log Ŝt)2

∑
ti≤t

di

ni(ni − di)
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Nelson-Altschuler estimate of the SF
Placeholder

• An alternative estimator is the one of Nelson-Altschuler based on H (t)

Ŝt = e−Ĥ(t), Ĥ (t) =
∑
ti≤t

di

ni

Table: Nelson-Altschuler estimator

ti ni di qi Ĥi Ŝi

2 6 1 0.167 0.167 0.846
4 5 1 0.200 0.367 0.693
6 3 1 0.333 0.700 0.497

• Confidence intervals can be obtained in a similar way to KPE
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Median and inference
Placeholder

• As stated previously, the median is τ̂ = inf{t : Ŝ(t) ≤ 1/2}
• For a risk level α confidence intervals are given by

−zα/2 ≤
g
(
Ŝ(t)

)
− g
(
1/2
)

V
(

L
(
Ŝ(t)

))1/2 ≤ zα/2

with g(x) = log(− log(x)) and zα/2 a Standard Normal quantile
e.g. Consider the data of Table 2 and the KPE : τ̂ = 10.3
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Kernel smoothing and Hazard Function estimation
Placeholder

• The Nelson-Altschuler estimate of h(t) can be rough and quite instable

• A kernel function can be used to smooth ĥ(t)

ĥ(t) = 1
b

D∑
i=1

K
( t − ti

b

) di

ni

where t1 < . . . < tD are ordered failure times and b a tuning parameter
Note Many kernel function exist but the Epanechnikov kernel is very common

K(x) = 3/4(1 − x2), −1 ≤ x ≤ 1
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Corrected Kernel smoothing and Hazard Function estimation
Placeholder

• Without corrections K(x) is likely to be 6= 0 at time t < 0
⇒ The first kernel below is centered at t = 2 and b = 2.5 meaning that

t − b = −0.5 t + b = 4.5
and hence, the actual area under the first kernel is too small

⇒ The modified Epanechnikov kernel is recommended
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• Another approach: setting a time-varying b

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 36 / 192



Example Kernel smoothing and Hazard Function estimation
Placeholder

• Consider again the data of Table 2

⇒ Choose the modified Epanechnikov kernel with b = 20

Note Selection of b can be critical :
— if b is too small, the estimate may gyrate widely

— if b is too wide, the hazard function may be too smooth to observe real variations in the hazard
function
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Example Kernel smoothing and Survival Function estimation
Placeholder

• One can use ĥ to obtain a smooth estimate of S(t)

Ŝ(t) = exp
(
−
∫ t

u=0
ĥ(u)du

)
• In practice the integral is approximated by the rectangles method
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Comparing Two Groups of Survival Times
Placeholder

• Comparison of distributional features is of crucial interest

e.g. In medical trials you need to compare treatment and control groups

H0 : S1(t) = S0(t)

• Let S1(t) be the SF of the treatment group

⇒ Two alternative hypotheses can be specified (one-sided or two-sided)

H1 : S1(t) > S0(t) or H1 : S1(t) 6= S0(t)

⇒ Unfortunately, Survival data imply several serious issues

— Survival distributions can be similar for some t and differ for others

— Survival distributions can cross
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Lehman alternatives
Placeholder

• One solution is to consider Lehman-type alternatives defined as

H1 : S1(t) =
(
S0(t)

)ψ
where ψ 6= 1 unless under

H0 : S1(t) =
(
S0(t)

)1

⇒ The one-sided alternative is now
H1 : ψ < 1

and imposes that S1(t) is uniformly higher than S0(t)

• Theses hypotheses can be formulated in terms of proportional hazards

h1(t) = ψh0(t)

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 40 / 192



The 2-by-2 Table representation
Placeholder

• In the spirit of the rank tests à la Mann-Whitney H0 can be tested against Lehman alternatives

Note Complications arise from the presence of censoring

⇒ To solve this issue consider a two-by-two table representation of the data

Table: 2-by-2 Table representation

Control Treatment Sums
Failure d0i d1i di
Non-failure n0i − d0i n1i − d1i ni − di
At risk n0i n1i ni

• Numbers at risk for the control and treatment groups are n0i and n1i

• Numbers of failure for the control and treatment groups are d0i and d1i

• This representation is adopted for any distinct ordered failure time ti
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Hypergeometric distribution
Placeholder

• If one holds di, n0i and n1i fixed (and hence ni too) we can derive

P(d0i|n0i,n1i, di) =

(
n0i

d0i

)(
n1i

d1i

)(
ni

di

)−1

the hypergeometric distribution of d0i where(
ni

di

)
=

ni!

di!(ni − di)!

represents the number of combinations of n items taken d at time ti

• The 2 first moments of that distribution are

E(d0i) =
n0idi

ni
= µ0i

and
V(d0i) =

n0in1idi(ni − di)

n2
i (ni − 1)

= σ2
0i
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The log-rank test statistics
Placeholder

• Based on the 2-by-2 representation and E(d0i) one can define

U0 =
∑
i=1

(d0i − E(d0i))

a simple linear test statistic and its variance

V(U0) =
∑
i=1

V(d0i)

• One can show that U0/
√

V(U0) ∼ N (0, 1) or equivalently

U 2
0

V(U0)
∼ χ2

1

• This test statistic is known as the log-rank test of group comparison

Note 1 This test is also known as the Mantel-Haenzel test

Note 2 A comparison of k groups is possible and modify the distribution to

χ2
k−1

but is slightly different from the stratified tests discussed in S51
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Exercise: application of the log-rank test
Placeholder

• Consider the following survival data

• C and T stand for Control and Treatment groups respectively

Table: Survival data

Patient Survtime Censor Group
1 6 1 C
2 7 0 C
3 10 1 T
4 15 1 C
5 19 0 T
6 25 1 T

• When required, construct the 2-by-2 tables

• Compute the log-rank test and interpret the result
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Exercise: computation
Placeholder

• Failures appear at t = 6, 10, 15, 25 and result in four 2-by-2 tables

Table: 2-by-2 tables for t = 6, 10, 15, 25

t = 6 t = 10 t = 15 t = 25
C T

∑
C T

∑
C T

∑
C T

∑
Failure 1 0 1 0 1 1 1 0 1 0 1 1
Non-failure 2 3 5 1 2 3 0 2 2 0 0 0
At risk 3 3 6 1 3 4 1 2 3 0 1 1

Table: Intermediate calculus to compute the log-rank test statistic

ti ni di n0i d0i n1i d1i µ0i σ2
0i

6 6 1 3 1 3 0 0.500 0.2500
10 4 1 1 0 3 1 0.250 0.1875
15 3 1 1 1 2 0 0.333 0.2222
25 1 1 0 0 1 1 0.000 0.0000∑

2 2 1.083 0.6597
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Exercise: interpretation
Placeholder

• From Tables in previous slide we easily obtain

U0 =
∑

i

d0i −
∑

i

µ0i = O0 − E0 = 2 − 1.083 = 0.917

and V(U0) =
∑

i σ
2
0i = V0 = 0.6597

⇒ The log-rank test statistic is
U 2

0
V(U0)

≈ 1.26

which we compare to a χ2
1 distribution

⇒ The corresponding p-value is
p = 0.259

meaning that we cannot reject H0 and hence the group difference is not statistically significant

Note When applying the test to d1i, the result is identical as it also sums to 2
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The generalized log-rank test statistics
Placeholder

• An important generalization of the log-rank test is

U0(w) =
∑
i=1

wi(d0i − E(d0i))

with the corresponding variance V(U0) =
∑

i=1 w2
i V(d0i)

• This leads to the so called Fleming-Harrington G(ρ) test

G(ρ) =
U0(w)2

V(U0(w))

• The most common way of setting weights is à la Gehan-Wilcoxon

wi = F
(
Ŝ(ti)

)ρ
, F(.) being a certain function

Note 1 When ρ = 1 we get the Prentice modification : places higher weight on earlier survival times

Note 2 When wi =
√ni we get the Tarone-Ware modification : intermediate weight compared to ρ = 0

and ρ > 0

Note 3 When wi = Ŝ(ti)
p(1 − Ŝ(ti))

q we get the Harrington-Fleming(p, q) test : more flexible
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Example : Prentice modification of Gehan-Wilcoxon test
Placeholder

• Let consider pancreatic cancer data from a clinical trial (41 patients)

• We are interested in the progression-free survival (PFS)

⇒ the time from assignment in the trial to disease progression or death

Table: Locally Advanced Pancreatic Cancer or Metastatic Pancreatic Cancer

stage onstudy progression death
1 MPC 16/12/2005 02/02/2006 19/10/2006
2 MPC 06/01/2006 26/02/2006 19/04/2006
3 LAPC 03/02/2006 02/08/2006 19/01/2006
4 MPC 30/03/2006 “NA” 11/05/2006
5 LAPC 27/04/2006 11/03/2007 29/05/2007
6 MPC 07/05/2006 25/06/2006 11/10/2006
...

...
...

...
...

Note 1 “NA” means that the patient died with no recorded progression and the PFS is time to death

Note 2 For all other patients, the PFS is time to the date of progression
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Example : Prentice modification of Gehan-Wilcoxon test
Placeholder

• The graphical analysis of SF reveals :

— the LAPC group shows an early survival advantage over the MPC

— but the survival curves converge after about 10 months
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Example : Prentice modification of Gehan-Wilcoxon test
Placeholder

• When computing the Gehan-Wilcoxon test for ρ = 0 (i.e. the log-rank test) and

ρ = 1

i.e. the Prentice modification, we obtain

Table: Fleming-Harrington G(ρ) for ρ = 0 and ρ = 1, with k = {0, 1}

ρ = 0 N Ok Ek (Ok − Ek)
2/Vk

LAPC 8 8 1.49 2.25
MPC 33 33 0.64 2.25
We cannot reject H0 (no difference) as p-value = 0.134

ρ = 1 N Ok Ek (Ok − Ek)
2/Vk

LAPC 8 2.34 2.13 4.71
MPC 33 18.76 0.82 4.71
We reject H0 as p-value = 0.0299

• The two tests produce conflicting results as they are optimized for different alternatives

⇒ For ρ = 1, the test places higher weight on earlier survival times
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Stratified tests
Placeholder

• To compare two groups while adjusting for another covariate, one can

1 include the other covariate as regression terms for the hazard function (see next Chapter)

2 construct a stratified log-rank test if the covariate we are adjusting for is categorical

⇒ denote h0j the population hazard of level j = 1, 2, . . . ,G, with G small

• For the G categories of the covariate we can test

H0 : h0j(t) = h1j(t), j = 1, 2, . . . ,G

• Accordingly, the stratified version of the log-rank test statistic is

X2 =

(∑G
g=1 U0g

)2

∑G
g=1 V0g

∼ χ2
1
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Example 1 of stratified test
Placeholder

• Consider the dataset of Table 3 (time to return smoking)

• We first compare the 2 treatment groups by means of the log-rank test
ρ = 0 N Ok Ek (Ok − Ek)

2/Vk

Combination 61 37 49.9 8.03
Patch only 64 52 39.1 8.03
We reject H0 (no difference) as p-value = 0.00461

• If now we are interested by the influence of the age we may define
g = 1 : 21 − 49 || g = 2 : 50 or more

a categorical variable that divides the subjects in 2 groups

• The resulting stratified log-rank test is close to the unadjusted test

⇒ the stratification based on the age seems unnecessary
ρ = 0 N Ok Ek (Ok − Ek)

2/Vk

Combination 61 37 49.1 7.03
Patch only 64 52 39.9 7.03
We reject H0 (no difference) as p-value = 0.008
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Example 2 of stratified test
Placeholder

• Consider simulated data representing an artificial clinical trial

• This trial compares a standard therapy (control) and an experimental one (treatment)

• The survival times are simulated as exponentially distributed and produces no censoring

• A confounding genotype factor is also simulated with only 2 levels

g = 1 : wild type genotype || g = 2 : mutant genotype

with g = 2 leading to poorer prognosis as the hazard rate is

λ = 0.03 per day

for a mutant patient in the control group whilst the effect of treatment leads to

λ = 0.0165

• For wild type patients λ = 0.006 whilst the effect of treatment leads to

λ = 0.0033
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Example 2 of stratified test
Placeholder

• The Kaplan-Meier survival curves are computed both naively and accounting for the gene
confounder

Note 1 The naive estimate concludes against the experimental therapy
Note 2 When accounting for the gene confounder the results are at the opposite

⇒ within each genotype, the treatment is actually superior to the control
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Example 2 of stratified test
Placeholder

• The stratified log-rank test is now used to confirm the graphical analysis

Unadjusted N Ok Ek (Ok − Ek)
2/Vk

Control 150 150 183 15.9
Treatment 150 150 117 15.9
We reject H0 (no difference) as p-value = 0.00006

Note 1 The unadjusted test shows that the treatment reduces survival

Stratified N Ok Ek (Ok − Ek)
2/Vk

Control 150 150 133 7.57
Treatment 150 150 167 7.57
We reject H0 (no difference) as p-value = 0.00595

Note 2 The stratified test confirms that the treatment improves survival compared to the control

Note 3 Patients carrying the wild type form of the gene have better survival than do patients carrying the
mutation

Note 4 There are more mutation-carrying patients in the treatment group than in the control group,
whereas the reverse is true for wild type patients
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Chapter 2

Chapitre 2 : Hazards Model



Non parametric models
Placeholder

• As discussed in Chapter 1, Lehman-type alternatives are defined as

H1 : S1(t) =
(
S0(t)

)ψ
where ψ 6= 1 unless under

H0 : S1(t) =
(
S0(t)

)1

⇒ theses hypotheses can be formulated in terms of proportional hazards

h1(t) = ψh0(t)

• The latter Eq. is the key to quantify the difference between two hazard functions by means of the
so-called proportional hazards model

• We can extend the model to include covariate information x as follows

ψ = exβ

• Other functional are possible albeit this is the most common in practice

Note The estimation is complicated in absence of parametric form for

h0(t),

and require the concept of partial likelihood developed by Cox
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Introduction to the partial likelihood
Placeholder

• Let j denotes the j’th failure time (sorted from lowest to highest)

• Let hi(tj) be the hazard function for subject i at failure time tj

⇒ The Cox proportional hazards (semi-parametric) model is

hi(tj) = ψih0(tj), ψi = ex′
iβ

Note ψi characterize the hazard ratio hi(tj)/h0(tj)

• In the simplest case where we compare two groups (dummy variable)

xi = {0, 1}

• In the particular case of control vs treatment group we expect

β < 0

as the experimental group is less likely than control patients to fail

⇒ Hence, ψi < 1 (ψi = 1) is expected in the treatment (control) group
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The partial likelihood
Placeholder

• Consider the first failure time t1 and let
R1

be the set of all subjects at risk for failure at this time (the risk set)

• The probability that the subject i fails is its hazard divided
∑

hk(t1)

P1 =
hi(t1)∑

k∈R1
hk(t1)

=
ψih0(t1)∑

k∈R1
ψkh0(t1)

=
ψi∑

k∈R1
ψk

where h0(t1) is the hazard for a subject from the control group

• At failure time t2 a new (smaller) risk set R2 is considered

⇒ We repeat this calculation to obtain p2 and so on up to tn

• The partial likelihood is the product

L(ψ) = P1P2 . . .Pn
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Example of partial likelihood computation
Placeholder

• Consider the following (artificial) data (see also Chapter 1)

Table: Survival data

Patient Survtime Censor Group
1 6 1 C(x1 = 0)
2 7 0 C(x2 = 0)
3 10 1 T(x3 = 1)
4 15 1 C(x4 = 0)
5 19 0 T(x5 = 1)
6 25 1 T(x6 = 1)

• Consider the following (artificial) data (see also Chapter 1)

⇒ the first failure time is at t = 6 and for each patient we have either

ψ1 = ψ2 = ψ4 = 1 or ψ3 = ψ5 = ψ6 = ψ

i.e. we have 6 patients at risk (3 in the “C” group for which ψ = 1) and

P1 =
ψ1h0(t1)

3ψh0(t1) + 3h0(t1)
=

1
3 × ψ + 3
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Example of partial likelihood computation
Placeholder

• The second failure time is at t = 10 because at t = 7 there is no failure

Note At t = 7 we have a “C” patient that dropped out due to censoring

⇒ Of the 6 patients at risk at the first time, only 4 remains in R2 and

P2 =
ψ

3ψ + 1
where ψ appears in the numerator as the patient 3 was in the “T” group

• The third failure time (t3) is at t = 15 with 3 patients in R3 and

P3 =
1

2ψ + 1

• The last failure time (t4) is at t = 25 with 1 patient in R4 and

P4 =
ψ

ψ
= 1

as she is in the “T” group
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Example of partial likelihood computation
Placeholder

• Now we are ready to compute the partial likelihood

L(ψ) = P1P2P3P4 =
ψ

(3ψ + 3)(3ψ + 1)(2ψ + 1)

• In the case of a Cox model the log partial likelihood is

`(β) = β − log(3 exp(β) + 3)− log(3 exp(β) + 1)− log(2 exp(β) + 1)

as ψ is assumed to be of exponential form : ψ = eβ

⇒ The maximum partial likelihood estimate is
β̂

the value of β that maximizes this function

Note 1 As discussed above, it is nonparametric because the hazard function

h0(t)

does not enter the partial likelihood and hence requires no specification

Note 2 Unlike traditional likelihood, L(ψ) is not a probability but allows to estimate β
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Example of partial likelihood computation
Placeholder

• β̂ = −1.3261 is obtain by numerical optimization
• We anticipate on the next slide and report some test statistics

Note 1 The null hypothesis (β = 0) is reported for comparison
Note 2 The slope of the tangent is given by the LM statistic S(β) = `′(β)

Note 3 I (β) = −S ′(β) = −`′′(β) denotes the fisher information
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Partial likelihood hypothesis tests
Placeholder

• As in standard likelihood one can derive 3 types of test for H0 : β = 0

— The Wald test

— The LM test

— The LR test

• The limit theory of theses tests can differ and is often more difficult to derive

• In view of presenting them, define

— S(β) = `′(β), the score function

— I(β) = −S′(β) = −`′′(β), the fisher information

— I(β̂), the observed information
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The Wald test
Placeholder

• The Wald test is of form

ZW =
β̂

σβ̂

where σ2
β̂

is obtained numerically from the negative inverse of the Hessian

I (β̂)−1 = −`′′(β̂)−1

Note As the second derivative reflects the curvature of the likelihood, a sharper curve (i.e. more
information) leads to lower variance

• Under the null hypothesis H0 : β = 0, this normalized statistic if Gaussian

⇒ We reject H0 if |ZW | > zα/2 or Z2
W > χ2

α,1

• The asymptotic normality can be used to construct confidence intervals

β̂ ± zα/2 × σβ̂
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The Lagrange Multiplier (score) test
Placeholder

• The LM test is based on the score of the partial log-likelihood

⇒ The variance of this test is hence directly I (β)

• The test is computed under the null hypothesis as follows

ZLM =
S(β = 0)√

I (β = 0)

⇒ We reject H0 : β = 0 if |ZLM | > zα/2 or Z2
W > χ2

α,1

Note 1 This test can be computed without finding the MPLE

Note 2 This test is equivalent to the log-rank test statistic U0 discussed in Chapter 1

⇒ With the same artificial data of Table 12, U0 was equal to 0.917 ≡ −S(0)
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The Likelihood Ratio test
Placeholder

• The LR test is based on the asymptotic behavior of

ZLR = 2
(
`(β = β̂)− `(β = 0)

)
∼ χ2

1

• ZLR is invariant to monotonic transformations of β (unlike the LM and Wald tests)

⇒ Whether the test is computed in terms of β or ψ = exp(β) has no effect on the p-value

⇒ We reject H0 if Z2
LR > χ2

α,1
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Exercise : computation of partial likelihood hypothesis tests
Placeholder

• Consider the MPLE results plotted on S63

⇒ All elements needed to compute ZW , ZLM , ZLR are there

• For ZLM we have

Z2
LM =

( S(β = 0)√
I (β = 0)

)2
=

(−0.917)2

0.660 = 1.274

Any software can compute the p-value which is p = 0.2591

• For ZW we have

Z2
W =

( β̂
σβ̂

)2
=
(−1.326129√

1/0.639

)2
= 1.124

Any software can compute the p-value which is p = 0.2891

• Finally, for ZLR we have

ZLR = 2
(
`(β = β̂)− `(β = 0)

)
= 2(−3.672 + 4.277) = 1.209

Any software can compute the p-value which is p = 0.2715
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Pseudo-R2 statistic
Placeholder

• At this stage one can also use
`(β = β̂) and `(β = 0)

to compute an adaptation of the R2 statistic to survival analysis

• The R2
CS statistic (Cox and Snell) is defined as follows

R2
CS = 1 −

(
`(0)
`(β)

)2/n

⇒ R2
CS reflects the improvement in the fit of the model with the covariate compared to β = 0

Note R2
CS has a major drawback as it is capped to 0.75 but alternatives are not consensual

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 69 / 192



The partial likelihood with multiple covariates
Placeholder

• To achieve greater generality we now consider the case where

xi = (xi,1, · · · , xi,p)
′

is a vector of p dummy covariates for each individual i

• To save place we use ψi in place of ψi(xi, β), where β is now a vector of p coefficients

• In the particular case of the Cox model, the hazard ratio is exp(x′
iβ)

• As in S59, before the first failure time, all of the subjects are said to be at risk

⇒ Among them one will fail at time t1 in the risk set R1

• More generally, at time tj, the risk set is Rj leading to

L(β) =
D∏

j=1

hi(tj)∑
k∈Rj

hk(tj)
=

D∏
j=1

ψjh0(tj)∑
k∈Rj

ψkh0(tj)
=

D∏
j=1

ψj∑
k∈Rj

ψk

for the Cox proportional hazard model, with D the number of failures
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The log partial likelihood with multiple covariates
Placeholder

• The log partial likelihood is simply given by

`(β) =
D∑

j=1

(
log(ψj − log

(∑
k∈Rj

ψk

))
=

D∑
j=1

x′
jβ −

D∑
j=1

log

(∑
k∈Rj

exp(x′
kβ)

)
• The score function has p components, one for each of the p covariates

⇒ For the l’th component the score is given by

Sl(β) =
∂`(β)

∂βl
=

D∑
j=1

(
xjl −

∑
k∈Rj

xjk exp(x′
jβ)∑

k∈Rj
exp(x′

jβ)

)
Note We may view the score function as the sum of “residuals”

⇒ The observed value xjl of the covariate l minus an “expected” value

Recall When xj is a single binary covariate, S(β = 0) is the log-rank statistic

Note The Fisher information matrix is now a matrix

I (β; x) = −∂
2`(β)

∂β∂β′ = −S(β)
∂β
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Wald, LR and LM tests with multiple covariates
Placeholder

• In presence of multiple covariates the usual tests are as follows

• The Wald test under H0 : β = 0 is
Z2

W = β̂′I (β̂; x)β̂

• The LM test :
Z2

LR = S ′(β = 0; x)I (β = 0; x)−1S(β = 0; x)

• The LR test :
Z2

LM = 2
(
`(β = β̂)− `(β = 0)

)
• Under H0, all 3 statistics are asymptotically χ2

k−1
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Exercise with multiple covariates
Placeholder

• Consider the exponential survival data simulated in Chapter 1

⇒ A confounding binary genotype factor was introduced :

g = 1 (wild type) or g = 2 (mutant type)

• When estimating the Cox model to compare trivially the “T” and “C” group we obtain

β̂ = 0.464(σβ̂ = 0.117) with LR = 15.5(p = 0.00000)

⇒ How to interpret those results ?

Note 1 It suggests higher hazards for the “T” group (β̂ > 0) with a significant difference with the “C”
group

Note 2 Also, exp(β̂) = 1.59 indicates that the “T” group is associated with a 59% additional risk of
death over the “C” group

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 73 / 192



Exercise with multiple covariates
Placeholder

• Consider the exponential survival data simulated in Chapter 1

⇒ A confounding binary genotype factor was introduced :

g = 1 (wild type) or g = 2 (mutant type)

• When estimating the Cox model to compare trivially the “T” and “C” group we obtain

β̂ = 0.464(σβ̂ = 0.117) with LR = 15.5(p = 0.00000)

⇒ How to interpret those results ?

Note 1 It suggests higher hazards for the “T” group (β̂ > 0) with a significant difference with the “C”
group

Note 2 Also, exp(β̂) = 1.59 indicates that the “T” group is associated with a 59% additional risk of
death over the “C” group

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 73 / 192



Exercise with multiple covariates
Placeholder

• As for the log-rank test, it is possible to stratified the data
• When estimating the stratified Cox model to compare the “T” and “C” group we obtain

β̂ = −0.453(σβ̂ = 0.164) with LR = 7.66(p = 0.00566)

⇒ How to interpret those results ?

Note 1 It suggests higher hazards for the “C” (β̂ < 0) group with a significant difference with the “T”
group

Note 2 Also, exp(β̂) = 0.636 indicates that the “T” group is associated with

1 − 0.636 = 36%

less risk of death over the “C” group
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Exercise with multiple covariates
Placeholder

• Finally, we introduce the genotype as a covariate

• When estimating the Cox model with the two covariates we obtain

β̂grp = −0.453(σβ̂grp
= 0.163)

and
β̂gen = −1.568(σβ̂gen

= 0.183)

with
LR = 93.4(p = 0.00000)

⇒ How to interpret those results ?

Note 1 As for the stratified Cox model, the correct treatment effect is identified

Note 2 Indeed, we see higher hazards for the “C” (β̂ < 0) group with a significant difference with the “T”
group
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Tied survival times
Placeholder

• Tied survival time are failure that occurs simultaneously
Note 1 In continuous time data this is likely to arise due to rounding
Note 2 In discrete time data this can genuinely appear
Note 3 If censoring times are tied with failure times, the convention is to consider the failures to precede

the censoring
Example Consider a continuous time process and the following reports

Table: Survival data with tied survival times

Patient Survtime Censor Group
1 1 1 T
2 1 1 T
3 2 1 C
4 3 0 T
5 4 1 T
6 4 1 C
7 5 0 C
8 6 1 C
9 6 0 C

10 7 0 C
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Tied survival times and partial likelihood
Placeholder

• As the underlying times are actually continuous we use the Cox model

h(t; x) = exβh0(t)

where x = 1 or 0 for the treatment or control group, respectively

• As in the regular case, the likelihood is the product of probabilities

P1 At t = 1, all 10 patients are at risk and two of them fail, both from the “T” group, and either of
those two patients may have failed first

⇒ We account for those two possibilities when constructing P1

P1 =
exp(β)

4 exp(β) + 6
exp(β)

3 exp(β) + 6 +
exp(β)

4 exp(β) + 6
exp(β)

3 exp(β) + 6 = A × B + C × D

• The first (second) product assumes that patient 1 (2) fails first

Note 1 In B, 4 becomes 3 as patient 1 has failed

Note 2 In D, 4 becomes 3 as patient 2 has failed

Note 2 As both patients are in the “T” group the A × B and C × D are symmetric
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Exercise : tied survival times and partial likelihood
Placeholder

• We want to derived the remaining terms of the partial likelihood

P2 At t = 2, 8 patients are at risk (2 and 6 in the “T” and “C” group resp.)
⇒ As there is only 1 failure in the “C” group we have

P2 =
1

2 exp(β) + 6

P3 At t = 4, 6 patients are at risk (as at t = 3 patient 4 is censored)
⇒ We have two failures, one in each group, and

P3 =
1

exp(β) + 5 × exp(β)

exp(β) + 4 +
exp(β)

exp(β) + 5 × 1
5

to account for all scenarios of failure (patient 5 first or patient 6 first)
• Only 1 constant factor remains as patients 7 and 10 are censored and

P4 =
1
3

as at t = 6, by convention, the censored patient 9 failed after patient 8
⇒ One may express the partial likelihood as L(β) = P1P2P3 or P1P2P3P4
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Discrete tied survival times
Placeholder

• Consider now that times are in fact discrete in the table below

⇒ In such a case, the Cox model is transformed to a discrete logistic model

h(t; x)
1 − h(t; x) = exβ h0(t)

1 − h0(t)

Table: Survival data with tied survival times

Patient Survtime Censor Group
1 1 1 T
2 1 1 T
3 2 1 C
4 3 0 T
5 4 1 T
6 4 1 C
7 5 0 C
8 6 1 C
9 6 0 C

10 7 0 C
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Discrete tied survival times and partial likelihood
Placeholder

• At t = 1, as 2 patients fail among the 10 patients at risk we now have(
10
2

)
=

10!
2!(n − k)! = 45

pairs that could represent the two failures
• All factors are summarized in the matrix below and lead to

P1 =
e2β

6e2β + 24eβ + 15

Table: Pairs that could represent two failures among 10 patients

eβ eβ eβ eβ 1 1 1 1 1 1
eβ •
eβ e2β •
eβ e2β e2β •
eβ e2β e2β e2β •

1 eβ eβ eβ eβ •
1 eβ eβ eβ eβ 1 •
1 eβ eβ eβ eβ 1 1 •
1 eβ eβ eβ eβ 1 1 1 •
1 eβ eβ eβ eβ 1 1 1 1 •
1 eβ eβ eβ eβ 1 1 1 1 1 •
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Exercise : discrete tied survival times and partial likelihood
Placeholder

• We want to compute the remaining factors

• At t = 2, there is only 1 failure in the “C” group ⇒ P2 = 1/(2eβ + 6)
• At t = 4, there are 2 failures and 6 patients are at risk such that we have(

6
2

)
= 15

possible pairs, of which 1 is from the “T” group and 1 from the “C” group

P3 =
exp(β)× 1

5 exp(β) + 10
⇒ Again, one may simply express the partial likelihood as L(β) = P1P2P3

Table: Pairs that could represent two failures among 6 patients

eβ 1 1 1 1 1
eβ •

1 eβ •
1 eβ 1 •
1 eβ 1 1 •
1 eβ 1 1 1 •
1 eβ 1 1 1 1 •
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Approximation in presence of tied survival times
Placeholder

• With many ties, the discrete and continuous methods are cumbersome

⇒ Two approximation methods can be implemented

Breslow It adjusts the denominator to simply reflect all patients at risk

⇒ In the previous example, P1 and P3 becomes

P1 =
2e2β

(6eβ + 4)2 and P3 =
2(eβ × 1)
(eβ + 5)2

Efron It is better as it reflects all patients at risk before and after the failure

⇒ In the previous example, P1 and P3 becomes

P1 =
eβ

(6eβ + 4)
eβ

(0.5eβ + 0.5eβ + 4eβ + 4)
and

P3 =
eβ

(eβ + 5)
1

(0.5 + 0.5eβ + 3)
with the weight 0.5 reflecting that each of the 2 patients has a chance of 1/2 of being in the
second denominator since 1 of them would have been the first failure
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Left truncated data
Placeholder

• Consider the data of Table 12 with left truncation information

e.g. A patient can be diagnosed before entering a trial (i.e. backwards recurrence times is 6= 0)

Note 1 The standard way to compare the 2 groups is to ignore “back times”

⇒ Nothing wrong (i.e. no bias) in that way to proceed but starting from diagnosis could be of
interest

Note 2 To account for backwards recurrence times, one can re-configure the data so that they start at 0

Table: Survival left truncated data

Patient Survtime Censor Group Back time
1 6 1 C -3
2 7 0 C -11
3 10 1 T -3
4 15 1 C -7
5 19 0 T -10
6 25 1 T -5
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Left truncation and re-configured data
Placeholder

Time from entry to trial

−10 0 10 20 30

Patient 1 (C)

Patient 2 (C)

Patient 3 (T)

Patient 4 (C)

Patient 5 (T)

Patient 6 (T)

Time from diagnosis

0 10 20 30 40

Patient 1 (C)

Patient 2 (C)

Patient 3 (T)

Patient 4 (C)

Patient 5 (T)

Patient 6 (T)

Re-aligned data with left truncationRaw left truncated data

• In that case, estimation results are similar for the two data sets
⇒ No statistical difference between “C” and “T” (but n is too small)

— Raw data : β̂ = −1.33(σ
β̂
= 1.25) with LR = 1.21(p = 0.271)

— Re-configured data : β̂ = −1.07(σ
β̂
= 1.24) with LR = 0.81(p = 0.368)
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Categorical and Continuous Covariates
Placeholder

• All covariates considered until now are dummy variables

Note An exception is the confounder “genotype” that is categorical

g ∈ {1, 2}

but can easily be transformed to {0, 1} as it is dichotomous

• More generally one can encode categorical variables with dummies

e.g. If we have a 3-level variable we need : “Ba (x1), Ma (x2), no-diploma (x3)”

⇒ If “Ba” is the reference, then x1 = 1, x2 = x3 = 0

⇒ An individual without any diploma implies x1 = x2 = 0 and x3 = 1

• Continuous variables are also frequent and have to be considered

e.g. income, age, etc.
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The Cox model with categorical and continuous covariates
Placeholder

• For a set of k covariates (categorical or/and continuous) the model is

log(ψi) = x1iβ1 + x2iβ2 + . . .+ xkiβk = x′
iβ

• For the covariate xj, βj is the log hazard ratio for the effect of that parameter on survival,
adjusting for the other covariates

• For continuous covariates, it represents the effect of a unit change in the covariate

• For dummy covariates, it represents the effect of the corresponding level as compared to the
reference

Note 1 As for logistic regression, a variable can enter non-linearly the model

Note 2 Interaction terms can be introduced

Note 3 At this stage, all covariate are assumed to be fixed in time

Note 4 This model differs from the logistic model as there is no intercept term : if there were one, it
would cancel out just as h0(t) canceled out
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Example of Cox model estimation with categorical and continuous
covariates
Placeholder

• Consider artificial survival data with two covariates : age and diploma

⇒ individual at risk can loose their job

• Ages are between 40 and 80 at random

• We set the diploma variable so that there are 20 of each 3 categories

• We assume an exponential distribution with parameter as follows

— We set the log-rate parameter to have baseline -4.5

— The diploma variable take the values 1 and 2 for “Ba” and “No diploma” when compared to “Ma”

— We let “age” decrease the log rate by 0.05 per year

• We do not introduce censoring in the data set and n = 60
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Example of Cox model estimation with categorical and continuous
covariates
Placeholder

• When applying the Cox model we obtain the following estimates

β̂Ba = 1.151, (σβ̂Ba
= 0.368), z = 3.113 (p = 0.00173)

and
β̂No = 2.499, (σβ̂No

= 0.429), z = 5.820 (p = 0.00000)

and
β̂age = −0.078, (σβ̂age

= 0.014), z = 5.385 (p = 0.00000)

⇒ Estimates of log hazard ratios are close to the true values (1, 2 and 0.05)

• When looking at exponential coefficient, exp(β), we conclude that

— Individuals with Bachelor degree have exp(βBa) = 3.16 times the risk of being fired as do subject
with Ma degree

— Individuals without diploma have exp(βNo) = 12.17 times the risk of being fired as do subject with
Ma degree

Note The z statistics is a generalizations of the 2-group comparison Wald tests
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Nested models
Placeholder

• When comparing models we have to determine whether that are nested

• Here is an illustration of nested models in terms of covariates

— Model A : “Age”

— Model B : “Employment”

— Model C : “Age” + “Employment”

⇒ Model A is nested in Model C as well as model B

• To test for the presence of nested models we can compute LR tests

Note Models A and B are not nested and requires specific testing procedures
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Example of nested models
Placeholder

• Consider the data on therapies to aid smokers to quit (Chapter 1)
• In this study, “Age” and “Employment” have 4 and 3 levels

— Age : “21-34”, “35-49”, “50-64” and “65+”
— Employment : “ft” (full-time), “other” and “pt” (part-time)

⇒ By default we choose the first level as the reference level

• Estimation of the Cox model on model A, B and C
coef exp(coef) se(coef) z p

LR : 12.2 (p = 0.006) Model A
age35-49 0.0293 1.030 0.309 0.0947 0.920
age50-64 -0.7914 0.453 0.336 -2.3551 0.019
age65+ -0.3173 0.728 0.444 -0.7153 0.470
LR : 2.06 (p = 0.357) Model B
other 0.198 1.22 0.237 0.836 0.40
pt 0.450 1.57 0.323 1.394 0.16
LR : 16.8 (p = 0.005) Model C
age35-49 -0.130 0.878 0.321 -0.404 0.6900
age50-64 -1.024 0.359 0.359 -2.856 0.0043
age65+ -0.782 0.457 0.505 -1.551 0.1200
other 0.526 1.692 0.275 1.913 0.0560
pt 0.500 1.649 0.332 1.508 0.1300
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Example of nested models
Placeholder

• From the Wald test (z) for Model C we see that some levels are significant

e.g. The “50-64” age group has a lower hazard when compared to the reference “21-34” with β̂ = −1.024

e.g. The “other” employment group has higher hazard when compared to the reference “ft” with
β̂ = 0.526

• However, we cannot easily see whether “Age” or “Employment” should be part of the model

⇒ We assess this issue using (partial) likelihood ratio tests based on
`(β̂) Model A : -380.043, Model B : -385.123, Model C : -377.759

LR : A|C 2(`(β̂C)− `(β̂A) = 4.567 compare to χ2
ν=5−3 which leads to p = 0.1019

⇒ “Age” is not significant when “Employment” is included in the model

LR : B|C 2(`(β̂C)− `(β̂B) = 14.727 compare to χ2
ν=5−2 which leads to p = 0.0020

⇒ “Employment” is significant when “Age” is included in the model
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Example of nested models
Placeholder

• These results raise the question of including “Age” in model A

⇒ To test this hypothesis we consider the null model N

`(β̂N) = −386.153

free of any covariate

LR : N|A 2(`(β̂A)− `(β̂N) = 12.220 compare to χ2
ν=3−0 which leads to p = 0.0066

⇒ “Age” is significant when included in the model N
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When a large number of potential factors can enter the model
Placeholder

⇒ The forward stepwise model selection

Step 1 fit univariate models (1 for each covariate) and retain the one with the smallest p-value

Step 2 apply Step 1 again but with the selected covariate included

Step 3 continue until no additional covariate has a p-value less than a pre-defined threshold (e.g. 5%)

⇒ The backward stepwise model selection

Step 1 fit a model with all covariates

Step 2 remove one by one the covariates, each time removing the one with the largest p-value

Step 3 continue the procedure until the p-values are all below a pre-defined threshold (e.g. 5%)

• The stepwise approach can be automatized but has 2 main drawbacks

— Due to multiple comparisons, the p-values produced from one stage to the next are misleading

Note Corrections like the one of Bonferroni exist

— Also, p-values are only valid for nested models and hence this approach is not recommended for
non-nested models
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Non-nested models and criterion based selection
Placeholder

• Information criteria apply to partial log likelihood

• We discuss some examples based on the so-called AIC

AIC = −2`(β̂) + 2k

where k is the number of parameters in the model
• One can view the AIC as balancing two quantities

— The goodness of fit −2`(β̂) (smaller for models that fit the data well)
— The complexity measure that enter the criterion as a penalty term 2k

• Applying the AIC to the previous model selection issue we obtain

`(β̂) Model A : 766.086, Model B : 774.246, Model C : 765.519
⇒ The model C is the one that minimizes the AIC and offers the best fit

Note The BIC (or SIC) also applies to survival analysis

BIC = −2`(β̂) + k log(n)

and as it penalizes by a factor of log(n), it will tend to select models with fewer parameters as
compared to AIC
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Information criterion and the stepwise approach
Placeholder

• We can implement the backward stepwise procedure with the AIC

• Let consider additional covariates for the smokers therapies

— “yearsSmoking”+“levelSmoking”+“priorAttempts”+“longestNoSmoke”

+ “gender”+ “morphotype”+ “age”+ “employment”

Note 1 (+) & (-) show the effect on AIC of adding or removing the covariate

Note 2 Covariates are listed in order from the one which, when removed, yields the greatest AIC reduction
to the smallest reduction
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Information criterion and the stepwise approach
Placeholder

• When starting the procedure, all covariates are there (AIC = 770.2)
⇒ “(-) morpho” is at the top of the list and will be removed first

• Intermediate results are unreported but proceed in the same way
• At final step (AIC = 758.42) and all per-covariate are above 758.42

⇒ The sign (-) remains for employment & age and reveal that removing them would be detrimental
⇒ At the opposite, variables for which a “(+)” appears indicate that adding would deteriorate the fit of

the model

Sign Covariate Level AIC Sign Covariate Level AIC
Step 1 770.2 Final Step 758.42
- morpho 3 766.98 <none> 758.42
- years 1 768.20 + longest 1 759.10
- gender 1 768.20 - employment 2 760.31
- prior 1 768.24 + years 1 760.34
- level 1 768.47 + gender 1 760.39
- longest 1 769.04 + prior 1 760.40

none 770.20 + level 1 760.41
- employment 2 772.45 + morpho 3 761.53
- age 3 774.11 - age 3 767.24
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Forest plot
Placeholder

Final model coef exp(coef) se(coef) z p
grppatchOnly 0.656 1.928 0.220 2.986 0.0028
employmentother 0.623 1.865 0.276 2.254 0.0240
employmentpt 0.521 1.684 0.332 1.570 0.1200
ageGroup435-49 -0.112 0.894 0.322 -0.348 0.7300
ageGroup450-64 -1.023 0.359 0.360 -2.845 0.0044
ageGroup465+ -0.707 0.493 0.502 -1.410 0.1600

• The Forest plot offers an alternative representation :
e.g. 1 triple therapy is better than the patch alone
e.g. 2 subjects with full-time work have a better success rate than others
e.g. 3 the upper age groups have better results than younger patients

Treatment Group
   triple therapy
   patch

Employment
   full time
   other
   part time

Age group
   21−34
   35−49
   50−64
   65+

−1.5 −1 −0.5 0 0.5 1 1.5

Log hazard ratio

95% confidence intervals, each
with respect to a reference level
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Smooth estimates of continuous covariates
Placeholder

• For continuous covariates, the relationship with the log-hazard can be

... linear, quadratic, or of any other nonlinear nature

e.g. in the previous study, the age has been split into 4 groups and

... the forest plot reveals different effects and hence nonlinearities

⇒ An alternative way to capture this nonlinearity is via pieces of

... polynomial functions (Splines) that are stitched to form a smooth curve

• The points where these pieces are joined are called “knots”

... and a crucial issue is to determined their locations

⇒ The Splines enter the penalized partial likelihood via a penalty term

P(β, ω) = `(β, ω)− g(ω, θ)

with ω the set of constrained parameters and θ some tuning parameters
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Penalized Cox model and Spline fit
Placeholder

• Splines with many knots increase the complexity of the likelihood
... but also improve the goodness of fit
⇒ P(β, ω), when maximized, balances goodness of fit against complexity

e.g. When plotting the penalized spline fit from the Cox model we observe
— a decreasing relationship with age with a slight upward turn after age 65
— but for most of the part, the effect seems not significant

Figure: Splines
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Penalized Cox model and Spline fit
Placeholder

• The penalized Cox model estimation results are reported below

coef exp(coef) se(coef) χ2 ν p
grppatchOnly 0.651 0.221 0.219 8.67 1.00 0.0032
employmentother 0.633 0.277 0.275 5.21 1.00 0.0220
employmentpt 0.570 0.340 0.333 2.81 1.00 0.0940
pspline(age,linear) -0.034 0.010 0.010 11.07 1.00 0.0009
pspline(age,nonlinear) 4.20 3.08 0.2500

• For the 3 first factors the coefficient are stable as compared to S97

• The Splines are decomposed in two parts : linear and nonlinear

— the linear one is highly significant

— the nonlinear one is not significant (probably because the data set is sparse)
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Martingale residuals
Placeholder

• Assessing goodness of fit using residuals also applies to survival analysis

• Residual analysis essentially relies on graphical analysis

⇒ Typically, residuals are plotted versus some quantity

• To construct the residuals sequence, we compare the censoring indicator

δi

to the expected value of the indicator under the Cox model

⇒ In absence of time dependent covariates and for right-censored data

m̂i = δi − Ĥ0(ti) exp(x′
i β̂)

• These Martingale residuals range in value from −∞ to 1 and E(m̂i) = 0

• However these residuals can be asymmetric and hence cannot be used as a measure of goodness
of fit
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Deviance residuals
Placeholder

• An alternative is the so-called deviance residual defined as

d̂i = sign(m̂i)
(
− 2
(
m̂i + δi log(δi − m̂i)

))1/2

• di residuals are symmetrically distributed with E(d̂i)

Note 1 The sum of squares of d̂i is the value of the partial likelihood ratio test

• While their properties might seem preferable to those of m̂i, only m̂i have the property of showing
us the functional form of a covariate

⇒ In practice, the martingale residuals are more useful

Note 2 Other types of residuals will be discussed later
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Example : Martingale versus deviance residuals
Placeholder

• Consider again the Cox model for smoking therapies data

• As discussed earlier, the null model (N) is the one without covariates

⇒ We may plot m̂i against continuous covariates to get a preliminary assessment of which of them
should be in the model

Note 1 We also include the log of covariates and use a LOESS curve to identify patterns

Note 2 LOESS (LOcally Estimated Scatterplot Smoothing) is a nonparametric regression based on the
nearest neighbor method

Note 3 The 95% confidence intervals for the LOESS curve are also reported
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Example : Martingale versus deviance residuals
Placeholder
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Martingale residuals
versus log age
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Martingale residuals versus
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Martingale residuals versus
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• For the raw covariates we observe strong non-linearities
e.g. For “age”, we find something similar to Figure 1 (Spline fit)
⇒ This null model residual based approach is an alternative way to identify nonlinearity

• For the log-transformed covariates we observe less non-linearities
e.g. For “LongestNoSmoke”, the log seems sufficient to remove the non-linearity
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Example : Martingale versus deviance residuals
Placeholder

• We apply the stepwise approach with the log of “LongestNoSmoke”
⇒ The results are unchanged (only “age” and “employment” are retained)
• We compute the final model residuals and obtain the following plots
⇒ Some non-linearity remains for “age” albeit less than for the null model
• The residual distributions of both “group” and “employ” are reasonably comparable, indicating

that these variables are modeled successfully
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Jackknife residuals
Placeholder

• Some subject may have a huge influence on the parameter estimates
⇒ As this may indicate a problem with the data
... we need tools that can identify those individuals
• The Jackknife residuals are computed as the difference in the value of

β̂

when all data are used and when an individual is deleted from the data
⇒ Then, we can plot the change in coefficients for each subject
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At most, changes are less than 10% of the coefficient value.
Still subject 46 and 68 should be checked to 

ensure that there is no errors 
in recording the data.
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Log cumulative hazard plots
Placeholder

• When comparing survival times between two groups

... the proportional hazards assumption is of importance

S1(t) =
(
S0(t)

)exp(β)
with exp(β) the proportional hazards constant

⇒ This is the foundation of Lehman alternatives and the Cox model

• The log-transformation gives
log(S1(t)) = exp(β) log(S0(t))

with all logs being negative as survival functions are less than 1

• g(u) = log(− log(u)) changes the range of u from (0, 1) to (−∞,∞)

⇒ The so-called log cumulative hazard plot, that is a plot of

g(S1(t)) and g(S0(t)) versus log(t)

should lead to parallel curves separated by β if the assumption is correct
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Example of log cumulative hazard plots
Placeholder

• Consider the pancreatic cancer data (see in Chapter 1)
Recall We performed the Prentice-modification test and found a stronger group difference than did the

log-rank test
⇒ As this test places higher weight on earlier survival times it suggests non-proportional hazards
• This is confirmed by the log cumulative hazard plot

Note However, statistical inference is unavailable and this approach is limited
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Schoenfeld residuals
Placeholder

• Schoenfeld residuals can assess the proportional hazards assumption more rigorously

• To compute them, let start from the partial log-likelihood

`(β) =
∑
i∈D

(
log(ψi)− log

( ∑
k∈Ri

ψk

))
=
∑
i∈D

(
xiβ − log

( ∑
k∈Ri

exp(xkβ)
))

and its derivative (the score function)

`(β)′ =
∑
i∈D

(
xi −

∑
k∈Ri

xkp(β, xk)
)
, p(β, xk) = exp(xkβ)

( ∑
j∈Rk

exp(xjβ)
)−1

where the second term can be viewed as the weighted expected value E(Xi) = x̄(ti)

• The Schoenfeld residuals are the individual terms of the score

r̂i = xi −
∑
k∈Ri

xkp(β, xk) = xi − x̄(ti)

• A plot of r̂i versus xi will yield a pattern of points

⇒ They are centered on 0 if the proportional hazards assumption is correct
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Example of Schoenfeld residuals
Placeholder

• Consider the artificial data of S12 (β̂ = −1.32) and compute the weights

ti n0i n1i p(β, xk = 0) p(β, xk = 1) Grp

6 3 3 1/(3 + 3eβ̂) eβ̂/(3 + 3eβ̂) C
10 1 3 1/(1 + 3eβ̂) eβ̂/(1 + 3eβ̂) T
15 1 2 1/(1 + 2eβ̂) eβ̂/(1 + 2eβ̂) C
25 0 1 1/eβ̂ eβ̂/eβ̂ = 1 T

• It remains to compute E(Xi) and r̂i which for ti = 6 gives

E(Xi) = 3 × 0 × 1/(3 + 3eβ̂) + 3 × 1 × eβ̂/(3 + 3eβ̂) = 0.2098 ⇒ r̂i = 0 − 0.2098

• For ti = 10: E(Xi) = 1 × 0 × 1/(1 + 3eβ̂) + 3 × 1 × eβ̂/(1 + 3eβ̂) = 0.4434
⇒ r̂i = 1 − 0.4434 = 0.5566

• For ti = 15: E(Xi) = 1 × 0 × 1/(1 + 2eβ̂) + 2 × 1 × eβ̂/(1 + 2eβ̂) = 0.3468
⇒ r̂i = 0 − 0.3468 = −0.3468

• For ti = 25 we have E(Xi) = 1
⇒ r̂i = 1 − 1 = 0

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 110 / 192



Example of Schoenfeld residuals
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Grambsch and Therneau residuals
Placeholder

• They propose to scale each residual by an estimate of its variance

r̂∗
i = r̂i × d × V(β̂)

where d is the total number of death

• Then, Grambsch and Therneau show that if hazards are non proportional

E(r∗
i ) ≈ β + β(t)

i.e. a survival time dependent β (unknown) enter the E(r̂∗
i ) whereas

E(r∗
i ) = β

in presence of proportional hazards

⇒ β(t) can be approximated by
β̂(t) ≈ r̂∗

i − β̂

where β̂ is estimated from the Cox model

Note Statistical inference is now possible to test H0 : β(t) = 0
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Example for Grambsch and Therneau residuals
Placeholder

• We compute β̂(t) for the pancreatic cancer data and plot it versus time
Note 1 we also compute the LOESS curve and its 95% confidence intervals
Note 2 the time axis is scaled to match the Kaplan-Meier-transformed time
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Scaled Schoenfeld residual plot for
the pancreatic cancer data

• The curve reveals a slight increase, followed by a steady decline
Note 3 Zero seems to be almost always in the confidence intervals
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Example for Grambsch and Therneau residuals
Placeholder

• A more formal test can be obtained by fitting as straight line to r̂∗
i

• This score-type test statistic, denoted ρ̂ ∼ χ2
1, gives

ρ̂ = −0.328, p = 0.0496

⇒ we reject the null of a constant β (i.e. we reject the proportional hazards)

• The way we defined the time axis matters (Kaplan-Meier-transformed time here)

e.g. If we consider time ordered by the ranks survival times we obtain

ρ̂ = −0.330, p = 0.0486

⇒ very similar results

e.g. If we consider the untransformed time line we obtain

ρ̂ = −0.197, p = 0.2390

⇒ here we cannot reject the null of proportional hazards

Note This latter approach is not to be preferred when the failure times are sparse and not uniformly
spaced over time
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What are time dependent covariates ?
Placeholder

• The partial likelihood theory assumes that covariates are time invariant

⇒ The value of z at t = 0 is the same at any ti > 0

• In some cases this assumption is unrealistic

e.g. In credit scoring analysis, the employment status is likely to change

e.g. In job market analysis, the skills are likely to evolve

⇒ Time dependent covariates require special measures to obtain valid parameter estimates
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Impact of time dependent covariates
Placeholder

• Unfortunately, we cannot predict survival using future covariate values

• This deceptively principle can ensnare even experienced research

⇒ We illustrate this with the following example :

e.g. consider data on patients enrolled in a transplant program

• Here are the results of the survival study :
coef exp(coef) se(coef) z-test p

transplant -1.71711 0.17958 0.27853 -6.165 7.05e-10
age 0.05889 1.06065 0.01505 3.913 9.12e-05
surgery -0.41902 0.65769 0.37118 -1.129 0.259

⇒ It seems that heart transplanted patients live longer than others

• The covariate “transplant” equals 1 for transplanted patients

⇒ The issue is that “transplant” is time dependent as patients in a transplant program have to live
long enough to be transplanted

⇒ It only shows that patients who live long enough to receive a transplant have longer lives than
patients who do not live as long (tautology)
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Landmark time
Placeholder

• In that particular case, a simple fix is to define a landmark time τ

• It divide patients into two groups: intervention and comparison groups

Intervention those who received the intervention prior to τ

Comparison those who did not received the intervention prior to τ

• If only patients who survive up to τ are included

and all patients remain in their assigned group, this method is valid

Note Hence, patients transplanted after τ remain in the comparison group

⇒ the comparison group could be renamed “no transplant within τ days”
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Example of landmark time
Placeholder

• If we set τ = 30 days, 79 of the 103 patients lived this long

• Of these 79 patients, 33 had a transplant before τ and 46 did not

• Of these 46 patients, 30 subsequently had a transplant

Note we still count them in the comparison group

⇒ we have hence created a new variable “transplant30” which has a fixed value for all patients in the
set of 30-day survivors

• Here are the valid results of survival study :

coef exp(coef) se(coef) z-test p
transplant30 -0.04214 0.95874 0.28377 -0.148 0.8820
age 0.03720 1.03790 0.01714 2.170 0.0300
surgery -0.81966 0.44058 0.41297 -1.985 0.0472

• The “transplant” covariate is no longer significant

Note However, one could discuss the choice of the landmark τ
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Beyond the landmark approach
Placeholder

• Unfortunately there is no clear way to select the landmark τ

⇒ we prefer another approach based on adjustments of the Cox model

• Let consider a subset of 6 patients to illustrate this approach

• 3 of them received a transplant and 3 of them did not

id wait.time futime fustat transplant

2 – 5 1 0

5 – 17 1 0

10 11 57 1 1

12 – 7 1 0

28 70 71 1 1

95 1 15 1 1

Time in days

0 20 40 60 80

Patient  2 

Patient  5 

Patient 10 

Patient 12 

Patient 28 

Patient 95 

futime : following-up (failure) time
fustat : 0 if censored, 1 otherwise

and waiting time : time of transplant
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Modified partial likelihood
Placeholder

• We first model incorrectly the data
coef exp(coef) se(coef) z-test p

transplant -1.6878 0.1849 1.1718 -1.44 0.150

• To correct the model we allow the contributions of each subject to change from one failure time
to the next

⇒ The hazard function is now given by
h(t) = h0(t)exk(ti)β

with xk(ti) the time-varying covariate for the kth subject at time ti

• This leads to the modified partial likelihood

L(β) =
D∏

i=1

ψii

( ∑
k∈Ri

ψki

)−1

with ψki = exk(ti)β

• In the fixed-time case we were able, as time passes, to successively delete ψi for subject that failed
at that time

• We here have to recalculate the entire denominator at each failure time
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Example of modified partial likelihood computation
Placeholder

• Let compute L(β) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(β) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

L1(β) =
1

5 + eβ

L2(β) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted

L2(β) =
1

4 + eβ

L3(β) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1

L3(β) =
eβ

2 + 2eβ

L4(β) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted

L4(β) =
1

2 + eβ

L5(β) P10 fails at t = 57, 2 being at risk, still 2 patients being transplanted
L5(β) = eβ(1 + eβ)−1

L6(β) P28 is the last to fail (t = 71), just after having been transplanted L6(β) = eβ/eβ = 1
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Example of modified partial likelihood computation
Placeholder
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L3(β) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1

L3(β) =
eβ

2 + 2eβ

L4(β) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted

L4(β) =
1

2 + eβ

L5(β) P10 fails at t = 57, 2 being at risk, still 2 patients being transplanted
L5(β) = eβ(1 + eβ)−1

L6(β) P28 is the last to fail (t = 71), just after having been transplanted L6(β) = eβ/eβ = 1
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Example of modified partial likelihood computation
Placeholder

• Overall, the modified partial likelihood is

L(β) = 1
5 + eβ × 1

4 + eβ × eβ

2 + 2eβ × 1
2 + eβ × eβ

1 + eβ × 1

• On the numerical side, L(β) is based on the start-stop format
— It divides the time data for patients with a time-varying covariate

e.g. As P10 was a non-transplant patient until day 11, its future as a non-transplant patient is unknown
⇒ we censor that portion of the patient’s life experience at t = 11 :

start: t = 0, stop: t = 11
⇒ we start a new record of P10 (which is left-truncated at t = 11)

start: t = 11, stop: t = 57
— For our subset of 6 patient it results in new lines in the database

P# start stop death transpl
2 0 5 1 0
5 0 17 1 0

10 0 11 0 0
10 11 57 1 1
12 0 7 1 0
28 0 70 0 0
28 70 71 1 1
95 0 1 0 0
95 1 15 1 1
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Example of modified partial likelihood computation
Placeholder

• Once the data are in this start-stop format the Cox model applies

• For our subset of 6 patient the conclusions remain unchanged

coef exp(coef) se(coef) z-test p
transplant 0.2846 1.3292 0.9609 0.296 0.767

• When considering the whole data set and all covariates we obtain

coef exp(coef) se(coef) z-test p
transplant 0.01405 1.01415 0.30822 0.046 0.9636
surgery -0.77326 0.46150 0.35966 -2.150 0.0316
age 0.03055 1.03103 0.01389 2.199 0.0279

• As with the landmark analysis we confirm that there is no evidence that receiving a heart
transplant increases survival
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Predictable time dependent variables
Placeholder

• An alternative way to model non-proportional hazard is to allows for

β = β(t)

for a particular covariate

• If there is only one covariate we have

h(t) = h0exkβ(t)

• Characterizing the functional form of β(t) is challenging

⇒ A way to proceed is to define a new time dependent variable with fixed coefficients

Note As this variable is defined by the econometrician, it is referred as predictable variable

• The pattern of the Schoenfeld residuals are helpful to identify an appropriate time dependent
function
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Time transfer function
Placeholder

• Consider again the pancreatic cancer data as in S112
• A simple estimation of the Cox model gives

coef exp(coef) se(coef) z-test p
stage of progress 0.593 1.81 0.401 1.48 0.14

Recall the Schoenfeld plot revealed that the hazard ratio might vary
• An alternative way is to define a time dependent covariate as

g(t) = θ0 + θ1 × log(t)
where θ0 denotes the usual time-invariant group indicator

⇒ Plugging g(t) in the Cox model, the fitted time transfer function is
β(t) = 6.01 − 1.09 log(t)

coef exp(coef) se(coef) z-test p
l(stage) 6.01 407.339 3.060 1.96 0.050
nl(stage) -1.09 0.338 0.589 -1.84 0.065

• The LR test that compares the two groups accounting β(t) gives
LR = 6.33 (p = 0.0423)

⇒ As θ0 and θ1 are significant, this suggests that the group indicator combined with a time-varying
hazard ratio yields evidence of group difference
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Visualization of the time transfer function
Placeholder

• We can use the Schoenfeld residuals plot of S112 to visualize θ1 × log(t)
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• The red curve, −1.09 log(t), is linear as the time axis is in log
⇒ It indicates that overall, the log hazard ratio decreases over time

Note The results are dependent of the functional and e.g. no longer old for
g(t) = θ0 + θ1 × t

stage.n 1.27810 3.590 0.66103 1.93 0.053
tt(stage.n) -0.00366 0.996 0.00253 -1.44 0.150
LR test 4.56 p=0.102
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Variables that linearly increase with time
Placeholder

• A common source of confusion is whether the age variable is time dependent

• Indeed, the age increases with time itself

⇒ the age is definitely a time dependent variable

But it has no effect on the model if one includes it as time varying covariate

• To see why this happens defined the current age of a subject by

x(t) = x(0) + t

where x(0) denotes the age at entry into the study

⇒ Then, the hazard function is given by

h(t) = h0(t)eβx(t) =
(
h0(t)eβt)eβx(0)

such that once we insert h(t) in the partial likelihood,

eβt

appears in both the numerator and the denominator of each factor

⇒ Hence, it cancels out as does the baseline hazard
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Chapter 3

Chapitre 3 : Beyond the Cox Model



Clustered survival times
Placeholder

• Until now, we have considered data with a single cause of failure

• Also, we have assumed that survival times were independent

⇒ How to deal with events that are dependent across individuals ?

— Covid-19 propagation is an example of what we call clustered data

⇒ contamination are more likely to occur for people in a same unit

e.g. children in the same school, employees in the same office, etc.

— In such a case, survival times within a cluster are more similar to each other than to those from other
clusters

⇒ the independence assumption no longer holds

⇒ How to deal with an event that can occur repeatedly ?

— The seizure (crise d’épilespsie) is another example of clustered data

⇒ the event may repeat indefinitely per person
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Washington Ashkenazi study : dependent data
Placeholder

• This study examined the mutations of a particular gene (the BRCA)

⇒ Is there an effect of mutations on risk of breast cancer ?

• The study was confined to volunteers from the Ashkenazi population

• Each volunteer was controlled for BRCA mutations

• A subset of 1960 families is available (at most two relatives per family)

• For each volunteer, information of two female relatives are collected

— age of onset of breast cancer (current age for women without cancer)

• The BRCA mutation status of the volunteer is also collected
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Washington Ashkenazi study
Placeholder

• Here is a subsample of 3 families
— for each volunteers there are 2 rows

e.g. F#1 consists of 2 first degree female relatives (ages 73 and 40)
... neither of them has ever had breast cancer
... nor the volunteer attached to F#1 have a BRCA mutation

Note 1 The survival variable is age of onset

Note 2 The censoring variable is “brcancer” and “mutant” is the covariate

Note 3 As family members share genetic characteristics, they are not independent

Table: Clustered survival data

famID brcancer age mutant
1 1 0 73 0
2 1 0 40 0
7 9 0 89 0
8 9 1 60 0

87 94 1 44 1
88 94 0 45 1
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Marginal Survival Models (MSM)
Placeholder

• This approach ignores clustered data when estimating the model
⇒ Clusters are accounted for when computing standard errors of β̂
• MSM relies on standard Cox model estimation

— Assume there is one covariate with parameter estimate β̂ and σ2
β̂
= V(β̂)

— σ2
β̂

can be misleading as it assumes that all subjects are independent

⇒ It has to be corrected for the clustering impact

• The correction requires to first define the following score residuals

sij = δij
(
xij − x̄(tij)

)
−
∑

tu≤tij

(
xi − x̄(tij)

)
exiβ

(
Ĥ0(tu)− Ĥ0(tu−1)

)
where we can notice that the first part is the Schoenfeld residuals

• The variance correction is then given by

C =
G∑

i=1

ni∑
j=1

ni∑
m=1

sijsim, G and ni are defined in the next slide

where the cluster-adjusted standard error for β̂ is σ∗
β̂
= (V(β̂)× C)1/2
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Cluster-adjusted standard errors
Placeholder

• When there are q covariates in the Cox model, β is a vector

• We hence have to apply the correction to the whole estimated covariance matrix of β

• The score residuals are now 1 × q matrices and C is a q × q matrix as

C =
G∑

i=1

ni∑
j=1

ni∑
m=1

s′ijsim

where G is the number of clusters (assumed to be known here) and ni is the number of failure in
the ith cluster

• Then, the cluster-adjusted covariance matrix is given by

V ∗ = V(β̂)CV(β̂)

the traditional sandwich estimator

⇒ Adjusted standard errors are then derived as follows

se(β̂) = diag(V ∗)1/2
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Frailty survival models : recall
Placeholder

• Another approach is to generalize to clustered data the likelihood

Recall Under the independence assumption, we may write (see Chapter 1)

L(β; xi) =

n∏
i=1

f (ti, β)
δi S(ti, β)

1−δi =

n∏
i=1

h(ti, β)
δi S(ti, β)

Recall Under proportional hazards assumption (Cox) it becomes

L(β; xi) =

n∏
i=1

(
h0(ti)exiβ

)δi
e−H0(ti) exp(xiβ)

where
H0(ti) = −

∫ ti

0
h0(v)dv

is the baseline cumulative hazard
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Frailty survival models : principle
Placeholder

• The idea is to assign each individual in a cluster a common factor

⇒ this common factor is known as frailty or random effect and denoted

ωi

for the ith cluster

• Then, for the jth subject in the ith cluster, the hazard function is

hij(tij) = h0(tij)ωiexijβ

• We allow for ωi to vary from one cluster to another

⇒ a common model that governs this variability is a gamma distribution

g(ω, θ) = ω1/θ−1e−ω/θ

Γ(1/θ)θ1/θ

• An alternative is to use a standard normal distribution

hij(tij) = h0(tij)ωiexijβ = h0(tij)exijβ+uiσ, as ωi = euiσ

such that the random and fixed effects are put on the same level
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Frailty survival models : unfeasible estimation
Placeholder

• Assuming that the frailties ωi are observed, the joint likelihood is

Lij(β, θ;ωi, tij, δij, xij) = g(ωi, θ)
(

h0(tij)ωiexijβ
)δij

e−H0(tij)ωi exp(xijβ)

and the full likelihood is

Lij(β, θ) =

G∑
i=1

ni∑
j=1

Lij(β, θ;ωi, tij, δij, xij)

• MLE of β and θ is feasible under assumption that

ωi, tij, δij, xij

are observed

• Although we can have an idea of the number of clusters, the frailties

ωi

are in general not observed directly
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Frailty survival models : EM algorithm
Placeholder

• In the more realistic case where ωi are unknown

... one can use the Expectation-Maximization (EM) algorithm

⇒ It alternates between finding expected values for ωi based on current estimates of

β and θ

and using these expected values to find updated estimates for

β and θ

until convergence

• If we use a parametric distribution for
f (t, β)

setting up the EM algorithm is fairly direct

• Generalizing this to the semi-parametric Cox model is more complex
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Example: standard Cox model
Placeholder

• Consider the whole Ashkenazi data set

First Fit the standard Cox model to explain the age of onset of breast cancer

coef exp(coef) se(coef) z p
mutant (BRCA) 1.1907 3.2895 0.1984 6.002 1.95e-09

• The likelihoods of the null versus mutant BRCA models are

−3579.707 and − 3566.745

respectively and leads to the following LR test statistics

LR = 2(−3566.745 + 3579.707) = 25.924

that we compare to a χ2
1 and results in p < 0.0001

⇒ this confirms the need of including the BRCA status of the volunteer

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 137 / 192



Example: standard Cox model
Placeholder

• Consider the whole Ashkenazi data set

First Fit the standard Cox model to explain the age of onset of breast cancer

coef exp(coef) se(coef) z p
mutant (BRCA) 1.1907 3.2895 0.1984 6.002 1.95e-09

• The likelihoods of the null versus mutant BRCA models are

−3579.707 and − 3566.745

respectively and leads to the following LR test statistics

LR = 2(−3566.745 + 3579.707) = 25.924

that we compare to a χ2
1 and results in p < 0.0001

⇒ this confirms the need of including the BRCA status of the volunteer

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 137 / 192



Example: MSM
Placeholder

• We now implement the MSM to account for the clustering

• The clusters are defined through the family ID in the database

• We expect here the coefficient to be the same but the adjusted standard error to be different if
the cluster are impacting

coef exp(coef) se(coef) robust se z p
mutant (BRCA) 1.1907 3.2895 0.1984 0.2023 6.002 1.95e-09

• The robust standard error is only slightly higher than the unadjusted one

⇒ the effect of clustering within first-degree relatives is small

⇒ the estimation of the MSM reveals that having a first-degree relative with a BRCA mutation
increases the hazard of developing breast cancer by a factor of 3.30
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Example: frailty
Placeholder

• Finally we implement the frailty model with a gamma distribution

• We expect here the standard error to be different if the clusters matter

⇒ the coefficient is also likely to vary as the likelihood is modified

coef se(coef) se2 Chisq df p
mutant 1.272 0.2317 0.2004 30.13 1.0 4.0e-08
frailty(famID) 221.50 211.6 3.1e-01

• Softwares often returns 2 different standard errors

— the first is directly derived from the Hessian and is generally preferable

— the second is an alternative estimate based on a variation of the sandwich estimator

• The results are close to those obtained with the MSM and Cox models

⇒ having a first-degree relative with a BRCA mutation increases the hazard of developing breast
cancer by a factor of exp(1.272) = 3.56
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Example: frailty
Placeholder

• The likelihoods of the fixed (no cluster) vs random effects models are

−3566.745 and − 3564.622

respectively and leads to the following LR test statistics

LR = 2(−3564.622 + 3566.745) = 4.246

that we compare to a χ2
1 and results in p = 0.03934

• When comparing the null model with the random effects model we have

−3579.707 and − 3564.622

respectively which leads to the following LR test statistics

LR = 2(−3579.707 + 3566.745) = 30.17

and that we compare to a χ2
1 and results in p < 0.00001
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Cause-specific hazards
Placeholder

• Until now we have considered a single, well-defined outcome

• In some study we may face multiple causes of failure

e.g. an employee can quit the job for different reasons: fired, retirement, ...

• A naive solution is to focus on a particular type of failure

... and treat the others as a type of censoring

• This is questionable as censoring relies on an independence assumption

⇒ What we face here are competing risks, and we have to examine them

Note 1 Interpretation of survival analyses in the presence of competing risks will always be subject to at
least some ambiguity due to uncertainty about the degree of dependence among the competing
outcomes

Note 2 For a particular subject, we observe only one cause of failure
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Kaplan-Meier estimation with competing risks
Placeholder

• Consider first the naive solution : for each type of failure
... while considering others as a type of censoring
• As presumably, the independence assumption is violated, we can question the consequences on

Kaplan-Meier estimation
Note Conversely to Cox, KM estimator considers that censoring occurs first

• We illustrate this issue with the prostate cancer data (see Chapter 1)
⇒ focus on patients ages 80+, stage T2, poorly differentiated

Note old patients, with grade 3 advanced cancer

Table: Cancer prostate data for patients ages 80+

grade stage ageGroup survTime δ (status) ∆ (other) 1 −∆ (prost)
13 poor T2 80+ 21 0 0 0
38 poor T2 80+ 105 0 0 0
41 poor T2 80+ 2 1 0 1
47 poor T2 80+ 67 2 1 0
78 poor T2 80+ 2 0 0 0
93 poor T2 80+ 60 2 1 0
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Example : Kaplan-Meier and competing risks
Placeholder

• In Table 19, when δ = 2 we create a new censoring variable ∆

⇒ we apply twice 2 the KME : δ = 2 as censored and δ = 1 as censored

Years from prostate cancer diagnosis
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Note 1 At 10 years, e.g., the P(of dying of prostate cancer) is 0.46 versus 0.88
Note 2 If one assume those 2 probabilities to be independent there is no issue
Note 3 If there are not, as they sums to 1.34 > 1, this reveals a severe bias
Note 4 Unfortunately, this hypothesis cannot be tested from the data
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The cumulative incidence functions
Placeholder

• How to formally address this issue in a non-parametric framework ?

• To develop a formal model to accommodate competing risks,

... assume that there are K <∞ distinct causes of failure

• Also assume that the subject can experience at most one of the K causes

• Then, for each cause of interest, we defined as sub-distribution function

Fj(t) = P(T ≤ t,C = j) =
∫ t

0
hj(u)S(u)du

also known as cumulative risk (or incidence) function for the jth cause

• It is increasing as any cumulative distribution function

... but goes, in the limit, to the probability of failure from the jth cause rather than to 1

Fj(∞) = P(C = j)
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The cause-specific hazard
Placeholder

• The cause-specific hazard is hence defined conditionally to C = j

hj = lim
δ→0

(P(t < T < t + δ,C = j|T > t)
δ

)
• One can obtain the whole hazards function as follows

h(t) =
K∑

j=1

hj(t)

⇒ The risk of failure at a particular time is simply the sum of the risks of all specific causes at that
time

• Now assume that we have D distinct ordered failure times t1, t2, . . . , tD

• We may estimate the hazard at the ith time ti using

ĥ(ti) = di/ni

and the cause-specific hazard for the kth type cause as

ĥk(ti) = dik/ni

i.e. the # of events of type k at ti divided by the # of subjects at risk
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Estimating cause-specific hazards
Placeholder

• The sum over all cause-specific hazards is estimated as

ĥ(ti) = n−1
i

K∑
j=1

dik

• The probability of failure from any cause at ti is

Ŝ(ti−1)× ĥ(ti)

and hence, for a particular cause k we have

Ŝ(ti−1)× ĥk(ti)

from which we obtain an estimate of the cumulative incidence function

F̂k(t) =
∑
ti≤t

Ŝ(ti−1)× ĥk(ti)
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Example : estimation of the cumulative incidence function
Placeholder

• Consider the following artificial data and compute F̂k(t) given that

Ŝ(0, 2, 3, 5, 7) = (1, 0.833, 0.667, 0.444, 0.000)′

Squares are for k =1 
Triangles for k=2
Circles for censored
 observations

Survival time
0 1 2 3 4 5 6 7 8

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

ti ni di1 di2 di Ŝ(ti−1) ĥ1(ti) ĥ2(ti) F̂1(ti) F̂2(ti)

0 6 0 0 0 1 / / 0.000 0.000
2 6 1 0 1 0.833 1/6 0 0.167 0.000
3 5 0 1 1 0.667 0 1/5 0.167 0.167
5 3 1 0 1 0.444 1/3 0 0.389 0.167
7 1 0 1 1 0.000 0 1 0.389 0.611
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Example : cumulative incidence function for the prostate cancer
Placeholder

• An estimate of F̂k(t) for the prostate cancer data gives
ti Ŝ(ti−1) F̂1(ti) F̂2(ti)
1 0 1.000 0.00000
2 1 0.994 0.00000
3 2 0.988 0.00602
4 3 0.984 0.00848
5 4 0.983 0.00973
6 5 0.978 0.01477

• When comparing with KME, we see that F̂1(ti) and F̂2(ti) never cross
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Regression methods for cause-specific hazards
Placeholder

• Capturing the influence of covariates is challenging in the semi-parametric model of Cox

⇒ How to define the hk(ti) on which the covariates should operate ?

• In the spirit of the naive method for the KME, one can consider other causes as censoring and vice
versa

• When fitting the Cox model for prostate cancer death we obtain

coef exp(coef) se(coef) z p
gradepoor 1.2199 3.3867 0.1004 12.154 2e-16
ageGroup70-74 -0.2860 0.7513 0.2595 -1.102 0.2704
ageGroup75-79 0.4027 1.4958 0.2257 1.784 0.0744
ageGroup80+ 0.9728 2.6454 0.2148 4.529 5.92e-06

Note 1 Patients having poorly differentiated disease have much worse prognosis than do patients with
moderately differentiated disease

Note 2 The hazard of dying from prostate cancer increases with increasing age of diagnosis (the reference
is the youngest age group, 65-69)
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Regression methods for cause-specific hazards
Placeholder

• When fitting the Cox model for death from other causes we obtain

coef exp(coef) se(coef) z p
gradepoor 0.28104 1.32451 0.05875 4.784 1.72e-06
ageGroup70-74 0.09462 1.09924 0.12492 0.757 0.44879
ageGroup75-79 0.31330 1.36793 0.11709 2.676 0.00746
ageGroup80+ 0.79012 2.20367 0.11204 7.052 1.76e-12

Note 1 Patients with poorly differentiated cancer have a higher risk of death from non-prostate-cancer
related disease than do those with moderately differentiated disease

Note 3 These results are highly suspect as they rely on the independence assumption
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The Fine-Gray method for cause-specific hazards
Placeholder

• A solution that can overcome this issue is to set

hk(t) = lim
δ→0

(P(t < Tk < t + δ|E)

δ

)
i.e. to define the effects of covariates on the cause specific hazards where

E =
(
(Tk > t or (Tk′ ≤ t and k′ 6= k)

)
denotes the conditional event

• The effects of the covariates enter the sub-distribution hazard as follows

⇒ the conditioning set specifies not only Tk > t but also allows other events

... in which case we must have Tk′ ≤ t

⇒ the risk set includes not only those currently alive and at risk for the kth event type but also those
who failed earlier of causes of type k′
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The Fine-Gray method and the model of Cox
Placeholder

• The Fine-Gray framework meets the proportional hazard models by setting

hk(t) = −δ log(1 − Fk(t))
δt

• A proportional Cox-type equation is then apply to sub-distribution hazard

hk(t, x, β) = h0,k(t)exβ

⇒ the sub-distribution hazard for a subject with covariate x is proportional to a baseline
sub-distribution function h0,k(t)
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Example : the Fine-Gray method
Placeholder

• We first fit the Fine-Gray model with the prostate cancer as death cause

coef exp(coef) se(coef) z p
gradepoor 1.132 3.102 0.101 11.20 0.00000
ageGroup70-74 -0.272 0.762 0.253 -1.08 0.28000
ageGroup75-79 0.367 1.443 0.219 1.67 0.09400
ageGroup80+ 0.799 2.224 0.208 3.85 0.00012

• Second, we estimate the model for death from other causes
coef exp(coef) se(coef) z p

gradepoor 0.126 1.13 0.0584 2.154 3.1e-02
ageGroup70-74 0.103 1.11 0.1252 0.824 4.1e-01
ageGroup75-79 0.273 1.31 0.1176 2.323 2.0e-02
ageGroup80+ 0.667 1.95 0.1128 5.917 3.3e-09

Note 1 Again we see that poorly differentiated patients have higher risk for death from other causes

Note 2 The risk ratio being 0.126 the effect size is however smaller than we obtained with the naive
method (0.281)

Note 3 The estimated effect on death from prostate cancer of having poorly differentiated disease is
similar for both methods
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Example: comparing the effects of covariates on different causes of
death
Placeholder

• One could be interested in comparing the effect of the grade and the age on both causes of death

e.g. the risk of death increases with age but can differ from one cause to another

• Here is a summary of the numbers of events of each type for the dataset
from/to event-free prostate other no event total entering
event-free 0 410 1345 4165 5920

• Now we can stratify on cause of death and get estimates of

... the effect of “grade” on cause of death under the assumption that they affect

1 both causes equally
coef exp(coef) se(coef) z p

gradepoor 0.515 1.673 0.050 10.372 2.0e-16
ageGroup70-74 0.027 1.027 0.112 0.238 0.81210
ageGroup75-79 0.332 1.394 0.104 3.198 0.00139
ageGroup80+ 0.833 2.301 0.099 8.396 2.0e-16

Note This first model is not really useful as we expect that cancer grade affects prostate cancer death
differently than it does death from other causes
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Example: comparing the effects of covariates on different causes of
death
Placeholder

2 or the “grade” status affects both causes differently
coef exp(coef) se(coef) z p

gradepoor 1.239 3.451 0.100 12.391 2.0e-16
factor(trans)2 NA NA 0.000 NA NA
ageGroup70-74 0.026 1.027 0.112 0.235 0.81431
ageGroup75-79 0.333 1.395 0.104 3.201 0.00137
ageGroup80+ 0.833 2.301 0.099 8.394 2.0e-16
gradepoor:
factor(trans)2 -0.963 0.382 0.116 -8.327 2.0e-16

• The estimate for “grade” (1.239) is the effect of grade on prostate cancer death, and is similar to
what we got earlier (see S149)

• However, the last row is an estimate for the difference between the effect on prostate cancer death
and death from other causes

⇒ -0.963, represents the additional effect of poor grade on risk of death from other causes relative to
its effect on prostate cancer death

Note 1 Specifically, the hazard of death from other causes is exp(1.239 − 0.963) = 1.318, and hence
increased by 32% (much less than the 3.451 factor of death from prostate cancer)

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 155 / 192



Example: comparing the effects of covariates on different causes of
death
Placeholder

• Regarding the age, here are the results we obtain

coef exp(coef) se(coef) z p
gradepoor 1.220 3.387 0.100 12.154 2.0e-16
ageGroup70-74 -0.286 0.751 0.260 -1.102 0.2704
ageGroup75-79 0.403 1.496 0.226 1.784 0.0744
ageGroup80+ 0.973 2.645 0.215 4.529 5.92e-06
trans2 NA NA 0.000 NA NA
gradepoor:trans2 -0.939 0.391 0.116 -8.072 6.66e-16
ageGroup70-74:trans2 0.380 1.463 0.288 1.322 0.1863
ageGroup75-79:trans2 -0.089 0.914 0.254 -0.351 0.7252
ageGroup80+:trans2 -0.183 0.833 0.242 -0.754 0.4508

Note None of these differences are statistically significant

⇒ we conclude that there is no difference in the effect of age on the two death causes, after
adjusting for grade
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The parametric approach
Placeholder

• In what follows, we develop further the MLE section of Chapter 1

• Non-parametric (e.g. KME) and semi-parametric (e.g. Cox model) approaches are powerful

but they accommodate complex censoring and truncation less directly

⇒ In the parametric framework, the standard likelihood theory applies

but its validity depends on the appropriateness of the selected model

• Here we essentially review

— the exponential distribution

— the Weibull distribution

— the log-normal distribution

— the log-logistic distribution
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The exponential distribution
Placeholder

• In Ch. 1, we saw that the simple distribution to work with is the exponential one

• It has constant hazard function h(t) = λ (⇒ memory-less property)

⇒ The risk of facing the event of interest is the same at any point in time

i.e. neither declines nor increases in time

Recall The p.d.f and survival functions are

f (t;λ) = λeλt and S(t;λ) = e−λt

• In general, it is not flexible enough but it can help in some specific applications

⇒ power and size calculations

⇒ The Weibull distribution, of which the exponential distribution is a special case, offers more
flexibility
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The Weibull distribution
Placeholder

Recall The hazard and survival functions are

h(t) = αλtα−1 and S(t) = e−(λt)α

• In view of introducing covariates in the parametric model, let define

µ = −logλ and σ = 1/α

a location and scale parameter for the distribution

⇒ One can hence rewrite the hazard and survival functions as

h(t) = 1
σ

e−µ/σt1/σ−1 and S(t) = e−e−µ/σt1/σ

Note Obviously, when σ = 1, this reduces to the exponential distribution
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Diagnostic tool for the Weibull distribution
Placeholder

• Consider now the g(u) = log(− log(u)) transformation function for S(t)

g(S(ti)) = α log(λ) + α log(ti) = −µ
σ
+

1
σ
log(ti)

• This will allow for assessing how well a set of survival data follow a Weibull distribution

1 First compute the KME Ŝ(ti) and define

yi = g(Ŝ(ti))

2 Then, plot yi versus log(ti) and fit the linear equation

y = b + m log t

where m = 1/σ and b = −µ/σ

⇒ If the plotted points fall along this fitted line, a Weibull distribution should approximate well the
distribution of the data
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Example: diagnostic tool for the Weibull distribution
Placeholder

• Consider the some databases introduced in Chapter 1
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• For the second data set, the Weibull distribution seems plausible

• The fitted straight line parameters are : b = −2.0032 and m = 0.4385

⇒ Weibull scale and location parameter estimates are:

µ̂ = −b/m = 2.0032/0.4385 = 4.568 and σ̂ = 1/m = 1/0.4385 = 2.280
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MLE of Weibull parameters for a single group of survival data
Placeholder

• The linear approach is limited but provides good entries for the MLE
• The log-likelihood function is (see Ch. 1)

`(λ, α) =
n∑

i=1

(
δi log h(ti) + log S(ti)

)
• Substituting the expressions for h(ti) and S(ti) we get

`(λ, α) = d logα+ dα log λ+ (α− 1)
n∑

i=1

δi log ti − λα
n∑

i=1

tαi

with d =
∑n

i=1 δi

• The expression can of course be expressed in terms of µ and σ
• Once implemented and applied to the smokers data, we obtain

µ̂MLE = 4.656329 and σ̂MLE = 2.041061
⇒ The results are not so far from the linear approach

Note In general, the standard errors are computed for µ̂MLE and log σ̂MLE

σ̂µ = 0.2170 and σ̂log σ = 0.0919
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Profile Weibull likelihood
Placeholder

• Suppose that a survival random variable T , follows a Weibull distribution

T ∼ Weib(α)

• For a given value of α one can define a new random variable

T∗ = Tα ∼ exp(λα)

• In such a case (see Ch. 1), the analytic solution of the MLE is known

λ̂(α) = (d/V )1/α

with V =
∑

tαi and d the total number of deaths

• Since the MLE λ̂(α) can easily be obtained, we can define as

`∗(α) = `(λ̂(α), α)

the Weibull profile likelihood

• Maximizing `∗(α) yield the MLE of α and the MLE for λ(α) is

λ̂(α̂) = (d/V )1/α̂
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Example : the profile Weibull likelihood
Placeholder

• When applied to the smokers data, we obtained
σ̂ = 1/α̂ = 2.041063

which is almost identical to σ̂MLE

• Then, α̂ is used to obtain λ̂ and finally
µ̂ = 4.656329

which is indistinguishable from µ̂MLE

⇒ As the MLE only relies on 1 parameter we can plot the profile likelihood
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The Accelerated Failure Time model
Placeholder

• When comparing patients of two groups (e.g. treatment and control)

eβ ,

i.e. the hazard ratio, was the quantity we used

• It was assumed to be time-invariant (proportional hazards hypothesis)

⇒ If the treatment group is effective in increasing survival

β < 0,

i.e. the log-hazard ratio, such that the hazard ratio is less than 1

• An alternative way of comparing two groups is called AFT

• We assume here that the survival time of the first group is a multiple

θ = eγ

of what the survival time would have been had if the patient was in the second group
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More intuition on AFT models
Placeholder

• The AFT approach assumes that the effect of a covariate is to accelerate or decelerate the life
course of a disease by some constant

e.g. If θ = 2 everything in the life history of patient happens twice as fast

⇒ If the model concerns the development of a tumor, this implies that

1 all of the stages progress twice as fast as for the unexposed individual

2 the expected time until the failure event is 0.5 of the baseline time

⇒ Formally, the survival distributions for the AFT models are given by

S1 = S0(e−γt)

and the hazards are given by
h1(t) = e−γh0(e−γt)
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The AFT model with Weibull distribution
Placeholder

• In the case of the Weibull distribution we have (see S159)

h1(t) = e−γh0(e−γt) = e−γ 1
σ

e−µ/σ(e−γt)1/σ−1

• Rearranging, we have

h1(t) = e−γ/σ 1
σ

e−µ/σt1/σ−1 = e−γ/σh0(t) = eβh0(t)

that is, the AFT model is equivalent to the Cox model with β = −γ/σ

Note This equivalence only exists for the Weibull distribution
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Comparison of two groups with the parametric Weibull model
Placeholder

• Consider again the smokers data and the comparison of the triple therapy treatment group to the
patch therapy group

• When estimating the AFP model we obtain the following results
coeffs se z p

(Intercept) 5.286 0.3320 15.92 4.59e-57
grppatchOnly -1.251 0.4348 -2.88 4.00e-03
Log(scale) 0.689 0.0911 7.56 3.97e-14

⇒ γ̂ = −1.251 indicates that by a factor of

θ̂ = eγ̂ = 0.286

the patch therapy group has shorter times to relapse (life course to relapse decelerates for the
triple therapy group)

⇒ The scale parameter estimate is σ̂ = exp(0.689) = 1.992, leading to

β̂ = −γ̂/σ̂ = 0.629

for the log proportional hazard in the Cox model

Note In comparison, a Cox-model-based estimation of β gives β̂ = 0.6050
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Interpreting the intercept in the AFT model
Placeholder

• The Cox-model fit provides only 1 estimate, β̂

• The AFT Weibull model provides 3 estimates, 2 of them being linked to the baseline Weibull
distribution

• In particular, the intercept µ, cannot be estimated in the Cox approach

⇒ it would cancel out of the partial likelihood (as the baseline hazard does)

• The AFT model allows for direct estimation of the baseline hazard as

µ̂ = 5.286 and σ̂ = 1.992

lead to α̂ = 1/1.992 = 0.502 and λ̂ = exp(−5.286) = 0.00506 and finally

Ŝ0(t) = e−(λ̂t)α̂
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Comparison of two groups based on survival functions
Placeholder

• The survival function for the combination group is

S1(t) =
(
S0(t)

)e−γ/σ

and can be estimated by replacing all quantities by their estimates

• We can compare Ŝ0(t) and Ŝ1(t) with those obtained from the Cox model

• Notice that the parametric nature of the AFT produces smooth curves
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AFT-Weibull-based regression
Placeholder

• An alternative way of looking at Weibull AFT model is to define

log(T) = µ+ γx + σε∗

i.e. to model the log-survival time as a location-scale model where

ε∗ = log ε

with ε, a unit exponential distribution and x a vector of covariates

• Then, the survival function is given by

S(t) = P(T > t) = P(ε∗ > log(t)− µ− γx
σ

)

= S0(te−γx)

• This formulation is quite general as different choices for

ε ∼ L(θ)

can lead to other parametric survival models
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Example: AFT-Weibull-based regression
Placeholder

• Consider again the smokers data but with the covariates (see Ch. 2)
Recall For the Cox model we obtained the results below
Recall In this model, β̂patch = 0.608 means that the hazard is higher for this treatment group by a

constant factor of exp(0.608) = 1.83654
coef exp(coef) se(coef) z p

grppatchOnly 0.60788 1.83654 0.21837 2.784 0.00537
age -0.03529 0.96533 0.01075 -3.282 0.00103
employmentother 0.70348 2.02077 0.26929 2.612 0.00899
employmentpt 0.65369 1.92262 0.32732 1.997 0.04581

• For the AFT Weibull model we obtain
Note γ̂patch = −1.1902 means that patients with the patch only have shorter times to relapse by a

deceleration factor of exp(−1.1902) = 0.304
coeffs se z p

(Intercept) 2.4024 0.9653 2.490 1.28e-02
grppatchOnly -1.1902 0.4133 -2.880 3.98e-03
age 0.0697 0.0203 3.430 6.02e-04
employmentother -1.3890 0.5029 -2.760 5.74e-03
employmentpt -1.3143 0.6132 -2.140 3.21e-02
Log(scale) 0.6313 0.0900 7.020 2.26e-12
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Exercise: AFT-Weibull-based regression
Placeholder

• Express the results of the AFT Weibull model in terms of proportional hazards coefficients

• Then, compare these coefficients we those obtained from the Cox model

• For each regression coefficient γj, we have βj = −γj/σ

weib.coef.ph coxph.coef
grppatchOnly 0.63301278 0.60788405
age -0.03708786 -0.03528934
employmentother 0.73878031 0.70347664
employmentpt 0.69903157 0.65369019
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Model selection and residual analysis
Placeholder

• Many of the facilities for model selection and residual analysis of Ch. 2 remain valid
e.g. We plot below the deviance residuals from the previous Weibull model
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• The residual distributions of both “grp” and “employ” are reasonably comparable, indicating that
these variables are modeled successfully

• For “age”, the distribution may be consistent with a linear model, when one considers the width of
the 95% confidence intervals
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Jackknife residuals
Placeholder

Recall These residuals are computed as the difference in the value of γ̂ when all data are used and when
an individual is deleted from the data
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At most, changes are less than 10% of the coefficient value.
Still subject 46 and 68 should be checked to 

ensure that there is no errors 
in recording the data.
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AFT log-normal model
Placeholder

• Various distribution can be considered in the AFT framework

• For instance, when
ε ∼ N (0, 1)

ε∗ follows a log-normal distribution and we obtain the following results

coeffs se z p
(Intercept) 1.6579 1.0084 1.64 1.00e-01
grppatchOnly -1.2623 0.4523 -2.79 5.25e-03
age 0.0648 0.0203 3.20 1.39e-03
employmentother -1.1711 0.5316 -2.20 2.76e-02
employmentpt -0.9543 0.7198 -1.33 1.85e-01
Log(scale) 0.8754 0.0796 10.99 4.15e-28
Scale 2.4

• All estimates are quite different from what we obtain with the Weibull model albeit with similar
signs
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AFT log-logistic model
Placeholder

• If ε has a logistic distribution, with survival distribution given by

S(u) = 1
1 + eu

then, T has a log-logistic distribution and the results are now

coeffs se z p
(Intercept) 1.9150 0.9708 1.97 4.85e-02
grppatchOnly -1.3260 0.4588 -2.89 3.85e-03
age 0.0617 0.0196 3.15 1.66e-03
employmentother -1.2605 0.5392 -2.34 1.94e-02
employmentpt -1.0991 0.7050 -1.56 1.19e-01
Log(scale) 0.3565 0.0884 4.03 5.47e-05
Scale 1.43

• Again, the estimates are different from what we obtain with the two other models
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Large set of covariates
Placeholder

• One of the purpose analysis is to understand how covariates contributes to survival times

• Sometimes we focus on specific covariates such as age, employment, etc.

• By contrast, we can focus on the predictive ability of a set of covariates

⇒ In many cases, dozens or thousands or predictors may be available

• In such a study, many of them are unrelated with survival

and those that are relevant may be strongly correlated amongst themselves

⇒ this multicollinearity is likely to complicate estimation and inference

⇒ Penalized methods such as the Lasso method are useful in such situation
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The Lasso method for survival models
Placeholder

• This approach maximizes the partial likelihood function but now with

... the additional stipulation that the L1 norm of βj satisfies
p∑

j=1

|βj| ≤ t

for a constant t and with p the number of parameters

⇒ This may be shown to be equivalent to maximizing the penalized likelihood

`p(β) = `(β)− λ

p∑
j=1

|βj|

for λ a pre-specified value of λ

Note 1 Adding this constraint on coefficients shrinks them toward zero (as compared to non-penalized
MLE)

Note 2 A too large λ will result in no covariates at all in the model

Note 3 A too small λ will result in a large number of covariates in the model
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Optimization issues with the Lasso method
Placeholder

• A complication is that `p(β) may not be strictly concave (weakly concave or flat)

⇒ this causes convergence problems

• A crucial issue is hence to select λ

⇒ As in other econometric fields, cross validation procedures are helpful
1 we randomly divide the data set into 5 subsets of equal size

2 we select 1 subset to be the so-called “validation” set

3 we combine the remaining subsets in the so-called “training” set

4 we use the training set (≈ 80% of the data) to build the Lasso model

5 we use this model to predict the survival times in the validation set

6 we use a partial-likelihood-based measure of goodness-of-fit to this set

7 we repeat steps 1-6 with each of the remaining 4 subsets in turn playing the role of the validation set

8 we derive an average partial-likelihood goodness-of-fit

9 we repeat the whole process for a wide range of values of λ

10 we select the value of λ that produces the optimum goodness-of-fit: λ∗

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 180 / 192



Example: biomarkers data
Placeholder

• Consider 227 patients with hepatocellular carcinoma (cancer du foie)

• For each patients, a wide range of clinical and biomarker covariates is collected

• The dataset is composed of 48 clinical and biomarker measurements

• Of the 227 patients, 117 have levels of a variety of chemokines markers

⇒ some represent the levels in the tumor itself

Note In medical study, building a predictive model is a complex process that involves interplay between
the known medical science and the optimal predictive model

⇒ as we are economists we omit this dimension and consider 26 biomarkers

5 chemokines markers for 3 patients as an example

OS Death CD4T CD4N CD8T CD8N CD20T
1 83 0 2.600000 0.000000 190.6000 126.80 20.950000

76 20 1 14.450000 2.758621 2.1500 38.95 26.100000
131 35 1 2.821133 8.294828 8.0064 62.64 2.821133
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Example: Lasso method for selecting biomarkers
Placeholder

• First, we select the 117 patients for which all biomarkers are available

• Before implement the Lasso, we standardize the covariates

⇒ as the biomarker ranges vary widely

• Then, we set λ = 10 and fit the Lasso model using 26 biomarkers

⇒ we see that 7 are retained and here are there coefficient estimates

CD8N CD68T CD4TR CD8TR CD68TR Ki67 CD34
0.104 0.258 -0.035 -0.096 0.111 0.285 -0.013

• As λ = 10 has been specified arbitrarily, we can question the results

⇒ To investigate this we implement the cross validation procedure
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Example: Cross validation procedure for the Lasso method
Placeholder

• The cross-validated partial log-likelihood can be plotted to visualize λ∗

⇒ we see that the global maximum is obtained for λ∗ = 8.24
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• The results where obtained for λ ∈ [2, 12]

CD8N CD68T CD4NR CD4TR CD8TR CD68TR Ki67 CD34
0.133 0.269 -0.009 -0.076 -0.149 0.102 0.328 -0.044
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Example: Cross validation procedure for the Lasso method
Placeholder

• One can also be interested in the impact of λ on the estimates
⇒ we can plot the selected markers estimated coefficients for λ ∈ [20, λ∗]
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• The 8 paths that intersect the λ∗ vertical line are
— positive coefficients Ki67, CD68T, CD8N, and CD68TR
— negative coefficients CD4NR, CD34, CD4TR, and CD8TR
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Interpretation of Lasso-based estimates
Placeholder

• All β̂j obtained with λ∗ are not interpretable in terms of hazard ratio
1 the lasso procedure has shrunken them
2 they are standardized to have standard deviation one

⇒ However, they can be use to predict the survival profile of patients
Note These patients are those who were in the sample Table of S181
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Survival Analysis with R
Placeholder

• We will review the implementation of most of the examples, in R
• All packages we use are listed below (databases are packed in “asaur”)

Note This package is attached to the book of Dirk F. Moore (Springer, 2016) that I mainly use for this
course

— “asaur” package
— “bshazard” package
— “cmprsk” package
— “coxme” package
— “forestplot” package
— “muhaz” package
— “numDeriv” package
— “Hmisc” package
— “kmconfband,” package
— “stats” package
— “penalize” package
— “survival” package

ESA
Intro Basics MLE KM Tests MPLE Covariates Diagnostics Time dependence Competing Risks Parametric Lasso R 186 / 192



Loading packages and visualizing data
Placeholder

• One of the first dataset we introduce is the aid to smokers to quit

• To visualize the data we need the “asaur” package

• Then we display for the 6 first subjects some columns (2 to 8)

1 > l i b r a r y ( asaur )
2 > pharmacoSmoking [ 1 : 6 , 2 : 8 ]

• In the same package we also have, e.g., the pancreatic cancer data

• To quickly visualize the first observations of the database we use

1 > head ( panc rea t i c )
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Manipulating and visualizing parametric survival distributions
Placeholder

• In the second section we introduce some parametric distributions

• For example, we can plot the Weibull survival function as follows

1 weibSurv <− funct ion ( t , shape , s c a l e ) pwe ibu l l ( t , shape=shape ,
2 s c a l e=sca le , lower . t a i l=F)
3
4 curve ( weibSurv (x , shape =1.5 , s c a l e=1/ 0.03) , from=0, to=80,
5 yl im=c (0 ,1) , y lab=’ S u r v i v a l p r o b a b i l i t y ’ , x lab=’Time ’ )

• We can also plot the Weibull hazard function as follows

1 weibHaz <− funct ion (x , shape , s c a l e ) dwe ibu l l ( x , shape=shape ,
2 s c a l e=s c a l e )/ pwe ibu l l ( x , shape=shape , s c a l e=sca le ,
3 lower . t a i l=F)
4
5 curve ( weibHaz (x , shape =1.5 , s c a l e=1/ 0.03) , from=0, to=80,
6 y lab=’ Hazard ’ , x lab=’Time ’ , co l=’ ’ red ’ ’ )
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Manipulating and visualizing parametric survival distributions
Placeholder

• If needed we can simulate data from Weibull distribution as

1 t t . weib <− r w e i b u l l (1000 , shape =1.5 , s c a l e=1/ 0.03)

• We can then check whether some empirical quantities converge to their theoretical values

1 > mean( t t . weib )
2 [ 1 ] 31.35497
3 > median ( t t . weib )
4 [ 1 ] 26.84281
5
6 > gamma(1 + 1/ 1.5) /0.03
7 [ 1 ] 30.09151
8 > ( log (2) ^(1/ 1 .5) )/0.03
9 [ 1 ] 26.10733
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Computation of the Survival function from the Hazard function
Placeholder

• As discussed in Ch. 1, one can use the hazard function to approximate the survival function
• Then, we can compute the empirical mean and median estimates

1 > l i b r a r y ( s u r v i v a l )
2 > tm <− c (0 ,1/365 ,7/365 ,28/ 365 ,1:107)
3 > tm . d i f f <− d i f f (tm)
4 > survMale <− exp(−cumsum( hazMale∗tm . d i f f )∗365.24)
5 > survFemale <− exp(−cumsum( hazFemale∗tm . d i f f )∗365.24)
6 > sum( survMale∗tm . d i f f )
7 [ 1 ] 71.99964
8 > sum( survFemale∗tm . d i f f )
9 [ 1 ] 76.98838

• At this stage, to get an estimate of the hazard function we rely on
1 > tm <− c (0 , b i r t h
2 1/365 , f i r s t day of l i f e
3 7/365 , seventh day of l i f e
4 28/365 , four th week of l i f e
5 1:106) subsequent year s
6 > hazMale <− survexp . us [ , ”male” , ”2004” ]
7 > hazFemale <− survexp . us [ , ” female ” , ”2004” ]
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The Kaplan-Meier estimator
Placeholder

• The Kaplan-Meier estimator is the most used non-parametric estimator of the survival function

• In the course we first apply it to artificial data

1 > l i b r a r y ( s u r v i v a l )
2 > t t <− c (7 ,6 ,6 ,5 ,2 ,4)
3 > cens <− c (0 ,1 ,0 ,0 ,1 ,1)
4 > Surv ( tt , cens )
5 [ 1 ] 7+ 6 6+ 5+ 2 4

• Then, the KME rely on the following function of the survival library

1 r e s u l t .km <− s u r v f i t ( Surv ( tt , cens ) ~ 1 , conf . type=” log−log ” )
2 > summary( r e s u l t .km)
3 > plo t ( r e s u l t .km)
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Thank you!
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