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Survival Analysis

= Study of survival times of a particular phenomenon...

. and the factor that influence them
= Data with survival outcomes are numerous
= Clinical trials
= Biomedical studies
= Industrial settings (failure of a device)
= Labor market
=

Credit default

= Statistical analysis of survival data requires

= Estimation of survival distribution
= Comparisons of various survival distributions

= Elucidations of the factors that influence survival times (regressions)



Survival Data

= The variable of interest has key characteristics
= Non-negative discrete (or continuous) random variable
= Represents the time from a well-defined origin to a well-defined event

=- Often subject to censoring : the starting or ending event is not observed

= Example of right censoring
— Let T™ be a random variable representing the time to failure
— Let U be a random variable representing the time to censoring event
— The recorded event will be 7= min(7*, U) and we can define

§=1I1(T* < U)

a censoring indicator taking value 1 or 0

= 0 = 1if T is an observed failure time and § = 0 if T is a censored time

Note 1 Left censoring are possible albeit less frequent

Note 2 Interval censoring are also possible : the failure time has occurred within an unobserved time

interval




Censoring classification

= There are 3 types of censoring times :
Type | Pre-specified censored times

e.g. In a study with a pre-specified ending time, if an individual has not experienced the event of interest
before the end, it is censored at that time

Type Il Pre-specified fraction of failure

e.g. If the study runs until a pre-specified fraction of failure is reached (e.g. 25 %), individuals or objects
that have not failed (75%) are censored

Random Censoring that occurs randomly and independently of the study

e.g. In a biomedical study, patient dropout that are unrelated to the disease process (e.g. death unrelated
to the disease under investigation)

Note The random nature of this type of censoring is crucial to avoid bias




Type | censored data

= In biomedical studies, administrative censoring is of type |

= It occurs when patients are still alive at the end of the follow-up period

Accrual Follow—up

Patient 1 3 \.u
‘ Death event
Patient 2 = 3
Patient 3 ® ©
Patient 4 ® Q
Patient5 | o —x
: : Censored event

Patient6 &—X

Year of entry ‘

2000 2002 2004 2006 2008 2010



Patient time structure

= Survival database are generally structured as follows

= For each individual, the survival time and ¢ (“Status”) are reported

Table: Survival data example

Patient Survtime Status

1
2
3
4
5
6
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Patient time representation

= The patient time graphical representation is as follows

Patient time

Patient 1 O

Patient 2

Patient 3 O

Patient4 @——O

Patient5 @—X

Patient6 @——X

T T T T T T T T
01 2 3 4 5 6 7 8
Survival time in year



Database example (1)

= Additional informations can include additional outcomes

— individual characteristics
— competing risks factors

= Below, § € {0,1,2} where 2 to indicate death from other causes

Table: Survival prospects of prostate cancer patients with high-risk disease

Patient grade stage ageGroup survTime status
88 poor T2 75-79 33 0
89 mode T2 75-79 6 0
90 mode Tilc 75-79 15 2
91 mode T2 70-74 6 2
92 mode Tlab 80+ 93 1
93 poor T2 80+ 60 2
94 mode T2 80+ 1 0
95 mode Tlab 75-79 34 0
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Database example (2)

= Comparisons survival data is also of crucial interest

e.g. triple-medication v.s. nicotine patch therapy alone
Note 1 ¢ is set to O for individuals who remained non-smokers for 6 months
Note 2 Below, the variable ttr is time until return to smoking

= The objective is to compare the two treatment therapies by identifying the factors related to this

outcome
Table: Comparison of medical therapies to aid smokers to quit
ttr  relapse grp age gender morphotype employment
1 182 0 patchOnly 36 Male white ft
2 14 1 patchOnly 41 Male white other
3 5 1 combination 25 Female white other
4 16 1 combination 54  Male white ft
5 0 1 combination 45 Male white other
6 182 0 combination 43 Male hispanic ft
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Hazard and Survival Functions

= Survival Analysis relies on the survival distribution that is specified by

either the Survival Function (SF)

or the Hazard Function (HF)

= The SF is defined as the probability of surviving up to a point ¢
St)y=P(T>1t), 0<t<oo

= S(t) is right continuous, equals 1 at time 0 and decreases over time
Note In some cases, S(¢) can also remain constant and never reach 0

= The HF is defined as the instantaneous failure rate

h(t):gmop(K T<tA+A|T>t)
n

= h(t) is the probability of failing in the next interval of time A, given that the subject has survived
up to time t, divided by that interval




Hazard and Survival Functions representation

Data: the daily hazard rates of men and women by age from 1940 to 2004
= The initial days and weeks of life are particularly dangerous
= The hazard increases during the teen years, then levels off

= |t starts a steady increase in midlife

Log-scaled Hazards for US males and females in 2004 Survival of US males and females in 2004
10 { ———m898 ——————— _ __
107 2
= 0.8
e}
"% 107 ,_(-; 0.6
B o
= 10 & 0.4
0 A —— males :é 0.2 1 —— males \
- - - females |9 |~ females
T T T T T T 0.0 T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Age in years Age in years
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Other representations of the Survival Distribution

= The complement of the SF is just the so-called CDF
F(t)=P(T<t), 0<t<oo
= known as cumulative risk function in the survival analysis

= The PDF is also an obvious alternative representation

= it is the rate of change of F(¢) or minus the rate of change of S(t)

= f(t) is also related to h(t) by

= the hazard at time ¢ is the probability that an event occurs in the neighborhood of ¢ divided by
the probability that the subject is alive at ¢




The Survival Function as function of the Hazard Function

= The area under the HF up to time ¢ is the cumulative HF

= /Ot h(u)du

= Then, one can define the survival function in terms of the CHF

S(t) = exp ( / h(u ) = exp(—HF)
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Note 1

Note 2

Note 3

Mean and Median Survival time

The expected value of the survival time is simply

B(r) = [ (i =

An alternative equivalent measurement is

W= /000 S(t)dt

it is defined (1 < c0) only if S(co) =0 : all subjects eventually fail

this might not be the case if, e.g., the survival outcome is time to cancer recurrence and a fraction
¢ of subjects are completely cured

The Median survival time is the time 7 such that S(7) = 1/2

If S(¢) is a step function, it is not continuous at 1/2 and the Median is the smallest ¢ such that
S(t) <1/2

If S(t) never drop below ¢ = 1/2 during the observation period, the Median is undefined

16 /192



Introduction to parametric Survival Distributions

In view of modeling the survival process, we need to specify a distribution
The simplest survival distribution is the exponential one
F() = Ae ™,
The definitions of S12 allows to compute the SF
S(t)=e M
and alternative representations of S14 give

h(t) = A

This SD has constant hazard function h(t) = A
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The Exponential Survival Distribution

= The cumulative hazard function is hence

H(t) :./Oth(u)du:/ot/\du:)\t

and is represented by the shaded area below

Exponential hazard

Hazard

= The mean survival time is simply

E(T) = /03o S(t)dt = /OOo e Mdt=1/)
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The Weibull Survival Distribution

= The constant hazard is a strong assumption in many practical cases
= a first generalization is obtained by considering
h(t) = aX* ™!
the hazard function derived from the Weibull distribution
Note For o =1 it comes down to the exponential distribution
= From h(t) one can easily derive H(t) = (At)® and hence

S(t) = e~ D7
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The Weibull Hazard Function

= For several parameter choices the behavior of h(t) is represented below

. Weibull hazard functions
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The mean survival time formula is not obvious

E(T) :/ S(t)dt = M
0 A
and the median survival time is given by 7 = log(2)'//\




The Gamma Hazard Function

= Another choice for survival modeling is the Gamma distribution

£(1) = N8~ exp(—At)
r'(B)

which comes down to the exponential one for 8 =1 as I'(1) =1

8 Gamma hazard functions
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Numerical approximation to the Hazard and Survival Functions

= In some cases (see e.g. S13), the distribution is much more complicated
= An alternative way is numerical computation :

1 Take people dead at birth, after 1 day, week, month, year, 2 years, ...

2 Take the data in difference to obtained rectangles
3 Compute the cumulated sum of data in each rectangle to get H(t)

4 The SF is simply given by 3’(2&) = exp(—H(t))

= One can use g(t) to compute the mean that is

73.80

for the male and
78.90

for the women when considering the US lifetime data of S13




Example of CHF approximation

= Step 1 to 3 allow to approximate the integral of H(t)
e.g. The male lifetime CHF up to 1.5 years is given by the blue area

= Applying this method beyond 2 years leads to the blue CHF curve in S13

Hazard function for US males in 2004
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Unknown distribution parameters

= |n general, we have poor knowledge upon

S(t)

the underlying Survival Distribution

= We only have realizations
tiotoy ey tn

of random variables for which a distributional assumption is done

e.g. Under exponential distribution hypothesis, the parameter
A

is unobserved and we would like to estimate it

= A natural candidate is the Maximum Likelihood estimator




Note

e.g.

Note

MLE principle for Survival data

As in time series analysis, the likelihood function take the general form

L0ty toy ..oy ta) = f(t1,0) - f(£2,0) ... f(ta, 0) = Hf ti, 0)

with 0 = X in the exponential distribution case
However, particular attention has to be paid to censored data
For right-censored data we use § and the Survival Function
S(t:,0) %
to indicate that observation i is known only to exceed ¢; as
S(t:,0) =P(T; > t;)

The likelihood is hence transformed to

L(O;ti, b, ..., 1) Hf t:,0)% S (t:,0 Hh t:,0)"S(t:, 0)

For left-censored data we use 6 and 1 — S(#;,0) =P(T; > t;) = F(t;,0)




MLE principle for exponential distribution

In the particular case of the exponential distribution,

n 5 1-6;
L(O; ty, by, ... t) :H(Ae_t”/“) (6—>\t,;) — gV
i=1
where d = 61 + ...+ 0, is the total number of failure and
V:t1+---+tn
is the total amount of time of patients
The MLE is given by the value of A that maximizes L(A; t1, t2, ..., tn)

As log-transformation simplifies the likelihood function we prefer

L(N) =log L(0; t1, ta, ..., tn) = dlog\ — AV

Under regularity conditions, the MLE is asymptotically Gaussian




Solution of exponential-based MLE

= The first derivative (score function) give

and hence the maximum likelihood estimate is A = a/v

= The second derivative (Hessian function) is

CO) =5 =10

where I(X) > 0 is the Fisher information
= As £”()\) < 0 the solution is a maximum and inversing I(\) we obtain
V) =03~ I 1\ = \/d
= |n practice we will use R
G Al ' N =N/d=d/V?

Note For most of distributions, no explicit solutions exist = numerical resolution
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Exercise

= Consider the data of Table 1
= Plot the log-likelihood and compute the MLE of A and V()




Exercise

= Consider the data of Table 1

= Plot the log-likelihood and compute the MLE of A and V()
= Simple observation of the data givesd =3 and V=7+6+4+6+5+2+4=30
= The log-likelihood function is
L(X) = 3log A — 30X
and hence we obtain A = 3/30 = 0.1 with 53 ~ 3/(30%) = 0.0033

-10

-12

log-likelihood
-14

-16

T T T T T
0.00 005 010 015 020 0.25 0.30
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The Kaplan-Meier estimator (KPE)

= In practice, the distribution/survival/hazard function is hard to choose
= The parametric approach is likely to be misspecified
= Nonparametric estimation procedures offer more flexibility

= The most widely used of these procedures is the Kaplan-Meier estimator
~ R d;

so=Tla-a=T](-)

i<t i<t ‘

where d; is the number of failure at time ¢; and n; the number of individuals at risk at that time

= S(t) is the product over failure times of the conditional probabilities of surviving to the next
failure time




Application of the KPE

= By using the data of the Table 1, one can easily obtain
Table: Kaplan-Meier estimator

ti oni di g 1—q S
0.167 0.833 0.833

2 1
4 5 1 0.200 0.800 0.667
6 1 0.333 0.667 0.444

= One can use S; to reconstruct graphically the Survival Function
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Interpretation of g’t

= S, is a non-increasing right continuous step function

— t; is the failure time

— n; is the number of individuals at risk at time ¢;
— d; is the number of individuals who fail at time ¢;
— q; = d;/n; is the failure probability

— 1 — g; is the conditional survival probability

— S; is the Survival Function at time t;

= The right-continuity is illustrated by open and closed circles
e.g. S(4) = 0.667 while S(3.99) = 0.833

Note The median is obtained for
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KPE and inference

= The variance of the KPE can be approximated by

~ ~ d;
V(S) ~ 5S>

i<t nl(nl — dl)

= Unfortunately, Cl derived from V(S;) may extend above 1 or below 0 but S(¢) € [0, 1]
= One often overcome this issue by using a log-log transformation of fS'(t)

1 d;
(log 3})2 <t ni(ni — d;)

V(log(~ log $1)) ~

Survival probability




Nelson-Altschuler estimate of the SF

= An alternative estimator is the one of Nelson-Altschuler based on H(t)

—~ 5 ~ d:
Si=e O B =34
n;

<t

Table: Nelson-Altschuler estimator

i ni di g H; Si
2 6 1 0.167 0.167 0.846
4 5 1 0.200 0.367 0.693
6 3 1 0.333 0.700 0.497

= Confidence intervals can be obtained in a similar way to KPE
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Median and inference

= As stated previously, the median is 7 = inf{¢ : g’(t) <1/2}
= For a risk level a confidence intervals are given by

9(8)) = 9(1/2)
- 1/2
v(L(5))
with g(z) = log(—log(z)) and z, /2 a Standard Normal quantile
e.g. Consider the data of Table 2 and the KPE : 7 = 10.3

—Za/2 <

< Za )2

1.0

0.8

0.6

Survival probability
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T T T |
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Kernel smoothing and Hazard Function estimation

= The Nelson-Altschuler estimate of h(t) can be rough and quite instable

= A kernel function can be used to smooth h(t)

D
,\ 1 t— 1 i
=5 k(50
. < tp are ordered failure times and b a tuning parameter

Note Many kernel function exist but the Epanechnikov kernel is very common
K(z)=3/41—-2%), -1<z<1

where ¢ < ..

0.15

Hazard
0.10
-

0.05
L
\
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Corrected Kernel smoothing and Hazard Function estimation
= Without corrections IC(z) is likely to be # 0 at time ¢ < 0

= The first kernel below is centered at ¢ = 2 and b = 2.5 meaning that

t—b=—-05t+b=4.5
and hence, the actual area under the first kernel is too small

= The modified Epanechnikov kernel is recommended

0.10 0.15

Hazard

0.05

0.00

8
Time
= Another approach: setting a time-varying b
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Example Kernel smoothing and Hazard Function estimation

= Consider again the data of Table 2

= Choose the modified Epanechnikov kernel with b = 20
Note Selection of b can be critical :
— if b is too small, the estimate may gyrate widely

— if b is too wide, the hazard function may be too smooth to observe real variations in the hazard
function

Smoothed and step function estimate
of the hazard function for the Gastric Cancer data

0.15

0.10

Hazard Rate

0.05
L




Example Kernel smoothing and Survival Function estimation

= One can use h to obtain a smooth estimate of S(t)
t
S(t) = exp ( — / h(u)du)

u=0

= In practice the integral is approximated by the rectangles method

Kaplan-Meier and smoothed Survival curve
estimates in Gastric Cancer Patients

Survival probability

0 5 10 15 20 2 30
Time in months
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Comparing Two Groups of Survival Times

= Comparison of distributional features is of crucial interest
e.g. In medical trials you need to compare treatment and control groups
Hy : Si(t) = So(t)
= Let S1(¢) be the SF of the treatment group
= Two alternative hypotheses can be specified (one-sided or two-sided)

Hy : S1(t) > So(t) or Hi: S1(t) ;ﬁ So(t)
=- Unfortunately, Survival data imply several serious issues

— Survival distributions can be similar for some ¢ and differ for others

— Survival distributions can cross
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Lehman alternatives

= One solution is to consider Lehman-type alternatives defined as
Hy: Si(t) = (So(t)”

where 1) # 1 unless under )
Ho . S1(t) = (So(t))

= The one-sided alternative is now
Hi : ’w <1

and imposes that Si(¢) is uniformly higher than Sy (¢)

= Theses hypotheses can be formulated in terms of proportional hazards

ha () = tho(t)
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The 2-by-2 Table representation

= In the spirit of the rank tests a la Mann-Whitney Hy can be tested against Lehman alternatives
Note Complications arise from the presence of censoring

= To solve this issue consider a two-by-two table representation of the data

Table: 2-by-2 Table representation

Control Treatment Sums
Failure do; dyi d;
Non-failure ng; — do; ni; — di; n; — d;
At risk no; N1 n;

= Numbers at risk for the control and treatment groups are ng; and ny;

= Numbers of failure for the control and treatment groups are dp; and di;

= This representation is adopted for any distinct ordered failure time ¢;




Hypergeometric distribution

= If one holds d;, no; and ni; fixed (and hence n; too) we can derive

-1
P(doi|noi, nis, di) = (Z:) (Z?) (i;)

the hypergeometric distribution of dy; where

represents the number of combinations of n items taken d at time ¢;

= The 2 first moments of that distribution are

_ noidi
]E(d(]z) — g = Moi
and J J
V(dor) = noinaidi(ni — d;) — o2,

ng(ni —1)




The log-rank test statistics

= Based on the 2-by-2 representation and E(dp;) one can define

Up = Z(dm‘ — E(dos))

i=1

a simple linear test statistic and its variance

V(o) = ZV(dm)

= One can show that Uy/\/V(Uy) ~ N (0, 1) or equivalently

UO X2
V(o)

= This test statistic is known as the log-rank test of group comparison
Note 1 This test is also known as the Mantel-Haenzel test

Note 2 A comparison of k groups is possible and modify the distribution to

2
Xk—1
but is slightly different from the stratified tests discussed in S51
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Exercise: application of the log-rank test

= Consider the following survival data

= (C and T stand for Control and Treatment groups respectively

Table: Survival data

Patient Survtime Censor Group
1 6 C
2 7 0 C
3 10 1 T
4 15 1 C
5 19 0 T
6 25 1 T

= When required, construct the 2-by-2 tables

= Compute the log-rank test and interpret the result
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Exercise: computation

= Failures appear at ¢t = 6, 10, 15,25 and result in four 2-by-2 tables

Table: 2-by-2 tables for t = 6, 10, 15, 25

t=6 t =10 t=15 t =25
c T Y ¢ T Y ¢ T Y C T %
Failure 1 0 1 0 1 1 1 0 1 0 1 1
Nonfalure 2 3 5 1 2 3 0 2 2 0 0 0
At risk 3 3 6 1 3 4 1 2 3 0 1 1

Table: Intermediate calculus to compute the log-rank test statistic

ti n; di  moi  doi  mi; dig pog 93

6 6 1 3 1 3 0 0.500 0.2500
10 4 1 1 0 3 1 0.250 0.1875
15 3 1 1 1 2 0 0.333 0.2222
25 1 1 0 0 1 1 0.000 0.0000
> 2 2 1.083 0.6597
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Exercise: interpretation

= From Tables in previous slide we easily obtain

Up="_doi— Y poi = Oo — Bo =2 — 1.083 = 0.917

and V(Uo) = 3, 06, = Vo = 0.6597

= The log-rank test statistic is

Ug
—— =~ 1.26
V(o)
which we compare to a x? distribution
= The corresponding p-value is
p = 0.259

meaning that we cannot reject Hy and hence the group difference is not statistically significant

Note When applying the test to di;, the result is identical as it also sums to 2
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The generalized log-rank test statistics

= An important generalization of the log-rank test is

Uo(w) = Z wi(do; — E(do))

i=1
with the corresponding variance V(Up) = >_,_, w7V (do:)
= This leads to the so called Fleming-Harrington G(p) test

Uo(w)2
V(Uo(w))

= The most common way of setting weights is a la Gehan-Wilcoxon

G(p) =

w; = F(S(t:))", F(.) being a certain function
Note 1 When p = 1 we get the Prentice modification : places higher weight on earlier survival times

Note 2 When w; = /n; we get the Tarone-Ware modification : intermediate weight compared to p =0
and p >0

Note 3 When w; = g’(ti)p(l — @(tl))q we get the Harrington-Fleming(p, ¢) test : more flexible
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Example : Prentice modification of Gehan-Wilcoxon test

= Let consider pancreatic cancer data from a clinical trial (41 patients)
= We are interested in the progression-free survival (PFS)

= the time from assignment in the trial to disease progression or death

Table: Locally Advanced Pancreatic Cancer or Metastatic Pancreatic Cancer

stage onstudy progression death

MPC 16/12/2005  02/02/2006  19/10/2006
MPC 06/01/2006  26/02/2006  19/04/2006
LAPC  03/02/2006  02/08/2006  19/01/2006
MPC 30/03/2006  “NA” 11/05/2006
LAPC  27/04/2006  11/03/2007  29/05/2007
MPC 07/05/2006  25/06/2006  11/10/2006

DO WN

Note 1 “NA" means that the patient died with no recorded progression and the PFS is time to death

Note 2 For all other patients, the PFS is time to the date of progression
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Example : Prentice modification of Gehan-Wilcoxon test

= The graphical analysis of SF reveals :

— the LAPC group shows an early survival advantage over the MPC

— but the survival curves converge after about 10 months

|

Pancreatic Cancer Survival Function

1.0

—— Locally advanced
—— Metastatic

0.8

Survival probability
0.6
L
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Example : Prentice modification of Gehan-Wilcoxon test

= When computing the Gehan-Wilcoxon test for p = 0 (i.e. the log-rank test) and
p=1
i.e. the Prentice modification, we obtain

Table: Fleming-Harrington G(p) for p = 0 and p = 1, with k = {0, 1}

p=0 N Ok By, (O — Ep)?/ Vi,
LAPC 8 8 1.49 2.25
MPC 33 33 0.64 2.25
We cannot reject Hy (no difference) as p-value = 0.134
p=1 N Oy, Ey, (O — Ep)?/ Vy,
LAPC 8 2.34 2.13 4.71
MPC 33 18.76 0.82 4.71
We reject Hy as p-value = 0.0299

= The two tests produce conflicting results as they are optimized for different alternatives

= For p =1, the test places higher weight on earlier survival times
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Stratified tests

= To compare two groups while adjusting for another covariate, one can

1 include the other covariate as regression terms for the hazard function (see next Chapter)

2 construct a stratified log-rank test if the covariate we are adjusting for is categorical

= denote hg; the population hazard of level j =1,2,..., G, with G small
= For the (G categories of the covariate we can test

Ho : hoj(t) = hj(t), j=1,2,...,G

= Accordingly, the stratified version of the log-rank test statistic is

2 _ (Zﬁcil qu>2
; Z_f:l V()g

X ~xi




Example 1 of stratified test

= Consider the dataset of Table 3 (time to return smoking)

= We first compare the 2 treatment groups by means of the log-rank test

p=0 N Or Ey (Ok — Ey)?/ Vi,
Combination 61 37 49.9 8.03
Patch only 64 52 39.1 8.03

We reject Hp (no difference) as

p-value = 0.00461

= If now we are interested by the influence of the age we may define

g=1:21—-49 || g =2:50 or more

a categorical variable that divides the subjects in 2 groups

The resulting stratified log-rank test is close to the unadjusted test

= the stratification based on the age seems unnecessary

p=0 N O Ey. (O — E)?/ Vi
Combination 61 37 49.1 7.03
Patch only 64 52 39.9 7.03

We reject Hp (no difference) as

p-value = 0.008




Example 2 of stratified test

= Consider simulated data representing an artificial clinical trial
= This trial compares a standard therapy (control) and an experimental one (treatment)
= The survival times are simulated as exponentially distributed and produces no censoring
= A confounding genotype factor is also simulated with only 2 levels
g=1: wild type genotype || ¢ = 2: mutant genotype
with g = 2 leading to poorer prognosis as the hazard rate is
A = 0.03 per day
for a mutant patient in the control group whilst the effect of treatment leads to
A =0.0165

= For wild type patients A = 0.006 whilst the effect of treatment leads to

A =0.0033
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Example 2 of stratified test

= The Kaplan-Meier survival curves are computed both naively and accounting for the gene
confounder

Note 1 The naive estimate concludes against the experimental therapy
Note 2 When accounting for the gene confounder the results are at the opposite

= within each genotype, the treatment is actually superior to the control

Kaplan-Meier survival curves
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Example 2 of stratified test

= The stratified log-rank test is now used to confirm the graphical analysis

Unadjusted N Oy Ey (O — Ep)?/ Vi,

Control 150 150 183 15.9
Treatment 150 150 117 15.9
We reject Hy (no difference) as p-value = 0.00006

Note 1 The unadjusted test shows that the treatment reduces survival

Stratified N Oy, Ej, (O — Ep)?/ V3,

Control 150 150 133 7.57
Treatment 150 150 167 7.57
We reject Hy (no difference) as p-value = 0.00595

Note 2 The stratified test confirms that the treatment improves survival compared to the control

Note 3 Patients carrying the wild type form of the gene have better survival than do patients carrying the
mutation

Note 4 There are more mutation-carrying patients in the treatment group than in the control group,
whereas the reverse is true for wild type patients
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Chapter 2

Chapitre 2 : Hazards Model




Non parametric models

= As discussed in Chapter 1, Lehman-type alternatives are defined as
Hi: Si(t) = (So(t)”
where ¢ # 1 unless under )
H() : Sl(t) = (So(t))
= theses hypotheses can be formulated in terms of proportional hazards
ha(t) = ¥ho(t)

= The latter Eq. is the key to quantify the difference between two hazard functions by means of the
so-called proportional hazards model

= We can extend the model to include covariate information z as follows
b =e”
= Other functional are possible albeit this is the most common in practice
Note The estimation is complicated in absence of parametric form for
ho(t),
and require the concept of partial likelihood developed by Cox
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Introduction to the partial likelihood

= Let j denotes the j'th failure time (sorted from lowest to highest)
= Let h;(;) be the hazard function for subject ¢ at failure time ¢;
= The Cox proportional hazards (semi-parametric) model is

hit) = iho(t), i = e

Note ; characterize the hazard ratio hi(t;)/ho(%;)
= In the simplest case where we compare two groups (dummy variable)
xz; ={0,1}
= In the particular case of control vs treatment group we expect
B <0
as the experimental group is less likely than control patients to fail

= Hence, 9; <1 (¢p; = 1) is expected in the treatment (control) group
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The partial likelihood

= Consider the first failure time ¢; and let
Ry

be the set of all subjects at risk for failure at this time (the risk set)

= The probability that the subject ¢ fails is its hazard divided Y hy (1)

_ hi(t) _ piho(t) _ i
Zke[{l hk(tl) Zkem 1/%]7'0(751) EkERl wk

where ho(t1) is the hazard for a subject from the control group

Py

= At failure time #2 a new (smaller) risk set Ry is considered
= We repeat this calculation to obtain ps and so on up to %,

= The partial likelihood is the product

L(Y) =PiP,...P,
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Example of partial likelihood computation

= Consider the following (artificial) data (see also Chapter 1)

Table: Survival data

Patient Survtime Censor Group
1 6 1 C(z1 =0)
2 7 0 C(z2 =0)
3 10 1 T(z3 =1)
4 15 1 C(zg =0)
5 19 0 T(z5 =1)
6 25 1 T(zg = 1)

= Consider the following (artificial) data (see also Chapter 1)
= the first failure time is at ¢t = 6 and for each patient we have either
1 =12 =tha =1 or g = Y5 = 1hs =1
i.e. we have 6 patients at risk (3 in the “C” group for which ¢» = 1) and

U1h0(t1) o 1

P, = .
YT B0ho(t) + 3ho(t) 3 x U +3
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Example of partial likelihood computation

= The second failure time is at ¢ = 10 because at ¢t = 7 there is no failure
Note At t =7 we have a “C” patient that dropped out due to censoring

= Of the 6 patients at risk at the first time, only 4 remains in Ry and

Y
3p+1

where 1) appears in the numerator as the patient 3 was in the “T" group

Py

= The third failure time (¢3) is at ¢ = 15 with 3 patients in R3 and

1

]P3:2w+1

= The last failure time (#4) is at ¢ = 25 with 1 patient in R4 and

as she is in the “T" group
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Note 1

Note 2

Example of partial likelihood computation

Now we are ready to compute the partial likelihood

v
By +3)By+1)(2¢ +1)

In the case of a Cox model the log partial likelihood is

L(B) = B —log(3exp(B) + 3) — log(3exp(B) + 1) — log(2exp(B) + 1)
B

L(1h) = PiPyPsPy =

as 1 is assumed to be of exponential form : ¢ = e

The maximum partial likelihood estimate is

the value of 3 that maximizes this function

As discussed above, it is nonparametric because the hazard function
ho(1)

does not enter the partial likelihood and hence requires no specification

Unlike traditional likelihood, £(1)) is not a probability but allows to estimate /3
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Example of partial likelihood computation

= = —1.3261 is obtain by numerical optimization

= We anticipate on the next slide and report some test statistics
Note 1 The null hypothesis (8 = 0) is reported for comparison
Note 2 The slope of the tangent is given by the LM statistic S(3) = ¢'(8)
Note 3 I(B8) = —5'(B8) = —¢"(B) denotes the fisher information

log partial likelihood
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Partial likelihood hypothesis tests

= As in standard likelihood one can derive 3 types of test for Hy : 5 =0
— The Wald test
— The LM test
— The LR test

= The limit theory of theses tests can differ and is often more difficult to derive

= In view of presenting them, define

— S(B) = ¢'(B), the score function
— I(B) = —=S'(B) = —¢"(B), the fisher information

— I(), the observed information
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Note

The Wald test

The Wald test is of form R
_B
98

where 0% is obtained numerically from the negative inverse of the Hessian

Zw

1(B) ' =—0"(B)~"

As the second derivative reflects the curvature of the likelihood, a sharper curve (i.e. more
information) leads to lower variance

Under the null hypothesis Hy : = 0, this normalized statistic if Gaussian
We reject Ho if |[Zw| > za/2 of Ziy > Xan

The asymptotic normality can be used to construct confidence intervals

6:|:Zu/2 XO’§




The Lagrange Multiplier (score) test

= The LM test is based on the score of the partial log-likelihood
= The variance of this test is hence directly (/)

= The test is computed under the null hypothesis as follows

5(8=0)
1(8=0)
= We reject Ho : B =0 if |Zon| > zay2 of Ziy > Xon
Note 1 This test can be computed without finding the MPLE

Zim =

Note 2 This test is equivalent to the log-rank test statistic Uy discussed in Chapter 1

= With the same artificial data of Table 12, Uy was equal to 0.917 = —S(0)
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The Likelihood Ratio test

= The LR test is based on the asymptotic behavior of
Zir =2(L(B = B) — (B =0)) ~ Xi
= Zpr is invariant to monotonic transformations of 3 (unlike the LM and Wald tests)

= Whether the test is computed in terms of 3 or ¢ = exp() has no effect on the p-value

= We reject Ho if Z7p > X2
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Exercise : computation of partial likelihood hypothesis tests

= Consider the MPLE results plotted on S63

= All elements needed to compute Zw, Zry, Zig are there
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Exercise : computation of partial likelihood hypothesis tests

= Consider the MPLE results plotted on S63
= All elements needed to compute Zw, Zry, Zig are there

= For Zp) we have

= (S0= 0)))2 _ 0o o

N TB =0 0.660

Any software can compute the p-value which is p = 0.2591

= For Zy we have R
2 _ 2
72 ( I3 ) ( 1.326129) 1124

o5 /1/0.639

Any software can compute the p-value which is p = 0.2891
= Finally, for Z.r we have
Zir =2(0(8 = B) — (B = 0)) = 2(—3.672 4 4.277) = 1.209

Any software can compute the p-value which is p = 0.2715
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Pseudo- R? statistic

= At this stage one can also use

(8 = p) and £(5 = 0)

to compute an adaptation of the R? statistic to survival analysis

= The RZy statistic (Cox and Snell) is defined as follows

Rig=1-— (g((g))f/n

= RZg reflects the improvement in the fit of the model with the covariate compared to 3 = 0

Note RZg has a major drawback as it is capped to 0.75 but alternatives are not consensual
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The partial likelihood with multiple covariates

= To achieve greater generality we now consider the case where
zi= (i1, wip)
is a vector of p dummy covariates for each individual 7
= To save place we use 1; in place of 1;(z;, 3), where 8 is now a vector of p coefficients
= In the particular case of the Cox model, the hazard ratio is exp(z;_3)
= As in S59, before the first failure time, all of the subjects are said to be at risk
= Among them one will fail at time ¢; in the risk set R;

= More generally, at time ¢;, the risk set is R; leading to

2R 2 iho(t) =

e =11 -11 ~1I+“

T Cen, m(t) 1 Ser, Brho(t) 1t Siep, Y

for the Cox proportional hazard model, with D the number of failures
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The log partial likelihood with multiple covariates

= The log partial likelihood is simply given by
D
19 =3 (1osts - 1os (3 0) ) =3 -3t (3 et
j=1 kER; j=1 kER;
= The score function has p components, one for each of the p covariates

= For the I'th component the score is given by

5(9)= 52 = (xﬂ _ Dier eXP%—ﬁ))

0B ZkER]- exp(zj’ﬂ)

Note We may view the score function as the sum of “residuals”

j=1

= The observed value z; of the covariate | minus an “expected” value
Recall When z; is a single binary covariate, S(8 = 0) is the log-rank statistic

Note The Fisher information matrix is now a matrix

Ly 9Mm) _ s
105:2) =~ 5p05 =08
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Wald, LR and LM tests with multiple covariates

= In presence of multiple covariates the usual tests are as follows

= The Wald test under Hy : 5 =0 is PR
Zy = B1(B;z)B
= The LM test :
Zip=8'(8=0;2)I(8 =0;2)""S(8 = 0;2)

= The LR test :

Ziv =2(0(8=B) — (B =0))

= Under Hy, all 3 statistics are asymptotically x7_,




Exercise with multiple covariates

= Consider the exponential survival data simulated in Chapter 1
= A confounding binary genotype factor was introduced :
g =1 (wild type) or g = 2 (mutant type)
= When estimating the Cox model to compare trivially the “T" and “C" group we obtain

B = 0.464(c5 = 0.117) with LR = 15.5(p = 0.00000)

= How to interpret those results ?
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Exercise with multiple covariates

= Consider the exponential survival data simulated in Chapter 1
= A confounding binary genotype factor was introduced :
g =1 (wild type) or g = 2 (mutant type)
= When estimating the Cox model to compare trivially the “T" and “C" group we obtain
B = 0.464(c5 = 0.117) with LR = 15.5(p = 0.00000)

= How to interpret those results ?

Note 1 It suggests higher hazards for the “T" group (E > 0) with a significant difference with the "C”
group

-~

Note 2 Also, exp(8) = 1.59 indicates that the “T"” group is associated with a 59% additional risk of
death over the “C" group
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Exercise with multiple covariates

= As for the log-rank test, it is possible to stratified the data

= When estimating the stratified Cox model to compare the “T" and “C" group we obtain
B = —0.453(c5 = 0.164) with LR = 7.66(p = 0.00566)

= How to interpret those results ?
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Exercise with multiple covariates

= As for the log-rank test, it is possible to stratified the data

= When estimating the stratified Cox model to compare the “T" and “C" group we obtain
B = —0.453(c5 = 0.164) with LR = 7.66(p = 0.00566)
= How to interpret those results ?

Note 1 It suggests higher hazards for the “C” (B < 0) group with a significant difference with the “T”
group
Note 2 Also, exp(ﬁ) = 0.636 indicates that the “T" group is associated with
1—0.636 = 36%

less risk of death over the “C" group
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Exercise with multiple covariates

Finally, we introduce the genotype as a covariate
When estimating the Cox model with the two covariates we obtain
Borp = —0.453(05m =0.163)

and R
Bgen = —1.568(030077 =0.183)

with
LR = 93.4(p = 0.00000)

How to interpret those results ?
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Exercise with multiple covariates

= Finally, we introduce the genotype as a covariate
= When estimating the Cox model with the two covariates we obtain
Borp = —0.453(05m =0.163)

and R
Bgen = —1.568(030077 =0.183)

with
LR = 93.4(p = 0.00000)

= How to interpret those results ?
Note 1 As for the stratified Cox model, the correct treatment effect is identified

Note 2 Indeed, we see higher hazards for the “C” (B < 0) group with a significant difference with the “T"
group
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Tied survival times

= Tied survival time are failure that occurs simultaneously
Note 1 In continuous time data this is likely to arise due to rounding
Note 2 In discrete time data this can genuinely appear

Note 3 If censoring times are tied with failure times, the convention is to consider the failures to precede
the censoring

Example Consider a continuous time process and the following reports
Table: Survival data with tied survival times

Patient Survtime Censor
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Tied survival times and partial likelihood

= As the underlying times are actually continuous we use the Cox model
h(t;z) = e ho(t)
where z = 1 or 0 for the treatment or control group, respectively
= As in the regular case, the likelihood is the product of probabilities

Py At t =1, all 10 patients are at risk and two of them fail, both from the “T" group, and either of
those two patients may have failed first

= We account for those two possibilities when constructing Py

_ ew(d) el exp(8)  exp(f)
"7 Zexp(B) + 63exp(B) + 6  4dexp(B) + 6 3exp(B) + 6

= The first (second) product assumes that patient 1 (2) fails first

=AxB+CxD

Note 1 In B, 4 becomes 3 as patient 1 has failed
Note 2 In D, 4 becomes 3 as patient 2 has failed

Note 2 As both patients are in the "T" group the A x B and C' x D are symmetric
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Exercise : tied survival times and partial likelihood

= We want to derived the remaining terms of the partial likelihood
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Exercise : tied survival times and partial likelihood

= We want to derived the remaining terms of the partial likelihood
P, At ¢t = 2, 8 patients are at risk (2 and 6 in the “T" and “C” group resp.)

= As there is only 1 failure in the “C" group we have
1

"= ren(B) 46
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Exercise : tied survival times and partial likelihood

= We want to derived the remaining terms of the partial likelihood
P, At ¢t = 2, 8 patients are at risk (2 and 6 in the “T" and “C” group resp.)
= As there is only 1 failure in the “C" group we have
1

"= ren(B) 46

Ps At t = 4, 6 patients are at risk (as at ¢ = 3 patient 4 is censored)
= We have two failures, one in each group, and
_ 1 o exp(p) exp(p) o 1
exp(fB) +5  exp(B)+4  exp(B)+5 b
to account for all scenarios of failure (patient 5 first or patient 6 first)
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Exercise : tied survival times and partial likelihood

= We want to derived the remaining terms of the partial likelihood
P, At ¢t = 2, 8 patients are at risk (2 and 6 in the “T" and “C” group resp.)
= As there is only 1 failure in the “C" group we have

1

"= ren(B) 46

Ps At t = 4, 6 patients are at risk (as at ¢ = 3 patient 4 is censored)
= We have two failures, one in each group, and
_ 1 o exp(p) exp(p) o 1
exp(fB) +5  exp(B)+4  exp(B)+5 b
to account for all scenarios of failure (patient 5 first or patient 6 first)

= Only 1 constant factor remains as patients 7 and 10 are censored and
1

P4:§

as at ¢t = 6, by convention, the censored patient 9 failed after patient 8

= One may express the partial likelihood as £() = P1P2P5 or P1P2P5Py
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Discrete tied survival times

= Consider now that times are in fact discrete in the table below

= In such a case, the Cox model is transformed to a discrete logistic model

h(t; ) _ f ho(t)
1— h(t;z) 1 — ho(t)

Table: Survival data with tied survival times
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Discrete tied survival times and partial likelihood

= At t =1, as 2 patients fail among the 10 patients at risk we now have

10 10!
(2) ~2l(n—k)! =4

pairs that could represent the two failures
= All factors are summarized in the matrix below and lead to

626

Pp=— <
17 6628 1 2468 1 15

Table: Pairs that could represent two failures among 10 patients

eP eB eP eP 1 1 1 1 1 1

eB
EB 62’3 (]
ef e e2P °
ef e2h e2h 26 °

1 P e eP eP °

1 ef ef ef ef 1 °

1 eb ef ef ef 1 1 °

1 ef e e ef 1 1 1 °

1 ef ef ef ef 1 1 1 1 °

1 eP ef e eP 1 1 1 1 1 °




Exercise : discrete tied survival times and partial likelihood

= We want to compute the remaining factors




Exercise : discrete tied survival times and partial likelihood

= We want to compute the remaining factors

= At t =2, there is only 1 failure in the “C" group = Py = 1/(2¢” + 6)
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Exercise : discrete tied survival times and partial likelihood

We want to compute the remaining factors
At t = 2, there is only 1 failure in the “C" group = P2 = 1/(2¢” + 6)

At t = 4, there are 2 failures and 6 patients are at risk such that we have

-

possible pairs, of which 1 is from the “T" group and 1 from the “C" group

_exp(B) x 1
s 5exp(f) + 10

Again, one may simply express the partial likelihood as £(8) = P1P2P3
Table: Pairs that could represent two failures among 6 patients

ef 1 1 1 1 1

65 °
1 eb °
1 ef 1 .
1 ef 1 1 °
1 ef 1 1 1 °
1 ef 1 1 1 1 .
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Approximation in presence of tied survival times

= With many ties, the discrete and continuous methods are cumbersome
= Two approximation methods can be implemented
Breslow It adjusts the denominator to simply reflect all patients at risk

= In the previous example, P; and Ps becomes

2¢2° 2(e” x 1
P, = e and P3 = w
(6e? + 4)2 (ef 4 5)2
Efron It is better as it reflects all patients at risk before and after the failure
= In the previous example, P; and Ps becomes

e? e?

P, =
17 (668 +4) (0.5¢% + 0.5¢8 + 4¢P + 4)

and

s 1
Py = —°

(¢f +5) (0.5 + 0.5¢F + 3)

with the weight 0.5 reflecting that each of the 2 patients has a chance of 1/2 of being in the
second denominator since 1 of them would have been the first failure




Left truncated data

= Consider the data of Table 12 with left truncation information
e.g. A patient can be diagnosed before entering a trial (i.e. backwards recurrence times is # 0)
Note 1 The standard way to compare the 2 groups is to ignore “back times”

= Nothing wrong (i.e. no bias) in that way to proceed but starting from diagnosis could be of
interest

Note 2 To account for backwards recurrence times, one can re-configure the data so that they start at 0

Table: Survival left truncated data

Patient Survtime Censor Group Back time
1 6 1 c -3
2 7 0 C -11
3 10 1 T -3
4 15 1 C -7
5 19 0 T -10
6 25 1 T -5

83/102




Left truncation and re-configured data

Raw left truncated data

Patient 1 (C)

Patient2 (C) /\-

Patient 3 (T)

Patient 4 (C)

Patient5(T) /N

Patient 6 (T)

A-4

—X

——O

Re-aligned data with left truncation

Patient 1(C)

Patient 2 (C)

Patient 3 (T)

Patient 4 (C)

Patient 5 (T)

Patient 6 (T)

-10

T T
10 20

Time from entry to trial

Time from diagnosis

= |n that case, estimation results are similar for the two data sets

= No statistical difference between “C” and “T" (but n is too small)

— Rawdata: 8= —1.33(05 = 1.25) with LR = 1.21(p = 0.271)

— Re-configured data : § = —1.07(c 5 = 1.24) with LR = 0.81(p = 0.368)




Categorical and Continuous Covariates

= All covariates considered until now are dummy variables
Note An exception is the confounder “genotype” that is categorical
ge{1,2}
but can easily be transformed to {0,1} as it is dichotomous

= More generally one can encode categorical variables with dummies
e.g. If we have a 3-level variable we need : “Ba (z1), Ma (z2), no-diploma (z3)"
= If “Ba" is the reference, then z; =1, 20 = 23 =0

= An individual without any diploma implies z; = 2z =0 and 23 = 1

= Continuous variables are also frequent and have to be considered

e.g. income, age, etc.




The Cox model with categorical and continuous covariates

= For a set of k covariates (categorical or/and continuous) the model is
log(¥;) = 2181 + 22:82 + ... + B = i 8

= For the covariate z;, 3; is the log hazard ratio for the effect of that parameter on survival,
adjusting for the other covariates

= For continuous covariates, it represents the effect of a unit change in the covariate

= For dummy covariates, it represents the effect of the corresponding level as compared to the
reference

Note 1 As for logistic regression, a variable can enter non-linearly the model
Note 2 Interaction terms can be introduced
Note 3 At this stage, all covariate are assumed to be fixed in time

Note 4 This model differs from the logistic model as there is no intercept term : if there were one, it
would cancel out just as ho(t) canceled out




Example of Cox model estimation with categorical and continuous
covariates

= Consider artificial survival data with two covariates : age and diploma
= individual at risk can loose their job

= Ages are between 40 and 80 at random

We set the diploma variable so that there are 20 of each 3 categories
= We assume an exponential distribution with parameter as follows

— We set the log-rate parameter to have baseline -4.5
— The diploma variable take the values 1 and 2 for “Ba” and “No diploma” when compared to “Ma”

— We let “age” decrease the log rate by 0.05 per year

= We do not introduce censoring in the data set and n = 60




Example of Cox model estimation with categorical and continuous
covariates

= When applying the Cox model we obtain the following estimates
BBa = 1.151, (O’ﬁBa =0.368), z=3.113 (p =0.00173)

and
Bro = 2499, (05, = 0.429), z=5.820 (p = 0.00000)

and
Bage = —0.078, (OEW =0.014), z=5.385 (p = 0.00000)

= Estimates of log hazard ratios are close to the true values (1, 2 and 0.05)
= When looking at exponential coefficient, exp(/3), we conclude that

— Individuals with Bachelor degree have exp(8p,) = 3.16 times the risk of being fired as do subject
with Ma degree

— Individuals without diploma have exp(By,) = 12.17 times the risk of being fired as do subject with
Ma degree

Note The z statistics is a generalizations of the 2-group comparison Wald tests
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Nested models

= When comparing models we have to determine whether that are nested

= Here is an illustration of nested models in terms of covariates
— Model A : “Age”
— Model B : “Employment”
— Model C: “Age” + "Employment”

= Model A is nested in Model C as well as model B

= To test for the presence of nested models we can compute LR tests

Note Models A and B are not nested and requires specific testing procedures




Example of nested models

= Consider the data on therapies to aid smokers to quit (Chapter 1)
= In this study, “Age"” and “"Employment” have 4 and 3 levels

— Age : “21-34", “35-49", “50-64" and “65+"

— Employment : “ft” (full-time), “other” and “pt” (part-time)
= By default we choose the first level as the reference level

= Estimation of the Cox model on model A, B and C

coef exp(coef) se(coef) z D
LR : 12.2 (p = 0.006) Model A
age35-49 0.0293 1.030 0.309  0.0947 0.920
ageb0-64 -0.7914 0.453 0.336  -2.3551 0.019
age65+ -0.3173 0.728 0.444 -0.7153 0.470
LR : 2.06 (p = 0.357) Model B
other 0.198 1.22 0.237 0.836 0.40
pt 0.450 1.57 0.323 1.394 0.16
LR : 16.8 (p = 0.005) Model C
age35-49 -0.130 0.878 0.321 -0.404 0.6900
ageb0-64 -1.024 0.359 0.359  -2.856 0.0043
age65+ -0.782 0.457 0.505  -1.551 0.1200
other 0.526 1.692 0.275 1.913 0.0560
pt 0.500 1.649 0.332 1.508 0.1300
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Example of nested models

= From the Wald test (z) for Model C we see that some levels are significant
e.g. The “50-64" age group has a lower hazard when compared to the reference “21-34" with E = —1.024

e.g. The “other” employment group has higher hazard when compared to the reference “ft” with

B =0.526
= However, we cannot easily see whether “Age” or “"Employment” should be part of the model

= We assess this issue using (partial) likelihood ratio tests based on

£(8) Model A : -380.043, Model B : -385.123, Model C : -377.759
LR : A|C 2([(30) - é(B\A) = 4.567 compare to x%_s_3 which leads to p = 0.1019
= "Age" is not significant when “Employment” is included in the model
LR : B|C 2(¢(Bc) — £(Bs) = 14.727 compare to x>_s_, which leads to p = 0.0020

= "Employment” is significant when “Age” is included in the model
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Example of nested models

= These results raise the question of including “Age” in model A
= To test this hypothesis we consider the null model N
0(By) = —386.153
free of any covariate

LR : NJA 2(¢(Ba) — £(Bx) = 12.220 compare to x>_5_ which leads to p = 0.0066

= "Age" is significant when included in the model N




When a large number of potential factors can enter the model

= The forward stepwise model selection

Step 1 fit univariate models (1 for each covariate) and retain the one with the smallest p-value

Step 2 apply Step 1 again but with the selected covariate included

Step 3 continue until no additional covariate has a p-value less than a pre-defined threshold (e.g. 5%)
= The backward stepwise model selection

Step 1 fit a model with all covariates

Step 2 remove one by one the covariates, each time removing the one with the largest p-value

Step 3 continue the procedure until the p-values are all below a pre-defined threshold (e.g. 5%)

= The stepwise approach can be automatized but has 2 main drawbacks

— Due to multiple comparisons, the p-values produced from one stage to the next are misleading
Note Corrections like the one of Bonferroni exist

— Also, p-values are only valid for nested models and hence this approach is not recommended for
non-nested models
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Non-nested models and criterion based selection

Information criteria apply to partial log likelihood

We discuss some examples based on the so-called AIC

AIC = —20(B) + 2k
where k is the number of parameters in the model

One can view the AIC as balancing two quantities

— The goodness of fit —2@(5) (smaller for models that fit the data well)

— The complexity measure that enter the criterion as a penalty term 2k

Applying the AIC to the previous model selection issue we obtain

£(8) Model A : 766.086, Model B : 774.246, Model C : 765.519
= The model C is the one that minimizes the AIC and offers the best fit

Note The BIC (or SIC) also applies to survival analysis

-~

BIC = —2((B) + klog(n)

and as it penalizes by a factor of log(n), it will tend to select models with fewer parameters as
compared to AlIC
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Information criterion and the stepwise approach

= We can implement the backward stepwise procedure with the AIC
= Let consider additional covariates for the smokers therapies

— ‘“yearsSmoking"+"levelSmoking" 4 “priorAttempts”+"“longestNoSmoke"
+ “gender”"+4 “morphotype”+ “age”+ “employment”

Note 1 (+) & (-) show the effect on AIC of adding or removing the covariate

Note 2 Covariates are listed in order from the one which, when removed, yields the greatest AIC reduction
to the smallest reduction




Information criterion and the stepwise approach

= When starting the procedure, all covariates are there (AIC = 770.2)

= "“(-) morpho” is at the top of the list and will be removed first
= Intermediate results are unreported but proceed in the same way

= At final step (AIC = 758.42) and all per-covariate are above 758.42

= The sign (-) remains for employment & age and reveal that removing them would be detrimental

= At the opposite, variables for which a “(+)" appears indicate that adding would deteriorate the fit of

the model
Sign Covariate Level AIC Sign Covariate Level AIC
Step 1 770.2 Final Step 758.42
- morpho 3 766.98 <none> 758.42
- years 1 76820 + longest 1 759.10
- gender 1 768.20 - employment 2 760.31
- prior 1 768.24 + years 1 760.34
- level 1 76847 + gender 1 760.39
- longest 1 769.04 + prior 1 760.40
none 770.20 + level 1 760.41
- employment 2 77245 + morpho 3 761.53
- age 3 77411 - age 3 767.24
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Forest plot

Final model coef exp(coef)  se(coef) =z P

grppatchOnly 0.656 1.928 0.220 2.986 0.0028
employmentother  0.623 1.865 0.276 2.254 0.0240
employmentpt 0.521 1.684 0.332 1.570 0.1200
ageGroup435-49 -0.112  0.894 0.322 -0.348  0.7300
ageGroup450-64 -1.023  0.359 0.360 -2.845  0.0044
ageGroup465+ -0.707  0.493 0.502 -1.410 0.1600

= The Forest plot offers an alternative representation :

e.g. 1 triple therapy is better than the patch alone
e.g. 2 subjects with full-time work have a better success rate than others
e.g. 3 the upper age groups have better results than younger patients

—— 95% confidence i

Treatment Group with respecttoa
triple therapy ]
patch -

Employment

full time ]

other —

part time -
Age group

21-34 [ ]

35-49 e

15 1 05 o 05 1 15
Log hazard ratio



e.g.

Smooth estimates of continuous covariates

For continuous covariates, the relationship with the log-hazard can be

. linear, quadratic, or of any other nonlinear nature

in the previous study, the age has been split into 4 groups and

. the forest plot reveals different effects and hence nonlinearities

An alternative way to capture this nonlinearity is via pieces of

. polynomial functions (Splines) that are stitched to form a smooth curve

The points where these pieces are joined are called “knots”

. and a crucial issue is to determined their locations

The Splines enter the penalized partial likelihood via a penalty term
,P(va) = f(,é’,w) - g(w, 0)

with w the set of constrained parameters and ¢ some tuning parameters




Penalized Cox model and Spline fit

= Splines with many knots increase the complexity of the likelihood
... but also improve the goodness of fit
= P(B,w), when maximized, balances goodness of fit against complexity
e.g. When plotting the penalized spline fit from the Cox model we observe

— a decreasing relationship with age with a slight upward turn after age 65

— but for most of the part, the effect seems not significant

Figure: Splines

Log hazard




Penalized Cox model and Spline fit

= The penalized Cox model estimation results are reported below

coef exp(coef)  se(coef)  x? v
grppatchOnly 0.651 0.221 0.219 8.67 1.00
employmentother 0.633  0.277 0.275 5.21 1.00
employmentpt 0.570  0.340 0.333 281  1.00
pspline(age, linear) -0.034 0.010 0.010 11.07 1.00
pspline(age,nonlinear) 4.20 3.08

= For the 3 first factors the coefficient are stable as compared to S97
= The Splines are decomposed in two parts : linear and nonlinear

— the linear one is highly significant

0.0032
0.0220
0.0940
0.0009
0.2500

— the nonlinear one is not significant (probably because the data set is sparse)




Martingale residuals

Assessing goodness of fit using residuals also applies to survival analysis
Residual analysis essentially relies on graphical analysis
Typically, residuals are plotted versus some quantity
To construct the residuals sequence, we compare the censoring indicator
i
to the expected value of the indicator under the Cox model
In absence of time dependent covariates and for right-censored data
i = 0; — Ho(t:) exp(a}B)

These Martingale residuals range in value from —oo to 1 and E(m;) =0

However these residuals can be asymmetric and hence cannot be used as a measure of goodness
of fit




Deviance residuals

= An alternative is the so-called deviance residual defined as

1/2
s = sign(ii) (= 2 (s + b:1og (6: — 7)) )
= d; residuals are symmetrically distributed with IE(EL)

Note 1 The sum of squares of d; is the value of the partial likelihood ratio test

= While their properties might seem preferable to those of m;, only m; have the property of showing
us the functional form of a covariate

= In practice, the martingale residuals are more useful

Note 2 Other types of residuals will be discussed later
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Example : Martingale versus deviance residuals

= Consider again the Cox model for smoking therapies data
= As discussed earlier, the null model (N) is the one without covariates

= We may plot m; against continuous covariates to get a preliminary assessment of which of them
should be in the model

Note 1 We also include the log of covariates and use a LOESS curve to identify patterns

Note 2 LOESS (LOcally Estimated Scatterplot Smoothing) is a nonparametric regression based on the
nearest neighbor method

Note 3 The 95% confidence intervals for the LOESS curve are also reported
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Example : Martingale versus deviance residuals
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= For the raw covariates we observe strong non-linearities
e.g. For “age”, we find something similar to Figure 1 (Spline fit)
= This null model residual based approach is an alternative way to identify nonlinearity
= For the log-transformed covariates we observe less non-linearities

e.g. For “LongestNoSmoke", the log seems sufficient to remove the non-linearity
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Example : Martingale versus deviance residuals

= We apply the stepwise approach with the log of “LongestNoSmoke”
= The results are unchanged (only “age” and “employment” are retained)
= We compute the final model residuals and obtain the following plots
= Some non-linearity remains for “age"” albeit less than for the null model

= The residual distributions of both “group” and “employ” are reasonably comparable, indicating
that these variables are modeled successfully

) o T H o T -
— 0\:@ ' of = ' = .
‘\ o D&z, 8
a4 0 ° 4 -

0 ‘.D 0 0
— S S S S
B}
9
c - -
B2 2 2
-3 S = =
En-H o @ ©° n n T
E< o o s° ? T T i T - !
g ' | H H
£ o o H ' ' H H
® o o © &°° = 4 ' H < 4 ' H H
= ° = : | o | | !
S5 3 T i : 7 : : H
2 o ' ' ! H H
g © o 0l — 5 ad —

7 T | 7 | H

o Martingale residuals ' |
° —_
N . . 2 _|ver reatment gra H N H : ;
[N o  Martingale residuals| i ersus treatment g oup; (X H Martingale residuals
° versus age —— versus employment
L L T T T e

20 30 40 50 60 70 80 combination patchOnly ft other pt




Jackknife residuals

= Some subject may have a huge influence on the parameter estimates
= As this may indicate a problem with the data
we need tools that can identify those individuals

= The Jackknife residuals are computed as the difference in the value of

~

B

when all data are used and when an individual is deleted from the data

= Then, we can plot the change in coefficients for each subject

At most, changes are less than 10% of the coefficient value.

— 46 Still subject 46 and 68 should be checked to
68 ensure that there is no errors
in recording the data.

0.002

Change in coefficient {3 for age
0.000

-0.002
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Log cumulative hazard plots

= When comparing survival times between two groups
. the proportional hazards assumption is of importance
§1(6) = (So(t)) ™"
with exp(f3) the proportional hazards constant
= This is the foundation of Lehman alternatives and the Cox model

= The log-transformation gives
log(S1(t)) = exp(B) log(So(t))

with all logs being negative as survival functions are less than 1
= g(u) = log(—log(u)) changes the range of u from (0, 1) to (—oo, o)
= The so-called log cumulative hazard plot, that is a plot of
g(S1(t)) and g(So(t)) versus log(t)

should lead to parallel curves separated by 3 if the assumption is correct
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Example of log cumulative hazard plots

= Consider the pancreatic cancer data (see in Chapter 1)

Recall We performed the Prentice-modification test and found a stronger group difference than did the
log-rank test

= As this test places higher weight on earlier survival times it suggests non-proportional hazards
= This is confirmed by the log cumulative hazard plot

Note However, statistical inference is unavailable and this approach is limited

Complementary log-log survival

— Locally advanced

T T T T
1.0 15 20 2.5 3.0

Log time

2.0




Schoenfeld residuals

= Schoenfeld residuals can assess the proportional hazards assumption more rigorously
= To compute them, let start from the partial log-likelihood
=3 (bg(wn —log (Y m)) = (6 —log (Y exp(ka))
ieD kER; ieD kER;

and its derivative (the score function)

= Z <:r1 - Z xkp(ﬁ,a:k)), p(B, z1) = exp(zi3) ( Z exp(z;8 )

i€D kER; JER

1

where the second term can be viewed as the weighted expected value E(X;) = z(¢;)
= The Schoenfeld residuals are the individual terms of the score

fi=ai— Y oep(B,mk) = m — T(t:)

k€ R;

= A plot of 7; versus x; will yield a pattern of points

= They are centered on 0 if the proportional hazards assumption is correct
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Example of Schoenfeld residuals

= Consider the artificial data of S12 (B = —1.32) and compute the weights

i moi mi p(Byze =0)  p(B,z =1) Grp

6 3 3 1/3+3¢%) £/B+3°) C
10 1 3 1/(1+3e”%) /43" T
15 1 2 1/1+2) Pra+2f)
2% 0 1 1/ ePlef =1 T

= It remains to compute E(X;) and 7; which for ¢; = 6 gives
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Example of Schoenfeld residuals

= Consider the artificial data of S12 (B = —1.32) and compute the weights

t; noi  ni; p(B,xk =0) p(B,m =1) Grp

6 3 3 1/3+3¢%) £/B+3°) C
10 1 3 1/(1+3e”%) /43" T
15 1 2 1/1+2) Pra+2f)
2% 0 1 1/ ePlef =1 T

= It remains to compute E(X;) and 7; which for ¢; = 6 gives

E(X;)=3x0x1/(3+3¢?) +3x1x e’ /(3+3¢") =0.2008 = #; = 0 — 0.2098
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Example of Schoenfeld residuals

= Consider the artificial data of S12 (B = —1.32) and compute the weights

t; noi  ni; p(B,xk =0) p(B,m =1) Grp

6 3 3 1/3+3¢%) £/B+3°) C
10 1 3 1/(1+3e”%) /43" T
15 1 2 1/1+2) Pra+2f)
2% 0 1 1/ ePlef =1 T

= It remains to compute E(X;) and 7; which for ¢; = 6 gives

E(X;)=3x0x1/(3+3¢?) +3x1x e’ /(3+3¢") =0.2008 = #; = 0 — 0.2098

« Fort; =10: E(X;) =1x0x 1/(1+3e®) +3x1x /(1 +3¢?) =0.4434
= 7 =1 —0.4434 = 0.5566

« Fort; =15: E(X;) =1 x 0 x 1/(1+2e%) +2x 1 x /(1 +2¢%) = 0.3468
= 7 =0 — 0.3468 = —0.3468

= For ¢; = 25 we have E(X;) =1
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Grambsch and Therneau residuals

= They propose to scale each residual by an estimate of its variance
7 =7 x dx V(B)
where d is the total number of death
= Then, Grambsch and Therneau show that if hazards are non proportional
E(rf) ~ B+ B(1)
i.e. a survival time dependent /3 (unknown) enter the E(7;) whereas
E(ri) =8
in presence of proportional hazards

= [(t) can be approximated by

where E is estimated from the Cox model

Note Statistical inference is now possible to test Hy : 5(t) =0
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Example for Grambsch and Therneau residuals

= We compute B(t) for the pancreatic cancer data and plot it versus time
Note 1 we also compute the LOESS curve and its 95% confidence intervals

Note 2 the time axis is scaled to match the Kaplan-Meier-transformed time

Scaled Schoenfeld residual plot for
the pancreatic cancer data

B(t) for disease progessions groups (LAPC vs MPC)

Time
= The curve reveals a slight increase, followed by a steady decline

Note 3 Zero seems to be almost always in the confidence intervals
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Example for Grambsch and Therneau residuals

= A more formal test can be obtained by fitting as straight line to 7
= This score-type test statistic, denoted p ~ x?, gives
p=—0.328, p=0.0496
= we reject the null of a constant 3 (i.e. we reject the proportional hazards)
= The way we defined the time axis matters (Kaplan-Meier-transformed time here)
e.g. If we consider time ordered by the ranks survival times we obtain
p = —0.330, p=0.0486
= very similar results
e.g. If we consider the untransformed time line we obtain
p=-0.197, p=0.2390
= here we cannot reject the null of proportional hazards

Note This latter approach is not to be preferred when the failure times are sparse and not uniformly
spaced over time
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What are time dependent covariates ?

= The partial likelihood theory assumes that covariates are time invariant
= The value of z at ¢t = 0 is the same at any ¢; > 0
= |n some cases this assumption is unrealistic
e.g. In credit scoring analysis, the employment status is likely to change

e.g. In job market analysis, the skills are likely to evolve

= Time dependent covariates require special measures to obtain valid parameter estimates




Impact of time dependent covariates

= Unfortunately, we cannot predict survival using future covariate values
= This deceptively principle can ensnare even experienced research
= We illustrate this with the following example :

e.g. consider data on patients enrolled in a transplant program

= Here are the results of the survival study :

coef exp(coef)  se(coef) z-test p
transplant  -1.71711  0.17958 0.27853 -6.165 7.05e-10
age 0.05889 1.06065 0.01505  3.913 9.12e-05
surgery -0.41902  0.65769 0.37118 -1.129 0.259

= It seems that heart transplanted patients live longer than others
= The covariate “transplant” equals 1 for transplanted patients

= The issue is that “transplant” is time dependent as patients in a transplant program have to live
long enough to be transplanted

= It only shows that patients who live long enough to receive a transplant have longer lives than
patients who do not live as long (tautology)
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Landmark time

= In that particular case, a simple fix is to define a landmark time 7

= |t divide patients into two groups: intervention and comparison groups

Intervention those who received the intervention prior to 7

Comparison those who did not received the intervention prior to
= |f only patients who survive up to 7 are included

and all patients remain in their assigned group, this method is valid

Note Hence, patients transplanted after 7 remain in the comparison group

= the comparison group could be renamed “no transplant within 7 days”




Example of landmark time

= |f we set 7 = 30 days, 79 of the 103 patients lived this long
= Of these 79 patients, 33 had a transplant before 7 and 46 did not
= Of these 46 patients, 30 subsequently had a transplant

Note we still count them in the comparison group

= we have hence created a new variable “transplant30” which has a fixed value for all patients in the
set of 30-day survivors

= Here are the valid results of survival study :

coef exp(coef)  se(coef) z-test p
transplant30  -0.04214  0.95874 0.28377  -0.148 0.8820
age 0.03720 1.03790 0.01714  2.170 0.0300
surgery -0.81966  0.44058 0.41297  -1.985 0.0472

= The “transplant” covariate is no longer significant

Note However, one could discuss the choice of the landmark 7
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Beyond the landmark approach

= Unfortunately there is no clear way to select the landmark 7
= we prefer another approach based on adjustments of the Cox model
= Let consider a subset of 6 patients to illustrate this approach

= 3 of them received a transplant and 3 of them did not

id | wait.time |futime | fustat | transplant Patient 2 —X

2 - 5 1 0 Patient 5 ——X

5 |- 17 1 0 Patient 10 °

10 |11 57 1 1 .

1 |- 7 1 0 Patient 12 —X

28 |70 71 1 1 Patient 28 P
% |1 15 1 1 Patient 95 —@——X

futime : following-up (failure) time
fustat : 0 if censored, 1 otherwise
@ and waiting time : time of transplant

0 20 40 60 80

Time in days




Modified partial likelihood

= We first model incorrectly the data

coef exp(coef) se(coef) z-test p
transplant  -1.6878  0.1849 1.1718 -1.44  0.150

= To correct the model we allow the contributions of each subject to change from one failure time
to the next

= The hazard function is now given by
h(t) = ho(t)erk(ti)ﬁ
with x(¢;) the time-varying covariate for the kth subject at time ¢;

= This leads to the modified partial likelihood
D

L(B) = HUJM( Z Wz)_l

i=1 kER;
with 1y = e™(t)5

= In the fixed-time case we were able, as time passes, to successively delete 1); for subject that failed
at that time

= We here have to recalculate the entire denominator at each failure time




Example of modified partial likelihood computation

= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted
1

+ el

L£1(B) = 5




Example of modified partial likelihood computation
= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

1
L1(8) = 51 P

Lo(B) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted
1
44 €P

Lo(B) =




Example of modified partial likelihood computation

= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

1
L = —
1(8) = ¢ i
Lo(B) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted
1
L =——
2(8) g

L3(B) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1
]
e

L3(B) =

2+ 2P




Example of modified partial likelihood computation

= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

1
L = —
1(8) = ¢ i
Lo(B) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted
1
L =——
2(8) g

L3(B) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1

B

L0 =5 %0

L4(B) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted
1
2+ ef

L4(B) =




Example of modified partial likelihood computation

= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

1
L = —
1(8) = ¢ i
Lo(B) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted
1
L =——
2(8) g

L3(B) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1

B

L = —
0= %
L4(B) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted
1
L = —
4(/8) 24+ 66

L5(8) P10 fails at t = 57, 2 being at risk, still 2 patients being transplanted
£5(8) = (1 + ¢#)!




Example of modified partial likelihood computation

= Let compute £(3) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(B) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

1
L = —
1(8) = ¢ i
Lo(B) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted
1
L =——
2(8) g

L3(B) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has switched to 1

B

L = —
0= %
L4(B) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted
1
L = —
4(/8) 24+ 66

L5(8) P10 fails at t = 57, 2 being at risk, still 2 patients being transplanted
£5(8) = (1 + ¢#)!

Ls(B) P28 is the last to fail (t = 71), just after having been transplanted Lg(3) = e /ef =1




Example of modified partial likelihood computation

= Overall, the modified partial likelihood is

1 1 P 1 e?
[’(/8)754—65 x 4+ b x 2+ 268 x 2+ ef * 14 e8

= On the numerical side, £(3) is based on the start-stop format

x 1

— It divides the time data for patients with a time-varying covariate
e.g. As P10 was a non-transplant patient until day 11, its future as a non-transplant patient is unknown

= we censor that portion of the patient’s life experience at t = 11 :

start: ¢t =0, stop: t =11
= we start a new record of P10 (which is left-truncated at ¢ = 11)

start: ¢ = 11, stop: t =57
— For our subset of 6 patient it results in new lines in the database

P# start stop death transpl

2 0 5 1 0

5 0 17 1 0
10 0 11 0 0
10 11 57 1 1
12 0 7 1 0
28 0 70 0 0
28 70 71 1 1
95 0 1 0 0




Example of modified partial likelihood computation

= Once the data are in this start-stop format the Cox model applies

= For our subset of 6 patient the conclusions remain unchanged

coef exp(coef)  se(coef) =z-test p
transplant  0.2846  1.3292 0.9609 0.296 0.767

= When considering the whole data set and all covariates we obtain

coef exp(coef)  se(coef) =z-test p
transplant  0.01405 1.01415 0.30822 0.046  0.9636
surgery -0.77326  0.46150 0.35966 -2.150 0.0316
age 0.03055 1.03103 0.01389  2.199 0.0279

= As with the landmark analysis we confirm that there is no evidence that receiving a heart
transplant increases survival




Predictable time dependent variables

= An alternative way to model non-proportional hazard is to allows for
B = B(t)
for a particular covariate
= If there is only one covariate we have
h(t) = hoe™"")
= Characterizing the functional form of 3(t) is challenging
= A way to proceed is to define a new time dependent variable with fixed coefficients

Note As this variable is defined by the econometrician, it is referred as predictable variable

= The pattern of the Schoenfeld residuals are helpful to identify an appropriate time dependent
function




Time transfer function

= Consider again the pancreatic cancer data as in S112

= A simple estimation of the Cox model gives

coef exp(coef)  se(coef) z-test p
stage of progress 0.593 1.81 0.401 1.48 0.14
Recall the Schoenfeld plot revealed that the hazard ratio might vary
= An alternative way is to define a time dependent covariate as
g(t) = 90 —+ 91 X log(t)
where 0y denotes the usual time-invariant group indicator
= Plugging g¢(t) in the Cox model, the fitted time transfer function is
B(t) = 6.01 — 1.091og(t)
coef  exp(coef) se(coef) z-test p
I(stage) 6.01 407.339 3.060 1.96 0.050
nl(stage) -1.09 0.338 0.589 -1.84 0.065

= The LR test that compares the two groups accounting (t) gives
LR =6.33 (p=0.0423)

= As 6y and 0; are significant, this suggests that the group indicator combined with a time-varying
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Visualization of the time transfer function

= We can use the Schoenfeld residuals plot of S112 to visualize 6 x log(t)
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Log time scale

= The red curve, —1.091log(t), is linear as the time axis is in log
= It indicates that overall, the log hazard ratio decreases over time
Note The results are dependent of the functional and e.g. no longer old for
g(t) =00+ 61 x t

stage.n 1.27810  3.590 0.66103 1.93  0.053
tt(stage.n) -0.00366  0.996 0.00253 -1.44 0.150
LR test 4.56 p=0.102




Variables that linearly increase with time

= A common source of confusion is whether the age variable is time dependent
= Indeed, the age increases with time itself
= the age is definitely a time dependent variable
But it has no effect on the model if one includes it as time varying covariate
= To see why this happens defined the current age of a subject by
z(t) = z(0) + ¢
where z(0) denotes the age at entry into the study
= Then, the hazard function is given by
h(t) = h{)(t)em(t) _ (h{](t)eﬁt) 370
such that once we insert h(t) in the partial likelihood,
ot
appears in both the numerator and the denominator of each factor

= Hence, it cancels out as does the baseline hazard
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Clustered survival times

= Until now, we have considered data with a single cause of failure

= Also, we have assumed that survival times were independent

= How to deal with events that are dependent across individuals ?
— Covid-19 propagation is an example of what we call clustered data
=> contamination are more likely to occur for people in a same unit

e.g. children in the same school, employees in the same office, etc.

— In such a case, survival times within a cluster are more similar to each other than to those from other

clusters
= the independence assumption no longer holds
= How to deal with an event that can occur repeatedly ?
— The seizure (crise d'épilespsie) is another example of clustered data

= the event may repeat indefinitely per person



Washington Ashkenazi study : dependent data

This study examined the mutations of a particular gene (the BRCA)
Is there an effect of mutations on risk of breast cancer 7

The study was confined to volunteers from the Ashkenazi population
Each volunteer was controlled for BRCA mutations

A subset of 1960 families is available (at most two relatives per family)
For each volunteer, information of two female relatives are collected

— age of onset of breast cancer (current age for women without cancer)

The BRCA mutation status of the volunteer is also collected




Washington Ashkenazi study

= Here is a subsample of 3 families
— for each volunteers there are 2 rows
e.g. F#1 consists of 2 first degree female relatives (ages 73 and 40)
. neither of them has ever had breast cancer

. nor the volunteer attached to F#1 have a BRCA mutation
Note 1 The survival variable is age of onset
Note 2 The censoring variable is “brcancer” and “mutant” is the covariate

Note 3 As family members share genetic characteristics, they are not independent

Table: Clustered survival data

famlD brcancer age mutant

1 1 0 73 0
2 1 0 40 0
7 9 0 89 0
8 9 1 60 0
87 94 1 44 1
88 94 0 45 1




Marginal Survival Models (MSM)

= This approach ignores clustered data when estimating the model

= Clusters are accounted for when computing standard errors of B
= MSM relies on standard Cox model estimation

— Assume there is one covariate with parameter estimate 3 and U[ =V(B)

— 0’% can be misleading as it assumes that all subjects are independent

= It has to be corrected for the clustering impact
= The correction requires to first define the following score residuals
S = 0y (Z’ij — i?(tij)) - Z (.T/'z — Ej(tij))eziﬁ (Ho(tu) — Ho(tu—l))
tu<t;
where we can notice that the first part is the Schoenfeld residuals

= The variance correction is then given by

G n; n;

C = ZZ Z SijSim, G and n; are defined in the next slide

i=1 j=1 m=1

where the cluster-adjusted standard error for Bis a;‘; = (V(B\) x C)Y/?




Cluster-adjusted standard errors

When there are ¢ covariates in the Cox model, g is a vector
We hence have to apply the correction to the whole estimated covariance matrix of 3

The score residuals are now 1 X g matrices and C is a ¢ X ¢ matrix as

ng o ng

G
C= Z Z Z sgjsm

i=1 j=1 m=1

where G is the number of clusters (assumed to be known here) and n; is the number of failure in
the ith cluster

Then, the cluster-adjusted covariance matrix is given by

-~

V' =V(B)CV(B)

the traditional sandwich estimator

Adjusted standard errors are then derived as follows

se(B) = diag(V™)"/?




Frailty survival models : recall

= Another approach is to generalize to clustered data the likelihood

Recall Under the independence assumption, we may write (see Chapter 1)

ﬁ xz Hf t’HB tl?ﬂ o= Hh twﬁ tl?ﬁ)

Recall Under proportional hazards assumption (Cox) it becomes

L(B;m:) = ﬁ (ho(ti)eziﬁ)éiefH"(mexP(“’fm

i=1
t;
- / ho(v)dv
0

where

is the baseline cumulative hazard
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Frailty survival models : principle

The idea is to assign each individual in a cluster a common factor
this common factor is known as frailty or random effect and denoted
Wi
for the ith cluster
Then, for the jth subject in the ith cluster, the hazard function is
hij(t) = ho(ty)wie"”
We allow for w; to vary from one cluster to another

a common model that governs this variability is a gamma distribution
wl/@*lefw/e
(1/0)0/¢

An alternative is to use a standard normal distribution

hij(ty) = ho(ty)wie™” = ho(t;)e™7F "7 as w; = "7

g(w,0) =

such that the random and fixed effects are put on the same level




Frailty survival models : unfeasible estimation

= Assuming that the frailties w; are observed, the joint likelihood is
9 _ ij)wi exp(zi;
Lij(B,0; wi, ti, 645, w5) = g(wi, 0) (h,o(t,;_,)wie””ﬁ[’) "¢ Holty)wi expleyh)

and the full likelihood is

Li;(B,0) Zzﬁw (B, 05 wi, tij, 645, T37)

i=1 j=1

= MLE of 8 and 0 is feasible under assumption that
wi, tij, O, i
are observed
= Although we can have an idea of the number of clusters, the frailties

Wi

are in general not observed directly
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Frailty survival models : EM algorithm

= In the more realistic case where w; are unknown
. one can use the Expectation-Maximization (EM) algorithm
= It alternates between finding expected values for w; based on current estimates of
B and 0
and using these expected values to find updated estimates for
[ and 0
until convergence

= If we use a parametric distribution for

f(t,8)
setting up the EM algorithm is fairly direct

= Generalizing this to the semi-parametric Cox model is more complex




Example: standard Cox model

= Consider the whole Ashkenazi data set

First Fit the standard Cox model to explain the age of onset of breast cancer

coef exp(coef) se(coef) z
mutant (BRCA) 1.1907 3.2895 0.1984 6.002

= The likelihoods of the null versus mutant BRCA models are

p
1.95e-09
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Example: standard Cox model

= Consider the whole Ashkenazi data set

First Fit the standard Cox model to explain the age of onset of breast cancer

coef exp(coef) se(coef) z
mutant (BRCA) 1.1907 3.2895 0.1984 6.002

= The likelihoods of the null versus mutant BRCA models are
—3579.707 and — 3566.745
respectively and leads to the following LR test statistics
LR = 2(—3566.745 + 3579.707) = 25.924

that we compare to a x3 and results in p < 0.0001

= this confirms the need of including the BRCA status of the volunteer

p
1.95e-09
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Example: MSM

= We now implement the MSM to account for the clustering
= The clusters are defined through the family ID in the database

= We expect here the coefficient to be the same but the adjusted standard error to be different if
the cluster are impacting

coef exp(coef) se(coef) robustse =z P
mutant (BRCA) 1.1907 3.2895 0.1984 0.2023 6.002 1.95e-09

= The robust standard error is only slightly higher than the unadjusted one
= the effect of clustering within first-degree relatives is small

= the estimation of the MSM reveals that having a first-degree relative with a BRCA mutation
increases the hazard of developing breast cancer by a factor of 3.30
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Example: frailty

= Finally we implement the frailty model with a gamma distribution
= We expect here the standard error to be different if the clusters matter

= the coefficient is also likely to vary as the likelihood is modified

coef  se(coef) se2 Chisq  df P
mutant 1.272 0.2317 0.2004 30.13 1.0 4.0e-08
frailty(famID) 221.50 211.6 3.1e-01

= Softwares often returns 2 different standard errors

— the first is directly derived from the Hessian and is generally preferable

— the second is an alternative estimate based on a variation of the sandwich estimator

= The results are close to those obtained with the MSM and Cox models

= having a first-degree relative with a BRCA mutation increases the hazard of developing breast
cancer by a factor of exp(1.272) = 3.56
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Example: frailty

= The likelihoods of the fixed (no cluster) vs random effects models are
—3566.745 and — 3564.622

respectively and leads to the following LR test statistics
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Example: frailty

= The likelihoods of the fixed (no cluster) vs random effects models are
—3566.745 and — 3564.622
respectively and leads to the following LR test statistics
LR = 2(—3564.622 + 3566.745) = 4.246
that we compare to a x7 and results in p = 0.03934

= When comparing the null model with the random effects model we have
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Example: frailty

= The likelihoods of the fixed (no cluster) vs random effects models are
—3566.745 and — 3564.622
respectively and leads to the following LR test statistics
LR = 2(—3564.622 + 3566.745) = 4.246
that we compare to a x7 and results in p = 0.03934
= When comparing the null model with the random effects model we have
—3579.707 and — 3564.622
respectively which leads to the following LR test statistics
LR = 2(—3579.707 + 3566.745) = 30.17

and that we compare to a x? and results in p < 0.00001
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e.g.

Cause-specific hazards

Until now we have considered a single, well-defined outcome
In some study we may face multiple causes of failure
an employee can quit the job for different reasons: fired, retirement, ...

A naive solution is to focus on a particular type of failure

. and treat the others as a type of censoring

Note 1

Note 2

This is questionable as censoring relies on an independence assumption
What we face here are competing risks, and we have to examine them

Interpretation of survival analyses in the presence of competing risks will always be subject to at
least some ambiguity due to uncertainty about the degree of dependence among the competing
outcomes

For a particular subject, we observe only one cause of failure




Kaplan-Meier estimation with competing risks

= Consider first the naive solution : for each type of failure
. while considering others as a type of censoring

= As presumably, the independence assumption is violated, we can question the consequences on
Kaplan-Meier estimation

Note Conversely to Cox, KM estimator considers that censoring occurs first
= We illustrate this issue with the prostate cancer data (see Chapter 1)
= focus on patients ages 80+, stage T2, poorly differentiated

Note old patients, with grade 3 advanced cancer

Table: Cancer prostate data for patients ages 80+

grade stage ageGroup survTime ¢ (status) A (other) 1 — A (prost)

13 poor T2 80+ 21 0 0 0
38 poor T2 80+ 105 0 0 0
41 poor T2 80+ 2 1 0 1
47 poor T2 80+ 67 2 1 0
78 poor T2 80+ 2 0 0 0
93 poor T2 80+ 60 2 1 0
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Example : Kaplan-Meier and competing risks

= In Table 19, when § = 2 we create a new censoring variable A

= we apply twice 2 the KME : § = 2 as censored and 6 = 1 as censored

10 4 o

=

g =
2 08 - 02 g
b Death from 2
= other causes E
2
£ 06 o4 g
£ g
£ 2
£ 5
5 04 4 0.6 5‘
g 3
5 Death from 9:F'
g‘ 02 ] prostate cancer Log %
Z 8
| g
g &
[

0.0 [

2 4 6 8
Years from prostate cancer diagnosis

Note 1 At 10 years, e.g., the P(of dying of prostate cancer) is 0.46 versus 0.88
Note 2 If one assume those 2 probabilities to be independent there is no issue
Note 3 If there are not, as they sums to 1.34 > 1, this reveals a severe bias
Note 4 Unfortunately, this hypothesis cannot be tested from the data




The cumulative incidence functions

How to formally address this issue in a non-parametric framework ?

To develop a formal model to accommodate competing risks,

. assume that there are K < oo distinct causes of failure

Also assume that the subject can experience at most one of the K causes

Then, for each cause of interest, we defined as sub-distribution function

also known as cumulative risk (or incidence) function for the jth cause
It is increasing as any cumulative distribution function

. but goes, in the limit, to the probability of failure from the jth cause rather than to 1

Fi(o0) = B(C = j)




The cause-specific hazard

= The cause-specific hazard is hence defined conditionally to C' = j

hy = lim (]P(t< T<t+570:j\T>t))
§—0 1)

= One can obtain the whole hazards function as follows

K
h(t) =3 hi(®)

= The risk of failure at a particular time is simply the sum of the risks of all specific causes at that
time

= Now assume that we have D distinct ordered failure times ¢, t2, ..., tp
= We may estimate the hazard at the ith time ¢; using
h(ts) = di/n
and the cause-specific hazard for the kth type cause as
Ek(tz) = di/n;
i.e. the # of events of type k at t; divided by the # of subjects at risk
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Estimating cause-specific hazards

= The sum over all cause-specific hazards is estimated as
K

- —1
j=1

= The probability of failure from any cause at ¢; is
S(tii1) x h(t)
and hence, for a particular cause k we have

S(ti-1) x hi(t:)

from which we obtain an estimate of the cumulative incidence function

Fr(t) = > 8(ti1) x ha(t)

<t
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Example : estimation of the cumulative incidence function

= Consider the following artificial data and compute ?‘k(t) given that

5(0,2,3,5,7) = (1,0.833,0.667, 0.444, 0.000)'

Patient1 @ B

»

Patient 2

[
Patient3 @ B
®

A

Patient 4
Squares are for k =1

. Triangles for k=2
Patient5 @ O Circles for censored
observations
Patient 6

0 1 2 3 4 5 6 7 8

Survival time




Example : estimation of the cumulative incidence function

= Consider the following artificial data and compute ?‘k(t) given that

5(0,2,3,5,7) = (1,0.833,0.667, 0.444, 0.000)'

Patient1 @ B

»

Patient 2

[
Patient3 @ B
®

Patient 4 A

Squares are for k =1
. Triangles for k=2
Patient5 @ O Circles for censored
observations
Patient 6

0 1 2 3 4 5 6 7 8

ti ni  di di2 d; S(ti—l) hl(tz) hQ(tz) Fl(ti) F?(ti)
0 6 0 0o 0 1 / 0.000  0.000
2 6 1 0 1 0.833 1/6 0 0.167  0.000
3 5 0 1 1 0.667 0 1/5 0.167 0.167
5 3 1 0 1 0.444 1/3 0 0.389 0.167
7 1 0 1 1 0.000 0 1 0.339 0.611
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Example : cumulative incidence function for the prostate cancer

= An estimate of Fy(t) for the prostate cancer data gives

t; S(tz;l) Fl(tz‘) Fg(ti)

1 0 1.000 0.00000
2 1 0.994 0.00000
3 2 0.988 0.00602
4 3 0.984 0.00848
5 4 0.983 0.00973
6 5 0.978 0.01477

= When comparing with KME, we see that F1(f;) and F>(t;) never cross

0 2 4 6 8 10
Years from prostate cancer diagnosis

10 ro 17 Stacked Plot
.
g
g 5 508
8 08 4 02z 2
2 Death from g =
Z other causes 2 =
I Kaplan-Meier estimates F 2064
£ 06 1 04s E Destiiton
g -1 other causes
g g
= 5 2044
3 s =
Zo04aq to6 g2
4 Death from o £02-4
= prostate cancer z Death from
Z 02 tos & prostate cancer
2 g 04
£ g
& 8 T T T T T T
0.0 Ly

0 10

2 4 6 8
Years from prostate cancer diagnosis




Regression methods for cause-specific hazards

= Capturing the influence of covariates is challenging in the semi-parametric model of Cox
= How to define the h.(t;) on which the covariates should operate ?

= In the spirit of the naive method for the KME, one can consider other causes as censoring and vice
versa

= When fitting the Cox model for prostate cancer death we obtain

coef exp(coef) se(coef) =z D
gradepoor 1.2199  3.3867 0.1004 12.154 2e-16
ageGroup70-74 -0.2860 0.7513 0.2595 -1.102  0.2704
ageGroup75-79 0.4027  1.4958 0.2257 1.784 0.0744
ageGroup80-+ 0.9728  2.6454 0.2148 4.529 5.92e-06

Note 1 Patients having poorly differentiated disease have much worse prognosis than do patients with
moderately differentiated disease

Note 2 The hazard of dying from prostate cancer increases with increasing age of diagnosis (the reference
is the youngest age group, 65-69)
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Regression methods for cause-specific hazards

= When fitting the Cox model for death from other causes we obtain

coef exp(coef) se(coef) =z P
gradepoor 0.28104 1.32451 0.05875 4.784 1.72e-06
ageGroup70-74 0.09462 1.09924 0.12492 0.757 0.44879
ageGroup75-79  0.31330 1.36793 0.11709 2.676 0.00746
ageGroup80+ 0.79012 2.20367 0.11204 7.052 1.76e-12

Note 1 Patients with poorly differentiated cancer have a higher risk of death from non-prostate-cancer
related disease than do those with moderately differentiated disease

Note 3 These results are highly suspect as they rely on the independence assumption
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The Fine-Gray method for cause-specific hazards

= A solution that can overcome this issue is to set

(IP’(t< Tk5< t+6\E)>

ha() = Jim
i.e. to define the effects of covariates on the cause specific hazards where
E= ((Tk, > tor (Ty < tand K # k))
denotes the conditional event
= The effects of the covariates enter the sub-distribution hazard as follows
= the conditioning set specifies not only T} > ¢ but also allows other events

. in which case we must have 7)., < ¢

= the risk set includes not only those currently alive and at risk for the kth event type but also those
who failed earlier of causes of type &’
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The Fine-Gray method and the model of Cox

= The Fine-Gray framework meets the proportional hazard models by setting

_ dlog(1 — Fi(t))

hu(t) = 5t

= A proportional Cox-type equation is then apply to sub-distribution hazard
hu(t, @, B) = hox(t)e”™”

= the sub-distribution hazard for a subject with covariate z is proportional to a baseline
sub-distribution function hg,;(t)
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Note 1

Note 2

Note 3

Example : the Fine-Gray method

We first fit the Fine-Gray model with the prostate cancer as death cause

gradepoor
ageGroup70-74
ageGroup75-79
ageGroup80+

coef
1.132
-0.272
0.367
0.799

exp(coef)
3.102
0.762
1.443
2.224

se(coef)
0.101
0.253
0.219
0.208

Second, we estimate the model for death from other causes

gradepoor
ageGroup70-74
ageGroup75-79
ageGroup80+

coef

0.126
0.103
0.273
0.667

exp(coef)
1.13
1.11
1.31
1.95

se(coef)
0.0584
0.1252
0.1176
0.1128

z
11.20
-1.08
1.67
3.85

z
2.154
0.824
2.323
5.917

p

0.00000
0.28000
0.09400
0.00012

p

3.1e-02
4.1e-01
2.0e-02
3.3e-09

Again we see that poorly differentiated patients have higher risk for death from other causes

The risk ratio being 0.126 the effect size is however smaller than we obtained with the naive

method (0.281)

The estimated effect on death from prostate cancer of having poorly differentiated disease is
similar for both methods
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Example: comparing the effects of covariates on different causes of
death

= One could be interested in comparing the effect of the grade and the age on both causes of death
e.g. the risk of death increases with age but can differ from one cause to another

= Here is a summary of the numbers of events of each type for the dataset

from/to event-free prostate other no event total entering
event-free 0 410 1345 4165 5920

= Now we can stratify on cause of death and get estimates of
. the effect of “grade” on cause of death under the assumption that they affect

1 both causes equally

coef  exp(coef) se(coef) =z P
gradepoor 0.515 1.673 0.050 10.372 2.0e-16
ageGroup70-74 0.027 1.027 0.112 0.238  0.81210
ageGroup75-79 0.332 1.394 0.104 3.198  0.00139
ageGroup80+ 0.833 2.301 0.099 8.396 2.0e-16

Note This first model is not really useful as we expect that cancer grade affects prostate cancer death
differently than it does death from other causes
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Example: comparing the effects of covariates on different causes of
death

2 or the "grade” status affects both causes differently

coef exp(coef) se(coef) =z D
gradepoor 1.239 3.451 0.100 12.391 2.0e-16
factor(trans)2 ~ NA NA 0.000 NA NA
ageGroup70-74 0.026  1.027 0.112 0.235 0.81431
ageGroup75-79 0.333  1.395 0.104 3.201  0.00137
ageGroup80+  0.833  2.301 0.099 8.394  2.0e-16
gradepoor:
factor(trans)2 ~ -0.963 0.382 0.116 -8.327  2.0e-16

= The estimate for “grade” (1.239) is the effect of grade on prostate cancer death, and is similar to
what we got earlier (see S149)

= However, the last row is an estimate for the difference between the effect on prostate cancer death
and death from other causes

= -0.963, represents the additional effect of poor grade on risk of death from other causes relative to
its effect on prostate cancer death

Note 1 Specifically, the hazard of death from other causes is exp(1.239 — 0.963) = 1.318, and hence
increased by 32% (much less than the 3.451 factor of death from prostate cancer)
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Example: comparing the effects of covariates on different causes of

death

= Regarding the age, here are the results we obtain

coef
gradepoor 1.220
ageGroup70-74 -0.286
ageGroup75-79 0.403
ageGroup80+ 0.973
trans2 NA
gradepoor:trans2 -0.939

ageGroup70-74:trans2  0.380
ageGroup75-79:trans2  -0.089
ageGroup80+-:trans2 -0.183

exp(coef)
3.387
0.751
1.496
2.645

NA

0.391
1.463
0.914
0.833

Note None of these differences are statistically significant

se(coef)
0.100
0.260
0.226
0.215
0.000
0.116
0.288
0.254
0.242

z
12.154
-1.102
1.784
4.529
NA
-8.072
1.322
-0.351
-0.754

p
2.0e-16
0.2704
0.0744
5.92e-06
NA
6.66e-16
0.1863
0.7252
0.4508

= we conclude that there is no difference in the effect of age on the two death causes, after
adjusting for grade
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The parametric approach

= In what follows, we develop further the MLE section of Chapter 1

= Non-parametric (e.g. KME) and semi-parametric (e.g. Cox model) approaches are powerful
but they accommodate complex censoring and truncation less directly

= In the parametric framework, the standard likelihood theory applies

but its validity depends on the appropriateness of the selected model
= Here we essentially review

— the exponential distribution
— the Weibull distribution

— the log-normal distribution

— the log-logistic distribution




The exponential distribution

= In Ch. 1, we saw that the simple distribution to work with is the exponential one
= It has constant hazard function h(t) = A (= memory-less property)
= The risk of facing the event of interest is the same at any point in time
i.e. neither declines nor increases in time
Recall The p.d.f and survival functions are

F(t:A) = xe and S(t;A) = e

= In general, it is not flexible enough but it can help in some specific applications

= power and size calculations

= The Weibull distribution, of which the exponential distribution is a special case, offers more
flexibility




The Weibull distribution

Recall The hazard and survival functions are
h(t) = art® " and S(t) = e~
= In view of introducing covariates in the parametric model, let define
uw=—loghand o0 =1/«
a location and scale parameter for the distribution
= One can hence rewrite the hazard and survival functions as
eV

1
h(t) = ;e*“/%“f’*l and S(t) = e

Note Obviously, when o = 1, this reduces to the exponential distribution
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Diagnostic tool for the Weibull distribution

= Consider now the g(u) = log(—log(u)) transformation function for S(¢)

o(5(1)) = alog(n) + alog(t) =~ + = log(x)
= This will allow for assessing how well a set of survival data follow a Weibull distribution
1 First compute the KME :S\'(tl) and define
v = 9(8(t)
2 Then, plot y; versus log(¢;) and fit the linear equation
y=>b+mlogt
where m =1/ and b= —pu/o

= If the plotted points fall along this fitted line, a Weibull distribution should approximate well the
distribution of the data
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Example: diagnostic tool for the Weibull distribution

= Consider the some databases introduced in Chapter 1

_| Smokers Data

0.0

loglog(KME)
loglog(KME)
-1.0

The points do not follow the line

-2.0

The points do follow the line

T T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4 5
log Survival Time log Survival Time

= For the second data set, the Weibull distribution seems plausible
= The fitted straight line parameters are : b = —2.0032 and m = 0.4385

= Weibull scale and location parameter estimates are:

i =—b/m = 2.0032/0.4385 = 4.568 and & = 1/m = 1/0.4385 = 2.280




MLE of Weibull parameters for a single group of survival data

The linear approach is limited but provides good entries for the MLE
The log-likelihood function is (see Ch. 1)

n

Na)y=Y" ((x- log h(t;) + log S(ti)>

i=1

Substituting the expressions for h(t;) and S(;) we get
n n

(N, @) = dloga+ dalog A+ (= 1) > dilogt; — A% Yt

i=1 i=1

with d =37 | 0;

The expression can of course be expressed in terms of p and o

Once implemented and applied to the smokers data, we obtain

ﬁMLE = 4.656329 and 3MLE = 2.041061

The results are not so far from the linear approach

In general, the standard errors are computed for fiyr and log o mre

G, = 0.2170 and Giog o = 0.0919
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Profile Weibull likelihood

= Suppose that a survival random variable T, follows a Weibull distribution
T ~ Weib(«)
= For a given value of « one can define a new random variable
T = T% ~ exp(\Y)
= In such a case (see Ch. 1), the analytic solution of the MLE is known
Aa) = (d/ V)V
with V' = 3"t and d the total number of deaths
= Since the MLE X(a) can easily be obtained, we can define as
0 (o) = t(\(a), @)
the Weibull profile likelihood
= Maximizing £*(«) yield the MLE of « and the MLE for A\(«) is
A@) = (d/V)"'*
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Example : the profile Weibull likelihood

= When applied to the smokers data, we obtained
o =1/a=2.041063
which is almost identical to cyLE
= Then, @ is used to obtain X and finally
1 = 4.656329
which is indistinguishable from fiye

= As the MLE only relies on 1 parameter we can plot the profile likelihood

-480
!

=500
L

Weibull profile log-likelihood
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The Accelerated Failure Time model

When comparing patients of two groups (e.g. treatment and control)
e,
i.e. the hazard ratio, was the quantity we used
It was assumed to be time-invariant (proportional hazards hypothesis)
If the treatment group is effective in increasing survival
B <0,
i.e. the log-hazard ratio, such that the hazard ratio is less than 1
An alternative way of comparing two groups is called AFT
We assume here that the survival time of the first group is a multiple

0=¢

of what the survival time would have been had if the patient was in the second group




More intuition on AFT models

= The AFT approach assumes that the effect of a covariate is to accelerate or decelerate the life
course of a disease by some constant

e.g. If 6 = 2 everything in the life history of patient happens twice as fast
= If the model concerns the development of a tumor, this implies that
1 all of the stages progress twice as fast as for the unexposed individual
2 the expected time until the failure event is 0.5 of the baseline time
= Formally, the survival distributions for the AFT models are given by
S1 = So(e 7t)

and the hazards are given by
hi(t) =€ Tho(e 7t)
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The AFT model with Weibull distribution

= In the case of the Weibull distribution we have (see S159)
1
hi(t) =e Yho(e "t)=e T =e M7 (e )/
(o

= Rearranging, we have

- (7'1 —p/o o— — o
hi(t)=e e wlogt/o=t — =% po (1) = e’ ho(t)

that is, the AFT model is equivalent to the Cox model with § = —v/co

Note This equivalence only exists for the Weibull distribution
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Comparison of two groups with the parametric Weibull model

= Consider again the smokers data and the comparison of the triple therapy treatment group to the
patch therapy group

= When estimating the AFP model we obtain the following results

coeffs se z p
(Intercept) 5.286 0.3320 15.92 4.59e-57
grppatchOnly -1.251 0.4348 -2.88 4.00e-03
Log(scale) 0.689 0.0911 7.56 3.97e-14

= 7 = —1.251 indicates that by a factor of
6=¢ =0.286

the patch therapy group has shorter times to relapse (life course to relapse decelerates for the
triple therapy group)

= The scale parameter estimate is & = exp(0.689) = 1.992, leading to
B=-7/6 =0.629
for the log proportional hazard in the Cox model

Note In comparison, a Cox-model-based estimation of /3 gives 3: 0.6050
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Interpreting the intercept in the AFT model

= The Cox-model fit provides only 1 estimate, E

= The AFT Weibull model provides 3 estimates, 2 of them being linked to the baseline Weibull
distribution

= In particular, the intercept p, cannot be estimated in the Cox approach
= it would cancel out of the partial likelihood (as the baseline hazard does)
= The AFT model allows for direct estimation of the baseline hazard as

i =5.286 and o = 1.992

lead to & = 1/1.992 = 0.502 and X = exp(—5.286) = 0.00506 and finally

/So(t) = e—()u‘,)"‘
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Comparison of two groups based on survival functions

= The survival function for the combination group is

S1(t) = (So(1))

and can be estimated by replacing all quantities by their estimates

e~/

= We can compare :S\'U(t) and gl(t) with those obtained from the Cox model

= Notice that the parametric nature of the AFT produces smooth curves

2 —— Coxmodel combination
- Cox model patch
£ » —— Weibull model combination
E S —— Weibull model patch
2
o |
2 s
a.
s
2 °
Z o
2 1
<
=
T T T
0 50 100 150

Time in days




AFT-Weibull-based regression

= An alternative way of looking at Weibull AFT model is to define
log(T) = p+ vz + oc”
i.e. to model the log-survival time as a location-scale model where
e" =loge
with &, a unit exponential distribution and x a vector of covariates
= Then, the survival function is given by
S(t)=B(T > ) = B(e* > B 1207,
= So(te™ ")
= This formulation is quite general as different choices for
e~ L(0)

can lead to other parametric survival models
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Example: AFT-Weibull-based regression

= Consider again the smokers data but with the covariates (see Ch. 2)
Recall For the Cox model we obtained the results below

Recall In this model, Epmh = 0.608 means that the hazard is higher for this treatment group by a
constant factor of exp(0.608) = 1.83654

coef exp(coef) se(coef) =z D
grppatchOnly 0.60788  1.83654 0.21837 2.784  0.00537
age -0.03529  0.96533 0.01075 -3.282 0.00103

employmentother  0.70348  2.02077 0.26929 2.612  0.00899
employmentpt 0.65369  1.92262 0.32732 1.997  0.04581

= For the AFT Weibull model we obtain

Note Fpaten = —1.1902 means that patients with the patch only have shorter times to relapse by a
decelergtion factor of exp(—1.1902) = 0.304

coeffs se z »
(Intercept) 2.4024 0.9653  2.490 1.28e-02
grppatchOnly -1.1902 0.4133 -2.880 3.98e-03
age 0.0697 0.0203 3.430 6.02e-04
employmentother -1.3890 0.5029 -2.760 5.74e-03
employmentpt -1.3143 0.6132 -2.140 3.21e-02
Log(scale) 0.6313 0.0900 7.020 2.26e-12
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Exercise: AFT-Weibull-based regression

= Express the results of the AFT Weibull model in terms of proportional hazards coefficients

= Then, compare these coefficients we those obtained from the Cox model
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Exercise: AFT-Weibull-based regression

= Express the results of the AFT Weibull model in terms of proportional hazards coefficients

= Then, compare these coefficients we those obtained from the Cox model

= For each regression coefficient ~y;, we have 8; = —v;/c
weib.coef.ph

grppatchOnly 0.63301278

age -0.03708786

employmentother 0.73878031

employmentpt 0.69903157

coxph.coef
0.60788405
-0.03528934
0.70347664
0.65369019
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Model selection and residual analysis

= Many of the facilities for model selection and residual analysis of Ch. 2 remain valid

e.g. We plot below the deviance residuals from the previous Weibull model

Deviance residuals Deviance residuals Deviance residuals
versus age versus treatment group versus employment
Ll [— | o I
- -
<1 g : g ;
g g 1 :
= 2 8
g & <1 [
=t T < 5 °
et 2 2
7 7} 7]
g g 2
— — -
[ [ ; |
a1 — R
T T T T T T T T T T T
20 40 60 80 combination patchOnly ft other pt
age grp employment

= The residual distributions of both “grp” and “employ” are reasonably comparable, indicating that
these variables are modeled successfully

= For “age”, the distribution may be consistent with a linear model, when one considers the width of
the 95% confidence intervals
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Jackknife residuals

Recall These residuals are computed as the difference in the value of ¥ when all data are used and when
an individual is deleted from the data

Jackknife residuals otbained with the AFT Weibull model

0.002

Change in coefficient for y age
-0.002
I

114

T T T T T T T

0 20 40 60 80 100 120
Individuals

-0.006
|
.
2

At most, changes are less than 10% of the coefficient value.
N 16 Still subject 46 and 68 should be checked to
ensure that there is no errors

in recording the data.

0.002

0.000

Change in coefficient 3 for age

-0.002

T T T
0 20 40 60 80 100 120
Individuals
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AFT log-normal model

= Various distribution can be considered in the AFT framework

= For instance, when

(Intercept)
grppatchOnly
age
employmentother
employmentpt
Log(scale)

Scale

e ~N(0,1)

¢ follows a log-normal distribution and we obtain the following results

coeffs
1.6579
-1.2623
0.0648
-1.1711
-0.9543
0.8754
2.4

se
1.0084
0.4523
0.0203
0.5316
0.7198
0.0796

z
1.64
-2.79
3.20
-2.20
-1.33
10.99

p

1.00e-01
5.25e-03
1.39e-03
2.76e-02
1.85e-01
4.15e-28

= All estimates are quite different from what we obtain with the Weibull model albeit with similar
signs
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AFT log-logistic model

= If £ has a logistic distribution, with survival distribution given by

1
T 14 e

S(u)

then, T has a log-logistic distribution and the results are now

coeffs se z P

(Intercept) 1.9150 0.9708 1.97 4.85e-02
grppatchOnly -1.3260 0.4588 -2.89 3.85e-03
age 0.0617 0.0196 3.15 1.66e-03
employmentother -1.2605 0.5392 -2.34 1.94e-02
employmentpt -1.0991 0.7050 -1.56 1.19e-01
Log(scale) 0.3565 0.0884  4.03 5.47e-05
Scale 1.43

= Again, the estimates are different from what we obtain with the two other models
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Large set of covariates

One of the purpose analysis is to understand how covariates contributes to survival times
Sometimes we focus on specific covariates such as age, employment, etc.

By contrast, we can focus on the predictive ability of a set of covariates

In many cases, dozens or thousands or predictors may be available

In such a study, many of them are unrelated with survival

those that are relevant may be strongly correlated amongst themselves

this multicollinearity is likely to complicate estimation and inference

Penalized methods such as the Lasso method are useful in such situation




The Lasso method for survival models

= This approach maximizes the partial likelihood function but now with

. the additional stipulation that the L; norm of /3; satisfies

P
doIBil<t
=1

for a constant ¢ and with p the number of parameters

= This may be shown to be equivalent to maximizing the penalized likelihood
P
tp(B) = £(B) = A D 18|
j=1

for \ a pre-specified value of A

Note 1 Adding this constraint on coefficients shrinks them toward zero (as compared to non-penalized
MLE)

Note 2 A too large A will result in no covariates at all in the model

Note 3 A too small A will result in a large number of covariates in the model
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Optimization issues with the Lasso method

= A complication is that £,(/3) may not be strictly concave (weakly concave or flat)

= this causes convergence problems

= A crucial issue is hence to select A

= As in other econometric fields, cross validation procedures are helpful

© 0 N o o~ W N o=

—_
o
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we
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we

randomly divide the data set into 5 subsets of equal size

select 1 subset to be the so-called “validation” set

combine the remaining subsets in the so-called “training” set

use the training set (= 80% of the data) to build the Lasso model

use this model to predict the survival times in the validation set

use a partial-likelihood-based measure of goodness-of-fit to this set

repeat steps 1-6 with each of the remaining 4 subsets in turn playing the role of the validation set
derive an average partial-likelihood goodness-of-fit

repeat the whole process for a wide range of values of A

select the value of A that produces the optimum goodness-of-fit: A*




Example: biomarkers data

= Consider 227 patients with hepatocellular carcinoma (cancer du foie)

= For each patients, a wide range of clinical and biomarker covariates is collected
= The dataset is composed of 48 clinical and biomarker measurements

= Of the 227 patients, 117 have levels of a variety of chemokines markers

= some represent the levels in the tumor itself

Note In medical study, building a predictive model is a complex process that involves interplay between
the known medical science and the optimal predictive model

=- as we are economists we omit this dimension and consider 26 biomarkers

5 chemokines markers for 3 patients as an example

OS Death CDA4T CD4N CD8T CD8N  CD20T
1 83 0 2.600000  0.000000 190.6000 126.80 20.950000
76 20 1 14.450000 2.758621 2.1500 38.95 26.100000
131 35 1 2821133  8.294828 8.0064 62.64  2.821133
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Example: Lasso method for selecting biomarkers

First, we select the 117 patients for which all biomarkers are available
Before implement the Lasso, we standardize the covariates

as the biomarker ranges vary widely

Then, we set A = 10 and fit the Lasso model using 26 biomarkers

we see that 7 are retained and here are there coefficient estimates

CD8N CD68T CD4TR CD8TR CD68TR Ki67
0.104 0.258 -0.035 -0.096 0.111 0.285

As A = 10 has been specified arbitrarily, we can question the results

To investigate this we implement the cross validation procedure

CD34
-0.013
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Example: Cross validation procedure for the Lasso method

= The cross-validated partial log-likelihood can be plotted to visualize \*

= we see that the global maximum is obtained for \* = 8.24

Cross-validated log partial likelihood
2326 -2324 2322 2320 -2318

= The results where obtained for A € [2,12]

CD8N CD68T CD4NR CD4TR CD8TR CD68TR Ki67 CD34
0.133  0.269 -0.009 -0.076 -0.149 0.102 0.328 -0.044
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Example: Cross validation procedure for the Lasso method

= One can also be interested in the impact of A on the estimates

= we can plot the selected markers estimated coefficients for A € [20, \*]

Ki67

[ cDsN

|- CD6STR

Coefficient
0.

25 20 15 0 A*
A

= The 8 paths that intersect the \* vertical line are
— positive coefficients Ki67, CD68T, CD8N, and CD68TR

— negative coefficients CDANR, CD34, CD4TR, and CD8TR



Interpretation of Lasso-based estimates

= All EJ obtained with A\* are not interpretable in terms of hazard ratio
1 the lasso procedure has shrunken them

2 they are standardized to have standard deviation one
= However, they can be use to predict the survival profile of patients

Note These patients are those who were in the sample Table of S181

=

6 0.8
I

0.

4
I

Predicted survival probability
0.

0.2

—— Patient 1
—— Patient 76
—— Patient 131|

0.0
I

T T
0 10 20 30 40 50

Time in months




Survival Analysis with R

= We will review the implementation of most of the examples, in R

= All packages we use are listed below (databases are packed in “asaur”)

Note This package is attached to the book of Dirk F. Moore (Springer, 2016) that | mainly use for this
course

— "asaur” package

— “bshazard” package

— “cmprsk” package

— “coxme"” package

— "“forestplot” package
— “muhaz” package

— “numDeriv"” package
— "“Hmisc"” package

— "kmconfband,” package
— ‘stats” package

— "“penalize” package

— "“survival” package




Loading packages and visualizing data

= One of the first dataset we introduce is the aid to smokers to quit
= To visualize the data we need the “asaur” package

= Then we display for the 6 first subjects some columns (2 to 8)

1
2

> library (asaur)
> pharmacoSmoking[1:6, 2:8]

= In the same package we also have, e.g., the pancreatic cancer data

= To quickly visualize the first observations of the database we use

1‘> head(pancreatic) ‘




Manipulating and visualizing parametric survival distributions

= In the second section we introduce some parametric distributions

= For example, we can plot the Weibull survival function as follows

1| weibSurv <— function(t, shape, scale) pweibull(t, shape=shape,
2| scale=scale, lower.tail=F)

4| curve (weibSurv(x, shape=1.5, scale=1/0.03), from=0, to=80,
5| ylim=c(0,1), ylab="Survival probability’, xlab="Time")

= We can also plot the Weibull hazard function as follows

1| weibHaz <— function(x, shape, scale) dweibull(x, shape=shape,
2| scale=scale)/pweibull(x, shape=shape, scale=scale,
3| lower. tail=F)

5| curve (weibHaz(x, shape=1.5, scale=1/0.03), from=0, to=80,
6| ylab="Hazard ', xlab="Time', col=""red"")




Manipulating and visualizing parametric survival distributions

= |f needed we can simulate data from Weibull distribution as

1| tt.weib <— rweibull (1000, shape=1.5, scale=1/0.03)

= We can then check whether some empirical quantities converge to their theoretical values

> mean(tt.weib)
[1] 31.35497

> median(tt.weib)
[1] 26.84281

o R W N e

> gamma(l + 1/1.5)/0.03
[1] 30.09151
> (log(2)7(1/1.5))/0.03
[1] 26.10733
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Computation of the Survival function from the Hazard function

= As discussed in Ch. 1, one can use the hazard function to approximate the survival function

= Then, we can compute the empirical mean and median estimates

> library (survival)

> tm <— c(0,1/365,7/365,28/365,1:107)

> tm.diff <— diff(tm)

> survMale <— exp(—cumsum(hazMalextm. diff)*x365.24)

> survFemale <— exp(—cumsum(hazFemalextm. diff)x365.24)
sum(survMalextm. diff)

[1] 71.99964

> sum(survFemalextm. diff)

[1] 76.98838

\

= At this stage, to get an estimate of the hazard function we rely on

> tm <— c(0, birth

1/365, first day of life

7/365, seventh day of life

28/365,fourth week of life

1:106) subsequent years

> hazMale <— survexp.us[,"male”,”2004"]

> hazFemale <— survexp.us[,”female”, K "2004"]




The Kaplan-Meier estimator

= The Kaplan-Meier estimator is the most used non-parametric estimator of the survival function

= In the course we first apply it to artificial data

> library(survival)

> tt <— ¢(7,6,6,5,2,4)
> cens <— ¢(0,1,0,0,1,1)
> Surv(tt, cens)

[1] 7+ 6 6+ 5+ 2 4

s W N e

= Then, the KME rely on the following function of the survival library

result.km <— survfit(Surv(tt, cens) ~ 1, conf.type="log—log")
> summary( result .km)
> plot(result.km)
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Thank you!
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