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Back to basicsPlaceholder
• Consider the linear model Xt with s ∈ (0, 1] and ψ(.) ∈ R a linear filter :

Xt =
∞∑

j=−∞
ψjεt−j, t ∈ Z, sup

t
E|εt|s <∞,

∞∑
j=−∞

|ψj|s <∞ (1)
• Can this model generate the following dynamics ?

⇒ Yes ! Even if Xt is strictly stationary !
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Linear Time SeriesPlaceholder

⇒ Let start with some definitions and notations
Definition (1)

A stochastic process {Xt}t∈Z is a linear time series if

Xt = f (. . . , εt−1, εt, εt+1, . . .)

where εt is a white noise and f (.) is a linear function

• In the following we will consider the particular class of famous linear processes : ARMA processes
• We will see that even if ARMA process are linear, they can generate non-linear dynamics
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White noisesPlaceholder
Definition (2)

A Gaussian White Noise εt is a sequence of i. i. d. random variable with εt ∼ N (0, σ2
ε)

Definition (3)
A Strong White Noise εt is a sequence of i. i. d. random variable with E(εt) = 0 and E(ε2

t ) = σ2
ε

Definition (4)
A Weak White Noise ε̃t is a sequence of uncorrelated random variable with E(ε̃t) = 0 and E(ε̃2

t ) = σ2
ε̃

Example ε̃t = utut+1 · · · ut+k is a Weak White Noise

0                 200              400              600              800            1000
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Strong linear processPlaceholder

Definition (5)
Xt is a strong linear stochastic process if it has an MA(∞) representation

Xt =

∞∑
j=−∞

ψjεt−j,

∞∑
j=−∞

|ψj|s <∞

with s ∈ (0, 1] and εt ∼ SWN(0, σ2
ε) a Strong White Noise
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Strict stationarityPlaceholder

Definition (6)
A stochastic process {Xt}t∈Z is a strictly stationary time series if

(X1, X2, . . . , Xn)
d
= (X1+h, X2+h, . . . , Xn+h)

for h, n ≥ 1

Remark The term stationarity, without further qualification, will however stand for weak stationarity in the
following

Remark Obviously, in the Gaussian case strict stationarity and weak stationarity are equivalent
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Wold decompositionPlaceholder

Definition (7)
Any purely stochastic (centered) weakly stationary time series has a unique weak linear causal representation

Xt =

∞∑
j=0

ajε̃t−j,

∞∑
j=0

a2
j <∞

where ε̃t is a weak white noise

• The representation is causal in the sense that only past shocks describe the dynamic of Xt
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ARMA processesPlaceholder

Definition (8)
A linear time series {Xt}t∈Z is an ARMA(p, q) if

Xt =

p∑
j=1

ϕjXt−i + εt +

q∑
j=1

θjεt−j ⇐⇒ ϕ(B)Xt = θ(B)εt

where εt is a SWN, ϕ(B) = I −
∑p

j=1 ϕjBj and θ(B) = I −
∑q

j=1 θjBj

• Xt is stationary if ϕ(B) and θ(B) have no common roots and
ϕ(z) = 0⇒ |z| 6= 1, ∀z ∈ C

⇒ no root on the unit circle or equivalently ϕ(z) 6= 0 for all |z| = 1

• Obviously, XtBj = Xt−j. Later we will also use XtFj = Xt+j, F = B−1
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Causal ARMA processesPlaceholder
Definition (9)

Let Xt be a stationary ARMA(p, q). Then, Xt is causal if ϕ(z) 6= 0 for all |z| ≤ 1 or equivalently
ϕ(z) = 0⇒ |z| > 1, ∀z ∈ C.

Illustration with a simple AR(1) : Xt = ϕ1Xt−1 + εt

• If |ϕ1| < 1, Xt has a linear Wold representation because
∞∑

j=0

ϕj
1Bj

has absolutely summable coefficients and
Xt =

∞∑
j=0

ϕj
1εt−j

is the unique stationary solution
⇒ Xt has a strong causalMA(∞) representation which is a Wold representation
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Non-Causal ARMA processesPlaceholder

Definition (10)
Let Xt be a stationary ARMA(p, q). Then, Xt is non-causal if ϕ(z) 6= 0 for all |z| ≥ 1 or equivalently
ϕ(z) = 0⇒ |z| < 1, ∀z ∈ C.

Illustration with a simple AR(1) : Xt = ϕ̌1Xt−1 + ε̌t, ε̌t ∼ SWN

• If |ϕ̌1| > 1,∑∞j=0 ϕ̌
j
1Bj does not converge... however

— Consider Xt+1 = ϕ̌1Xt + ε̌t+1

— It follows that Xt = ϕ̌−1
1 ϕ̌1Xt = ϕ̌−1

1 Xt+1 − ϕ̌−1
1 ε̌t+1 and iterating

Xt = −
∞∑

j=0

ϕ̌
−j−1
1 ε̌t+j+1 =

∞∑
j=0

ϕ
j
1εt+j, ϕ1 = ϕ̌−1

1 , εt = −ϕ1ε̌t+1

where∑∞j=0 ϕ
j
1Fj has absolutely summable coefficients

⇒ Future shocks drive the dynamics : Xt = ϕ1Xt+1 + εt is non-causal
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Non-Causal AR and stationary solutionPlaceholder
Let Xt be a non-causal AR(1) defined by Xt = ϕ̌1Xt−1 + ε̌t

• Recall that Xt = ϕ̌−1
1 Xt+1 − ϕ̌−1

1 ε̌t+1 and that iterating we have
Xt = −ϕ̌−1

1 ε̌t+1 − · · · − ϕ̌−k−1
1 ε̌t+k+1 + ϕ̌−k−1

1 Xt+k+1 =

∞∑
j=0

ϕj
1εt+j

• If Xt is stationary, E(X2
t ) is finite and time independent so that

E
(

(Xt −
k∑

j=0

ϕj
1εt+j)

2
)

= ϕ2k+2
1 E

(
(Xt+k+1)2

)
→ 0 as k→∞

which arises from the condition |ϕ1| = |ϕ̌−1
1 | < 1

⇒
∑k

j=0 ϕ
j
1εt+j is the unique stationary solution of Xt

• However, Xt depends on future shocks : not a Wold representation
Remark In Xt = ϕ̌1Xt−1 + ε̌t the roots are ill-located whereas in Xt = ϕ1Xt+1 + εt the roots are well-located
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Invertible ARMAPlaceholder

Definition (11)
Let Xt be a stationary ARMA(p, q). Then, Xt is invertible if θ(z) 6= 0 for all |z| ≤ 1 or equivalently
θ(z) = 0⇒ |z| > 1, ∀z ∈ C.

Illustration with an ARMA(1, 1) : Xt − ϕ1Xt−1 = εt + θ1εt−1, |θ1| < 1

• The power expansion of θ is ζ(z) =
∑∞

j=0−θ
j
1zj and hence

εt = ζ(B)ϕ(B)Xt = π(B)Xt

with∑∞j=−∞ |πj| <∞ as |θ1| < 1

⇒ The invertible solution of Xt is
εt = Xt − (ϕ1 + θ1)

∞∑
j=1

−θj−1
1 Xt−j

as εt is expressed in terms of present and past values of Xs, s ≤ t
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Non-invertible ARMAPlaceholder

Definition (12)
Let Xt be a stationary ARMA(p, q). Then, Xt is non-invertible if θ(z) 6= 0 for all |z| ≥ 1 or equivalently
θ(z) = 0⇒ |z| < 1, ∀z ∈ C.

Illustration with an ARMA(1, 1) : Xt − ϕ1Xt−1 = εt + θ1εt−1, |θ1| > 1

• Applying a similar reasoning to noncausal ARMA we obtain
εt = −ϕ1θ

−1
1 Xt + (ϕ1 + θ1)

∞∑
j=1

−θ−j−1
1 Xt+j

⇒ Xt is noninvertible as εt is expressed in terms of present and future values of Xs, s ≥ t
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Minimum phase and Non-Minimum phase processesPlaceholder
• Let Xt be a stationary ARMA(p, q)

Definition (13)
If ϕ(z) = 0⇒ |z| > 1, ∀z ∈ C and θ(z) = 0⇒ |z| > 1, ∀z ∈ C, Xt is causal and invertible. Such a
process is calledminimum phase

Definition (14)
If ϕ(z) = 0⇒ |z| < 1, ∀z ∈ C and θ(z) = 0⇒ |z| < 1, ∀z ∈ C, Xt is non-causal and non-invertible.
Such a process is called non-minimum phase

• Let Xt be a stationary AR(p + q)

Definition (15)
If ϕ(z) = 0⇒ |z| 6= 1, ∀z ∈ C with some zeros inside and outside the unit circle, Xt is
mixed-causal/noncausal. Such a process is called Mixed-AR or MAR(p, q) with p and q denoting the number of
non-causal and causal lags respectively. The MAR enters the class ofmixed phase processes.
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Mixed phase AR processesPlaceholder

Definition (1)
A linear time series {Xt}t∈Z is an AR(p + q) if it is strictly stationary and satisfies the equation

ϕ(B)Xt = εt

where

ϕ(B) = 1−
p+q∑
j=1

ϕjB
j = 0⇒ |z| 6= 1

and εt is a strong white noise

• Here we clearly allow the roots of ϕ(B) to be outside and/or inside the unit circle
• When ϕ(B) has zeros both outside and inside the unit circle the process ismixed phase and called a
MAR(p, q)
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The MAR(p, q)Placeholder

Definition (1)
A linear time series {Xt}t∈Z is a MAR(p, q) if ϕ(B)Xt = εt can be decomposed as

ϕ◦(F)ϕ•(B)Xt = εt

where

ϕ◦(F) = 1−
p∑

j=1

ϕ◦j Fj, ϕ◦(z) 6= 0 for all |z| ≤ 1

and

ϕ•(B) = 1−
q∑

j=1

ϕ•j Bj, ϕ•(z) 6= 0 for all |z| ≤ 1

• Defining εt as a Gaussian noise would lead to an identification issue
⇒ In the following, εt will be assumed to be Non-Gaussian
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MAR(1, 1)Placeholder
Example (1)

Let Xt be a MAR(1, 1) defined by ϕ(B)Xt = εt. Then, Xt can be decomposed as

(1− ϕ̌◦B)(1− ϕ•B)Xt = ε̌t, |ϕ̌◦| > 1, |ϕ•| < 1

or equivalently
(1− ϕ◦F)(1− ϕ•B)Xt = εt, ϕ◦ = 1/ϕ̌◦, εt = −ϕ◦ε̌t+1

• Then, the stationary solution of Xt is given by
Xt =

∞∑
j=1

(ϕ◦)k

1− ϕ◦ϕ• εt+k +
εt

1− ϕ◦ϕ• +

∞∑
j=1

(ϕ•)k

1− ϕ◦ϕ• εt−k

or equivalently by the two-sidedMA(∞) representation
Xt =

∞∑
j=−∞

ψjεt−j, where ψ(L) =
1

ϕ(B)
=

1
ϕ◦(F)ϕ•(B)
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The generalized Mixed Phase ARMAPlaceholder
Definition (18)

A linear time series {Xt}t∈Z is a generalized ARMA(p◦, p•, q◦, q•) if ϕ(B)Xt = θ(B)εt can be decomposed as

ϕ◦(F)ϕ•(B)Xt = θ◦(F)θ•(B)εt

implying the stationary solution Xt =
∑∞

j=−∞ ψjεt−j if

ϕ◦(F) = 1−
p◦∑

j=1

ϕ◦j Fj, ϕ•(B) = 1−
p•∑

j=1

ϕ•j Bj, ϕ◦(z), ϕ•(z) 6= 0, ∀|z| ≤ 1

and

θ◦(F) = 1−
q◦∑

j=1

θ◦j Fj, θ•(B) = 1−
q•∑

j=1

θ•j Bj, θ◦(z), θ•(z) 6= 0, ∀|z| ≤ 1

where ψ(B) = ϕ(B)−1θ(B)

• Xt is purely causal when p◦ = 0 and purely non-causal when p• = 0

... purely invertible when q◦ = 0 and purely non-invertible when q• = 0
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The generalized Mixed Phase ARFIMAPlaceholder
Definition (19)

A linear time series {Xt}t∈Z is a generalized ARFIMA(p◦, p•, q◦, q•) if (1− B)δϕ(B)Xt = θ(B)εt can be
decomposed as

(1− B)δϕ◦(F)ϕ•(B)Xt = θ◦(F)θ•(B)εt

implying the stationary solution Xt =
∑∞

j=−∞ ψjεt−j if

ϕ◦(F) = 1−
p◦∑

j=1

ϕ◦j Fj, ϕ•(B) = 1−
p•∑

j=1

ϕ•j Bj, ϕ◦(z), ϕ•(z) 6= 0, ∀|z| ≤ 1

and

θ◦(F) = 1−
q◦∑

j=1

θ◦j Fj, θ•(B) = 1−
q•∑

j=1

θ•j Bj, θ◦(z), θ•(z) 6= 0, ∀|z| ≤ 1

where ψ(B) = ϕ(B)−1θ(B) and δ ∈ (−1/2, 1/2)

• Generalized Mixed Phase ARMA and ARFIMA models are introduced by Wu and Davis (2010) and Wu
(2014)
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Mixed phase baseline pathsPlaceholder

• For a given t and τ , a strong linear process can be represented as
Xt =

∞∑
τ=−∞

ετ1τ≤tψt−τ

if the process is causal and as
Xt =

∞∑
τ=−∞

ετ1τ≥tψt−τ

if the process is noncausal, that is a combination of baseline paths with stochastic i.i.d. coefficients
• If the process is mixed phase we have

Xt =

∞∑
τ=−∞

ετ1τ≤tψt−τ +

∞∑
τ=−∞

ετ1τ≥tψt−τ
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Mixed phase baseline pathsPlaceholder
• Xt = ϕ•Xt−1 + εt / Xt = ϕ◦Xt+1 + εt / Xt = ϕ◦Xt+1 + ϕ•Xt−1 + εt , τ = 30

30 35 40 45 50 55 60
0

0.5

1
Causal baseline path with  = 0.8

0 5 10 15 20 25 30
0

0.5

1
Noncausal baseline paths ° = 0.4

0 10 20 30 40 50 60
0

0.5

1
Mixed baseline paths with  = 0.8 and ° = 0.4
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Tracking error in minimum phasePlaceholder

• Let ετ a large positive shock occuring at time τ
— If t ≤ τ the weight of that large shock increases exponentially as t approaches τ
— At t = τ + 1 it looks like a brutal bubble burst

• For instance, consider a non-causal AR(1) with |ϕ| = |ϕ̌−1| < 1

Xt = εt + ϕεt+1 + . . .+ ϕτ−t−1ετ−1 + ϕτ−tετ , t < τ

Xt+1 = εt+1 + ϕεt+2 + . . .+ ϕτ−t−1ετ + ϕτ−tετ+1, t + 1 < τ

...
Xτ = ετ + ϕετ+1 + . . . , t = τ

Xτ+1 = ετ+1 + ϕετ+2 + . . . , t > τ

• In a mixed phase process, if t > τ , the bubble burst is smooth and the weight of that large shock
decreases exponentially
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Conditional expectationPlaceholder
• Let Xt+1 and Xt = µ+ ρ(1)(Xt−1 − µ) + εt two stationary variables such that conditional distributionof Xt+1 given that Xt = xt is

N (µ+ ρ(1)(xt − µ), σ2(1− ρ(1)2))

with ρ(h) = γ(h)/γ(0) and |ρ(1)| < 1.
Proposition (1)

For g(.) a real function, the best mean square predictor of Xt+1 is

arg min
g(Xt)

E
(

(Xt+1 − g(Xt))
2
)

= µ+ ρ(1)(Xt − µ) = E(Xt+1|Xt)

Proposition (2)
For g(Xt) = aXt + b, the best mean square linear predictor of Xt+1 is

arg min
g(Xt)

E
(

(Xt+1 − g(Xt))
2
)

= µ+ ρ(1)(Xt − µ) = EL(Xt+1|Xt)

⇒ In the Gaussian case, the best mean square predictor is linear
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Best linear predictor and errorsPlaceholder

• In Propositions (1) and (2), Xt = µ+ ρ(1)(Xt−1 − µ) + εt

• It follows that the best linear predictor of Xt+1 is
EL(Xt+1|Xt) = µ+ ρ(1)(Xt − µ)

... leading to the following prediction error
εt+1 = Xt+1 − µ+ ρ(1)(Xt − µ)

• The predictor EL(Xt+1|Xt) will be uniquely determined if
E(Error× Predictor Variable) = 0

⇒ As εt+1 is a SWN, this condition is fulfilled
E(εt+1Xt) = 0

Note EL ≡ best approximation of expectation as a linear function
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Non-Causal AR and causal representationPlaceholder
Xt = ϕ1Xt+1 + εt or Xt = ϕ̌1Xt−1 + ε̌t leads to 3 types of errors (noises)
1 εt = Xt − ϕ1Xt+1

— As εt−1 = −ϕ1ε̌t 6⊥ Xt−1, εt is not the innovation of Xt and
εt 6⊥ Xt − EL(Xt|Xs, s < t)

2 ε̌t = Xt − ϕ̌1Xt−1 is just an equivalent representation Xt

— As−ϕ1ε̌t 6⊥ Xt−1, ε̌t is not the innovation of Xt and
ε̌t 6⊥ Xt − EL(Xt|Xs, s < t)

Note The best predictor in mean square sense, E(Xt|Xs, s < t), will be nonlinear if ε̌t is non-Gaussian with finitevariance (Rosenblatt, 2000, p. 101)
3 ε̃t = Xt − ϕ1Xt−1 is a weak causal representation of Xt

— ε̃t ∼ WWN (except when εt is Gaussian, ε̃t ∼ SWN)
— Moreover, ε̃t is the linear innovation of Xt because one can show that

ε̃t = Xt − EL(Xt|Xs, s < t)
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Non-Causal ARMA and causal representationPlaceholder

Definition (20)
Let Xt be a stationary ARMA(p, q) defined as ϕ̌(B)Xt = θ̌(B)ε̌t. Then, it is always possible to find polynomials
ϕ(B) and θ(B) and a weak white noise sequence ε̃t such that ϕ(B)Xt = θ(B)ε̃t.

• Accordingly, any noncausal ARMA has a weak causal representation
Remark ε̃t will not be a Strong White Noise unless ε̌t is Gaussian

• In the Gaussian case, all representations are equivalent (εt , ε̌t , and ε̃t)
⇒ Causal and Non-Causal ARMA processes are indistinguishable
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Non-uniqueness of Gaussian MA processesPlaceholder
• To understand the identification issue in the MA representation

... consider the following Gaussian MA(1) process
Xt = ε̌t + θ̌ε̌t−1, ε̌t ∼ N (0, σ2

ε̌)

⇒ If θ 6= 0 we easily see that several representations coexist
Xt = εt +

1

θ̌
εt−1, εt ∼ N (0, σ2

ε̌θ̌
2)

where both ε̌t and εt are Strong White Noises
⇒ Both MA(∞) representations have the same probability structure

Xt =
∞∑

j=−∞

π̌jε̌t−j =
∞∑

j=−∞

πjεt−j

because ε̌t and εt are two i.i.d. Gaussian random variables
Remark We have a two-sidedMA(∞) because we do not say which representation is invertible or not
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Non-uniqueness of Gaussian MA processesPlaceholder

Proof We use the autocovariance functions that summarize all the probability structure in the Gaussian
case:

γX,ε̌(h) = Cov(Xt+h, Xt) = Cov(ε̌t+h + θ̌ε̌t+h−1, ε̌t + θ̌ε̌t−1)

= γε̌(h) + θ̌γε̌(h + 1) + θ̌γε̌(h− 1) + θ̌2γε̌(h)

= σ2
ε̌(1 + θ̌2)1h=0 + σ2

ε̌θ̌1|h|=1

γX,ε(h) = Cov(Xt+h, Xt) = Cov(εt+h + θ̌−1εt+h−1, εt + θ̌−1εt−1)

= γε(h) + θ̌−1γε(h + 1) + θ̌−1γε(h− 1) + θ̌−2γε(h)

= σ2
ε̌θ̌

2(1 + θ̌−2)1h=0 + σ2
ε̌θ̌

2θ̌−1
1|h|=1

= σ2
ε̌(1 + θ̌2)1h=0 + σ2

ε̌θ̌1|h|=1

with 1(.) the indicatrice function, ε̌t ∼ N (0, σ2
ε̌) and εt ∼ N (0, σ2

ε̌θ̌
2)

• Hence, γX,ε̌(h) = γX,ε(h) and given the Gaussian nature of ε̌t and εt , the two representations of Xthave a identical probability structure
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Non-uniqueness of Gaussian ARMA processesPlaceholder
• Consider the non-causal Gaussian ARMA(1, 1)

Xt − ϕ̌1Xt−1 = ε̌t + θ̌1ε̌t−1 := ϕ̌(B)Xt = θ̌(B)ε̌t, |ϕ̌1| > 1, |θ̌1| > 1

• The spectral density of Xt is
fX(λ) =

∣∣∣ θ̌(e−iλ)

ϕ̌(e−iλ)

∣∣∣2fε̌(λ) =
∣∣∣ θ̌(e−iλ)

ϕ̌(e−iλ)

∣∣∣2 σ2
ε̌

2π

• Use ϕ(B) = 1− 1
ϕ̌1

B and θ(B) = 1− 1
θ̌1

B in εt = θ(B)−1ϕ(B)Xt

• Then, the spectral density of εt is
fε(λ) =

∣∣∣ 1− θ̌−1
1 e−iλ

1− ϕ̌−1
1 e−iλ

∣∣∣2∣∣∣ 1− θ̌1e−iλ

1− ϕ̌1e−iλ

∣∣∣2 σ2
ε̌

2π
=
θ̌2

1

ϕ̌2
1

σ2
ε̌

2π
=
ϕ2

1θ
−2
1 σ2

ε̌

2π
=
σ2
ε

2π
,

constant and hence εt is also a Gaussian (strong) white noise
⇒ The probability structure is the same for

ϕ(B)Xt = θ(B)εt and ϕ̌(B)Xt = θ̌(B)ε̌t

and their two MA(∞) representations coexist
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Uniqueness of linear process representationPlaceholder

Definition (21)
• Uniqueness means that the only way for Xt , a linear process, to admit two MA(∞) representations is

1 the existence of a constant scaling factor c ∈ R

2 and a shift in time l ∈ Z

... such that
Xt =

∞∑
j=−∞

ψ̌jε̌t−j =

∞∑
j=−∞

ψjεt−j

with
εt = cε̌t−l and ψj =

1
c
ψ̌j+l

• Uniqueness is not found for Gaussian processes... is it similar for Non-Gaussian processes ?
⇒ For finite variance non-Gaussian noises, uniqueness has been demonstrated (Rosenblatt, 2000, Th. 1.3.1)
⇒ For infinite variance noises, we will detail some results
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How fat should we goPlaceholder

• Non-Gaussian distributions are crucial to identify non-causality
• As non-causality is appropriate to model explosive (bubble) behavior, heavy-tail distributions are of
interest

• The literature has primarily focused on the Student’s t distribution

fε(σ, ν) =
Γ( ν+1

2 )

Γ(ν/2)
√
πνσ

(
1 +

1
ν

( ε
σ

)2
)− ν+1

2

with σ > 0 and ν > 0 but sufficiently small to depart from the Gaussian distribution
⇒ Hecq, Lieb and Teg (2016) extensively discuss this approach and investigate the question “How fat

should we go” in terms of heavy tails
Remark The Student’s t distribution is symmetric and therefore not necessarily appropriate to model some

financial or macro phenomena (typically, bubbles are generally positive, right tail events)
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Introduction to Stable distributionsPlaceholder

• If the tails of the Student’s t distribution are not sufficiently heavy
... the family of Stable laws offers an attractive alternative

Definition (22)
A real probability measure µ is said to be α-stable if ∀ k ∈ N ∃bk > 0 such that

X1 + . . .+ Xk
d
= bkX + ek

where L(X1) = . . . = L(Xk) = L(X) = µ and X1 + . . .+ Xk are independent and where ∃α ∈ (0, 2] such
that bk = k1/α
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Some remarks on Stable distributionsPlaceholder
• If εt is a random variable that follows a stable distribution, then

εt ∼ S(α, β, σ,m)

where
— the stability parameter α ∈ (0, 2] is also a tail index
— β ∈ [−1, 1] is the asymmetry parameter
— σ ∈ (0,∞) is the scale parameter
— m ∈ R is the location parameter (if m = 0, εt is strictly stable)

• If zt ∼ S(α, β, 1, 0) then, εt = ztσ + m ∼ S(α, β, σ,m)

Normal If εt ∼ S(2, β, σ,m) then, fε(2, β, 1, 0) = (
√

2π)−1 exp(−ε2/2)

Cauchy If εt ∼ S(1, 0, σ,m) then, fε(1, 0, 1, 0) =
(
π(1 + ε2)

)−1

Lévy If εt ∼ S(1/2, 1, σ,m) then,
fε(1/2, 1, 1, 0) =

1√
2πε3/2

exp(
−1
2ε

)1ε>0

with fε(.) the density function
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Analytic representation of Stable distributionsPlaceholder

• In most cases, neither the probability density, fε(.), nor the cumulative distribution, Fε(.), functionsare analytically expressible
• Fortunately, the characteristic function ϕε(.) = E(e−iuε) has a tractable expression for α 6= 1

logϕε(u) = −σα|u|α
(

1− iβ(sign u) tan

(
πα

2

))
+ imu

Remark If fε(.) exists, ϕε(.) = E(e−iuε) is also the Fourier transform of fε(.) and one can see that itcompletely defines its p.d.f.
Remark When α = 1, logϕε(.) simplifies to

logϕε(u) = −σ|u|
(

1 + iβ(sign u)
2
π

log |u|
)

+ imu
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Numerical evaluation of Stable distributionsPlaceholder
• Using the inverse Fourier transform of ϕε(.), we obtain

fε(α, β, σ,m) = (2π)−1
∫ ∞
−∞

exp
(
− is(ε−m)

)
ϕε(σs)ds

• fε(.) has no closed form solution but a numerical evaluation is possible
⇒ Setting σ = 1 and m = 0 we have

fε(α, β, 1, 0) = π−1
∫ ∞

0
exp(−sα) cos

(
sε+ β tan

(πα
2

)
(s− sα)

)
ds

when α 6= 1 and
fε(α, β, 1, 0) = π−1

∫ ∞
0

exp(−s) cos
(

sε+ sβ
2
π

log s
)

ds

when α = 1

⇒ Numerical evaluation of these integrals is possible in R and MATLAB
Remark For any σ > 0 and m we have fε(α, β, σ,m) = σ−1fσ−1(ε−m)(α, β, 1, 0)
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Numerical evaluation of Stable Laws probability density functionPlaceholder
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• The tail index α ∈ (0, 2) is such that for cα > 0 and as x→∞,
P(X < −x) ∼ cα(1− β)x−α and P(X > x) ∼ cα(1 + β)x−α

Remark If X ∼ S(α, β, σ,m) with α ∈ (0, 2), E|X|s <∞ if and only if s < α
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Domains of attraction of α-stable distributionsPlaceholder

Definition (23)
For µ an α-stable distribution and εt an i.i.d. sequence, we say that L(ε1) belongs to the domain of attraction
of µ, also denoted L(ε1) ∈ Dα(µ) if for some x > 0

P(ε1 > x) ∼ x−αL(x)

with L(x) is a slowly varying function at infinity and α ∈ (0, 2) and if there exists a constant c ∈ [0, 1] such that

lim
x→∞

P(ε1 > x)

P(|ε1| > x)
= c

Corollary A necessary and sufficient condition for L(εt) to belong to Dα(µ) is
log |ϕε(s)| ∼ −σα|s|αL(1/|s|) as s→ 0

where ϕε(s) is the characteristic function of εt
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Absolute convergence of infinite variance sequencesPlaceholder

Proposition (3)
Let εt be an i.i.d. sequence such that L(ε1) ∈ Dα(µ). If ψj is a sequence of constants such that

∞∑
j=−∞

|ψj|s <∞ for some s ∈ (0, α) ∩ [0, 1]

then the infinite series,
∞∑

j=−∞

ψjεt−j

converges absolutely with probability one.

• This proposition due to Cline (1983) establishes strict stationary conditions for any MA(∞) linear
sequence with infinite variance
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α-stable MA(∞) processPlaceholder
Proposition (4)

Let εt and ε̌t be two i.i.d. processes such that

εt =

∞∑
j=−∞

ψ̌jε̌t−j

where L(ε1) ∈ Dα(µ) with α ∈ (0, 2). Then, if

∞∑
j=−∞

|ψ̌j|s <∞ for s ∈ (0, α) ∩ [0, 1]

the MA representation is trivial (all except one MA coefficients ψ̌j have to be null)

• Gouriéroux and Zakoian (2015) prove Propositions (4) and (5)
⇒ An α-stable MA(∞) process cannot be i.i.d.

Remark This result is very important in view of proving the uniqueness of the strong MA representation
under of stable laws with α ∈ (0, 2)
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Uniqueness of α-stable strong MA(∞) representationPlaceholder

Proposition (5)
Let εt and ε̌t be two i.i.d. processes such that

∞∑
j=−∞

ψjεt−j =
∞∑

j=−∞

ψ̌jε̌t−j

where L(ε1) ∈ Dα(µ) with α ∈ (0, 2) and

∞∑
j=−∞

|ψj|s <∞ for s ∈ (0, α) ∩ [0, 1]

Now suppose that ψ̌(B) is invertible with

ψ̌(B)−1 =

∞∑
j=−∞

ψ̃jB
j such that

∞∑
j=−∞

|ψ̃j|s <∞

Then, for some constants c ∈ R and l ∈ Z, εt = cε̌t−l and ψj = 1
c ψ̌j+l
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Stable Noncausal AR(1) and unconditional stationary distributionPlaceholder
• Let Xt be a stable strong noncausal AR(1)

Xt = ϕXt+1 + εt, |ϕ| < 1, εt ∼ S(α, β, σ, 0), α ∈ (0, 2)

• We know that Xt has the following strictly stationary solution
Xt =

∞∑
j=0

ϕjεt+j

and we can now compute the unconditional stable distribution of Xt

Xt ∼ S
(
α, β,

σ

(1− |ϕ|α)1/α
, 0
)
, if α 6= 1 and ϕ ≥ 0

Xt ∼ S
(
α, β

1− |ϕ|α

1 + |ϕ|α ,
σ

(1− |ϕ|α)1/α
, 0
)
, if α 6= 1 and ϕ ≤ 0

Xt ∼ S
(

1, β
1− |ϕ|
1 + |ϕ| ,

σ

1− |ϕ| ,−βσ
2
π

ϕ log |ϕ|
(1− ϕ)2

)
, if α = 1

and state that E(|Xt|u) <∞ if and only if u < α

Remark When ϕ ≤ 0, Xt is less asymmetric than εt because ϕ affects β
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Stable Noncausal AR(1) and conditional momentsPlaceholder
• Let Xt be a strong stable noncausal AR(1)

Xt = ϕXt+1 + εt, |ϕ| < 1, εt ∼ S(α, β, σ, 0), α ∈ (0, 2)

• Gouriéroux & Zakoian (2017): for the backward conditional density
E(|Xt|b|Xt+1) <∞ iff b < α

• Gouriéroux & Zakoian (2017): for the forward conditional density
E(|Xt+h|c|Xt−1) <∞, a.s., iff c < 2α+ 1, α ∈ (0, 2),

for any h ≥ 0 and β 6= 1, or |β| = 1 if ϕh+1 < 0. If β 6= 1 and ϕh+1 > 0

E(|Xt+h|c|Xt−1) <∞ a.s. ∀c > −1

• Xt is also a causal homogeneous Markov process as
L(Xt|Xt−1, Xt−2, . . .) = L(Xt|Xt−1)

Remark The number of finite forward conditional moments is c > (b = u)
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Stable Noncausal AR(1) and forward conditional expectationPlaceholder
• The forward (causal) conditional expectation always exists...
... but the unconditional and backward (noncausal) conditional expectations exist only if α > 1

• Gouriéroux & Zakoian (2017) : if β = 0 (symmetric stable laws : SαS)
E(Xt+h|Xt−1) = |ϕ|(h+1)(α−1)Xt−1, ∀h ≥ 0, α ∈ (0, 2),

with |ϕ|0 = sign(ϕ) so that in the Cauchy case (α = 1)
E(Xt+h|Xt−1) = sign(ϕ)Xt−1, ∀h ≥ 0

and when ϕ > 0, Xt behaves as a stationary martingale !

Remark when ϕ > 0 and α ∈ (0, 1), Xt is a stationary submartingale

• Fries & Zakoian (2019) : if α ∈ (0, 2) and β ∈ (−1, 1)

E(Xt+h|Xt−1) = |ϕ|(h+1)(α−1)Xt−1 − 1α=1(h + 1)
2
π
βσ

ϕ logϕ

1− ϕ , ∀h ≥ 0
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Cauchy Noncausal AR(1) and forward conditional momentsPlaceholder
• Let Xt be a strong Cauchy noncausal AR(1)

• Gouriéroux & Zakoian (2017) : the causal predictive density is
fX(Xt|Xt−h) =

1
σhπ

σ−2
h

(Xt−h − ϕhXt)2

σ2 + (1− |ϕ|)2X2
t−h

σ2 + (1− |ϕ|)2X2
t
, σh =

1− |ϕ|h

1− |ϕ|
⇒ the second order conditional moment is heteroscedastic

E(X2
t |Xt−1) =

1
|ϕ|X

2
t−1 +

σ2

|ϕ|(1− |ϕ|)
⇒ Xt admits a semi-strong representation (à la Drost & Nijman, 1993)

Xt = sign(ϕ)Xt−1 + ε̃t where ε̃t = ςtη̃t

ς2
t =

(
|ϕ|−1 − 1

)
X2

t−1 +
σ2

|ϕ|(1− |ϕ|)

where E(η̃t|Xt−1) = 0, E(η̃2
t |Xt−1) = 1 and η̃t is a Weak White Noise

Remark Xt = unit-root (if ϕ > 0) + ARCH (based on X2
t−1 rather than ε̃2

t−1)
• Fries & Zakoian (2019) extend these results to the Cauchy MAR(p, q)
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Strong causal representation for the Cauchy Noncausal AR(1)Placeholder
• As mentioned in (20), a weak causal representation exists...
... but, it is also possible to derive a strong causal representation
• Use some Gaussian innovations given by ε∗t = Φ−1(F(Xt|Xt−1)

) with
... Φ−1(.) the Normal c.d.f. and F(Xt|Xt−1) the conditional c.d.f. of Xt :

F(Xt|Xt−1) =
Λ

π
log

(
1 + (1− |ϕ|)2X2

t

1 + (Xt−1 − ϕXt)2

ϕ̌2

(1− |ϕ|)2

)

+
Υ

π

(
π

2
− sign(ϕ) tan

−1
(Xt−1 − ϕXt)

)
+

1−Υ

π

(
tan
−1

((1− |ϕ|)Xt) +
π

2

)

Λ =
ϕ(1− |ϕ|)2Xt−1

(1− 2|ϕ|)2 + (1− |ϕ|)2X2
t−1

and Υ =
|ϕ|
(
(1− |ϕ|)2X2

t−1 − (1− 2|ϕ|)
)

(1− 2|ϕ|)2 + (1− |ϕ|)2X2
t−1

• Inverting the relation ε∗t = Φ−1(F(Xt|Xt−1)
), one can derive

Xt = G(Xt−1, ε
∗
t ), G(Xt−1, .) = F−1(Φ(.)|Xt−1

)
, ε∗t ∼ N (0, 1)

⇒ the strong causal AR(1) representation is highly nonlinear
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The Lévy Noncausal AR(1)Placeholder
• Let Xt be a strong Lévy noncausal AR(1)

Xt = ϕXt+1 + εt, 0 < ϕ < 1, εt ∼ S(1/2, 1, σ, 0), α ∈ (0, 2)

• As for the Cauchy case, Gouriéroux & Zakoian (2017) prove that
— Xt has a causal predictive density given by

fX(Xt|Xt−1) =
1
√

2π

(
Xt−1

Xt(Xt−1 − ϕXt)

)3/2

× exp

(
−(Xt−1 −

√
ϕXt)

2Xt−1Xt(1−√ϕ)2(Xt−1 − ϕXt)

)
10<ϕXt<Xt−1

⇒ All the causal forward conditional moments exist whereas even the unconditional first moment does not
— Xt admits an ARCH type (probably) semi-strong representation

Xt = ϕ−1/2Xt−1 + ε̃t, E(ε̃t|Xt−1) = 0

albeit the form of ε̃t is tedious to derive
— The strong causal (non-linear) representation Xt is untracktable
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What we known on the Stable Noncausal AR(1): summaryPlaceholder
Law Representation Equation Properties
Cauchy Strong noncausal Xt = ϕXt+1 + εt εt/σ ∼ i.i.C(0, 1)

|ϕ| < 1 Weak causal linear Xt = ϕXt−1 + ε̃t ε̃t ∼ WWN(0, σ2)

Semi-strong causal linear Xt = sign(ϕ)Xt−1 + ςtη̃t η̃t ∼ WWN

Strong causal nonlinear Xt = G(Xt+1, ε
∗
t ) ε∗t ∼ N (0, 1)

Lévy Strong noncausal Xt = ϕXt+1 + εt εt ∼ i.i.L
(

0, σ

(1−√ϕ)2

)
0 < ϕ < 1 Weak causal linear Xt = ϕXt−1 + ε̃t εt ∼ WWN(0, σ2)

Semi-strong causal linear Xt = ϕ−1/2Xt−1 + ν̃t ν̃t ∼ WWN

Strong causal nonlinear no closed form expression
Stable Strong noncausal Xt = ϕXt+1 + εt εt ∼ i.i.d(0, σ2)

|ϕ| < 1 Weak causal linear Xt = ϕXt−1 + ε̃t ε̃t ∼ WWN(0, σ2)

Semi-strong causal linear no closed form expression
Strong causal nonlinear no closed form expression
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Prediction of linear causal processes with infinite variancePlaceholder

• The result in P(2) can be generalized to the non-Gaussian L2 framework
arg min
P(Xt+h)

E
(

(Xt+h − P(Xt+h))2
)

= EL(Xt+h|Ft−1)

where P(Xt+h) is a predictor of Xt+h and Ft = Xt, . . . , X1

• Cline & Brockwell (1985) deal with the causal symmetric α-stable case
⇒ the best predictor cannot be defined in a mean square sense... however

arg min
P(Xt+h)

E
(
|Xt+h − P(Xt+h)|α

)
= PL(Xt+h|Ft−1)

where PL(.) is a linear projection defined by theminimum dispersion

• If α ∈ (1, 2], the PL(.) is unique and EL(Xt+h|Ft−1) = PL(Xt+h|Ft−1)

• If α ∈ (0, 1], the PL(.) is not unique
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Prediction of linear stable non-causal processesPlaceholder
• In the non-causal L2 framework the optimal predictor is more tricky
⇒ E(Xn+h|Ft−1) is generally a non-linear function of the observed values
• We know that E(|Xt|b|Xt+1) <∞ only for b < α

⇒ fortunately, E(|Xt+h|c|Ft−1) <∞ for c < 2α+ 1 so that
E(Xt+h|Ft−1) <∞ ∀α ∈ (0, 2)

• For some specific non-causal models we have a closed form expression :
— strong non-causal AR(1) with stable errors for ∀h ≥ 0:

E(Xt+h|Xt−1) = |ϕ|(h+1)(α−1)Xt−1 − 1α=1(h + 1)
2

π
βσ

logϕ

1− ϕ
— strong SαS mixed-causal MAR(1, 1) for ∀h ≥ 0:

E(Xt+h|Ft−1) = (ϕ•)h+1

(
Xt−1 + (Xt−1 − ϕ•Xt−2)

h+1∑
j=1

(ϕ<α−1>ϕ•)−j

)

where ϕ<x> = sign(ϕ◦)|ϕ◦|x (see Fries & Zakoian, 2019 for the MAR(1, q))
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Bubble prediction in stable non-causal processesPlaceholder

• Consider Xt = ϕXt+1 + εt , εt ∼ S(α, 0, σ, 0) and ϕ ∈ (0, 1)

⇒ multiple bubbles are likely to occur for large values of εt

Remark E(Xt+h|Xt−1) = |ϕ|(h+1)(α−1)Xt−1 always predicts an exponential decay to the central values at rate
ϕα−1

⇒ E(Xt+h|Xt−1) describes paths that depart from the realized trajectory
• If the predictive density is known, once estimated, one can compute

P(Xt+h − ϕXt+h+1 > c|Xt),

the probability of bubble collapse at t + h for some critical level c

⇒ As the predictive density is generally unknown Gouriéroux & Jasiak (2016) suggest a non-parametric
approach

⇒ Fries (2022) investigates higher moments through the joint density of (Xt+h, Xt)
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Fries (2022) : α-stable random vectors and spectral measurePlaceholder
• Samorodnitsky and Taqqu (1991) show that SαS random vectors X are defined by a unique pair

(Γ,µ) such that ∀u ∈ Rd and s1, . . . , sd ∈ s

ϕX(u) = exp

(
−
∫

Sd

|〈u, s〉|α
(

1− i(sign〈u, s〉)ω(α, 〈u, s〉)
)
Γ(ds) + i〈s,µ〉

)
is the characteristic function of X with 〈., .〉 the scalar product,

ω(α, x) := tan

(
πα

2

)
if α 6= 1 and ω(1, x) := − 2

π
log |x|

and Γ a spectral measure on the unit sphere Sd and µ0 ∈ Rd

• Γ := scale, asymmetry and dependence between X(1), . . . , X(d) ∈ X and µ is a non-random shift
vector

Results For some ν ≥ 0, E(Xγ(2)|X(1)

)
<∞ if∫

S2

|s1|−νΓ(ds) <∞ and γ < min(α+ ν, 2α+ 1)

so that if α > 3/2 and ν ≥ 4− α, the fourth moment exists
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Fries (2022) : non-causal α-stable AR(1) process and spectral measurePlaceholder
• Fries (2022) shows that for Xt a non-causal α-stable AR(1) process...
... Xt = (Xt, Xt+h) is α-stable and has a spectral measure

Γh =
σ̄α

2

∑
ϑ∈S1

((
1− |ϕ|αh + 1− (ϕ<α>)hϑβ̄

)
δ(ϑ, 0)

+
(

1 + |ϕ|2h
)α/2

(1 + ϑβ̄)δ(ϑsh )

)
with δ(x) the Dirac measure at x ∈ R, S1 = {−1,+1},

σ̄α =
σα

1− |ϕ|α and β̄ = β
1− |ϕ|α

1− |ϕ|<α>

and finally sh = (ϕh, 1)/
√

1 + |ϕ|2h ∈ S2

• The analytical form of Γh allows to compute E(Xγt+h|Xh

)
⇒ see Fries (2018) for the moments γ = 1, . . . , 4
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Fries (2022) : non-causal α-stable AR(1) process and bubble behaviorPlaceholder
• Fries (2022) investigates how the standardized conditional moments

mγ(x) = E
(

Xγt+h|Xt = x
)

behave during a bubble driven by large values (i.e. as x→∞) for ϕ > 0

m1(x) ∼ (ϕ−hx)ϕαh, if α ∈ (0, 2)

m2(x) ∼ (ϕ−hx)ϕαh(1− ϕαh), if α ∈ (1/2, 2)

m3(x)→ 1− 2ϕαh√
ϕαh(1− ϕαh)

, if α ∈ (1, 2)

m4(x)→ 1− 6ϕαh

ϕαh
, if α ∈ (3/2, 2)

• These are the moments of a weighted Bernoulli distribution !
— charging probability ϕαh to the weight ϕ−hx ...
... and probability 1− ϕαh to the value 0

⇒ ϕαh := probability that the bubble survives at least h more time periods
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Limitations of the Spherical RepresentationPlaceholder

• de Truchis, Fries & Thomas (2025) suggest to extend this approach by considering
Xt = (Xt−m, . . . , Xt, Xt+1, . . . , Xt+h)

where Xt is defined as a general α-stable infinite moving average
• Samorodnitsky & Taqqu (1991) defines the spectral measure Γ on the unit sphere Sm+1+h

⇒ This representation is based on a norm (e.g., Euclidean) of the full trajectory vector Xt

• Problem for prediction !
⇒ the conditioning event, ||Xt||e > x, is not observable at time t as it contains h future values
• de Truchis, Fries & Thomas (2025) propose a new representation theory to solve this
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de Truchis, Fries & Thomas (2025): Seminorm RepresentationPlaceholder

• The key idea: replace the norm with a seminorm || · || that only depends on the observed past.
• The seminorm is defined to ignore all future components

||(x−m, . . . , x0, x1, . . . , xh)|| := ||(x−m, . . . , x0, 0, . . . , 0)||

⇒ the unit sphere Sm+1+h is forced to become a unit cylinder C‖·‖m+1+h

• Fundamental result: not all processes admit such a representation as process is representable on
this cylinder if and only if it is “anticipative enough”

⇒ Purely causal processes are non-representable in this framework.
⇒ This theory directly links anticipativeness to the predictability of extreme events.
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de Truchis, Fries & Thomas (2025): Prediction FrameworkPlaceholder

• The prediction problem becomes
— finding the future, path defined by a Borel set A on the cylinder, that matches a known pattern
— given an extreme past trajectory, let say the Borel V ⊂ S‖·‖m+1, that defines B(V) = V × Rh

• The limite behavior of Xt/‖Xt‖ reveals the discrete nature of the tail distribution
lim

x→∞
P

(
Xt

‖Xt‖
∈ A

∣∣∣∣∣ ‖Xt‖ > x,
Xt

‖Xt‖
∈ B(V)

)
=

Γ‖·‖(A ∩ B(V))

Γ‖·‖(B(V))

where
‖Xt‖ > x ⇒ The observed past is extreme.

B(V) ⇒ The shape of the observed past matches pattern V.
A ⇒ The (unobserved) future path we are forecasting.

⇒ For anticipative AR(p ≥ 2), the tail distribution degenerate to a single Dirac masses.
⇒ If the past pattern is identified, the future path becomes asymptotically deterministic.
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Gouriéroux & Jasiak (2016) : partial fraction representationPlaceholder
• Let Xt be a strong MAR(1, 1) process

(1− ϕ◦F)(1− ϕ•B)Xt = Φ◦(F)Φ•(B)Xt = εt, |ϕ◦| < 1, |ϕ•| < 1

• Gouriéroux and Jasiak (2016) suggest a partial decomposition of εt

εt = Φ◦(F)ut = Φ•(B)vt

where ut = Φ•(B)Xt and vt = Φ◦(F)Xt hence leading to
Xt =

1
1− ϕ•ϕ◦

(
1

1− ϕ◦F
+

ϕ•L
1− ϕ•L

)
εt

=
1

1− ϕ•ϕ◦
(
ϕ◦ut+1 + vt

)
=

1
1− ϕ•ϕ◦

(
ut + ϕ•vt−1

)
where vt and ut are the causal and noncausal components of εt
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Beyond partial fraction decompositionPlaceholder

• The approach of Gouriéroux & Jasiak (2016) is general...
⇒ ...but analytical solutions are complex and essentially known only for the MAR(1,1) case
• For higher orders (p, q), usual methods rely on recursive algorithms
• Problem: these methods introduce a systematic truncation bias by approximating the infinite sum
• de Truchis & Thomas (2025) propose an exact analytical solution for MAR(p, q)
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Exact analytical solutionPlaceholder
• We use the MA(∞) representation under the strict stationarity assumption:

Xt = [ϕ◦(F)ϕ•(B)]−1εt =
∑
k∈Z

δkεt+k

• By the fundamental theorem of algebra, we have ϕ•(B) =
∏q

i=1(1− λiB) and
ϕ◦(F) =

∏p
j=1(1− ζjF).

• de Truchis & Thomas (2025) obtain via the contour integral method:
• Future coefficients (non-causal, k > 0):

δk =

p∑
j=1

ζ
(p−1)+k
j∏p

m6=j(ζj − ζm) ·
∏q

i=1(λiζj − 1)
· (−1)q

• Past coefficients (causal, k ≤ 0):
δk =

q∑
i=1

λ
(q−1)+|k|
i∏q

l6=i(λi − λl) ·
∏p

j=1(λiζj − 1)
· (−1)p
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Simulation (exact)Placeholder
• Step 1: Coefficient computation

— Use the exact formulas to compute the δk for k ∈ [−m,m].
— m is chosen large enough so that δk ≈ 0 if |k| > m.

• Step 2: Innovation generation

— Simulate a long path of i.i.d. innovations εt (e.g., α-stable S(α, β, σ, 0) or Student’s t).
• Step 3: Simulation (Convolution)

— Compute xt by direct convolution (a simple finite MA filter):
xt =

m∑
k=−m

δkεt+k

Remarks: ⇒ Avoids the recursive approximation of the ut and vt components.
⇒ Eliminates the systematic truncation bias of recursive methods.
⇒ The δk coefficients are also the basis for new forecastingmethods ("pattern-based forecasting").
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Simulation of noncausal AR(1) processesPlaceholder
• In all cases, ϕ = 0.8 / the bottom-right case is εt ∼ S(1.8, 0, 0.01, 0)
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Simulation of noncausal MAR(1, 1) processesPlaceholder
• In all cases, ϕ◦ = 0.8, ϕ• = 0.4 / the bottom-right case is εt ∼ S(1.8, 0, 0.01, 0)
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Incomplete literature reviewPlaceholder
• Ordinary Least Squares : Davis and Resnick (1986)

— Distribution assumptions : very general and mild
— Limit theory : depends on distribution parameters (α if εt is α-stable)
— Other : simple but cannot identify the causal and noncausal components

• Stable Maximum Likelihood : Andrews et al. (2009)
— Limit theory : converges n1/α if εt is α-stable
— Other : computationally cumbersome

• Least Absolute Deviation : Davis and Wu (2010)
— Limit theory : locally Gaussian and converges n1/2 if εt is Laplacian
— Other : simple but sensitive to causal and noncausal misspecification

• Semi-parametric log-concave projected MLE : Davis and Zhang (2017)
— Powerful and very general albeit tedious to implement

• Frequency domain Minimum Distance : Lobato and Velasco (2018), Velasco (2022)
— Powerful and general albeit requiring higher moments to exist

• Generalized Covariance (GCov) : Gourieroux and Jasiak (2023)
— Powerful and general albeit requiring higher moments to exist
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Autocorrelation of strong noncausal AR(p)Placeholder
• Assumed that εt in Xt =

∑∞
j=−∞ ψjεt−j has Pareto-like tail

P(|εt| > x) = x−αL(x) and ∑ |ψj|s <∞, for s ∈ (0, α) ∩ [0, 1]

⇒ Xt is stationary and εt enters the domain of attraction of α-stable laws
• Davis and Resnick (1986) investigates the limit theory for sample autocorrelation of strong
non-Gaussian linear processes

ρ̂n(h) =

(
n∑

t=h+1

XtXt−h

)(
n∑

t=1

X2
t

)−1

and prove that n1/α
(
ρ̂n(h)− ρ(h)

)
p−→ 0 where

ρ(h) =

(
∞∑

j=−∞

ψjψj+h

)(
∞∑

j=−∞

ψ2
j

)−1

• Note that for h = 1, ρ̂n(1) is the OLS estimator of ρ(1) = ϕ

Remark ρ(h) 6= theoretical autocorrelations of Xt as the latter do not exist
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Limit theory of OLS estimator of strong noncausal AR(p)Placeholder
• Then, Davis and Resnick (1986) prove that for h ≥ 1,

ρ̂n =
(
ρ̂n(1), . . . , ρ̂n(h)

)′ and ρ =
(
ρ(1), . . . , ρ(h)

)′
the limit distribution of ρ̂n is a function of stable variables

a2
n

bn
(ρ̂n − ρ)

d−→ (ζ1, . . . , ζh)

with an = inf{x : P(|ε1| > x) ≤ n−1}, bn = inf{x : P(|ε1ε2| > x) ≤ n−1} and
ζl =

∞∑
j=1

(
ρ(j + l) + ρ(l− j)− 2ρ(j)ρ(l)

) Sj

S0
,

where Sj are i.i.d. α-stable and S0 is positive α/2-stable
• If the law of |εt| is asymptotically equivalent to a Pareto distribution

a2
n

bn
≡

(
n

log(n)

)α
⇒ the limit theory of the OLS estimator ϕ̂n = ρ̂n depends on α
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Limit theory of OLS estimator of noncausal Cauchy AR(1)Placeholder

• Let Xt be a strong Cauchy AR(1) process
⇒ Then, the OLS estimator ϕ̂ satisfies

n
log(n)

(ϕ̂n − ϕ)
d−→ (1 + ϕ)S1/S0

where S1 ∼ C(0, 1) and S0 ∼ L(0, 1) and hence 1/S0 ∼ χ2(1)

⇒ the Cauchy case is very surprising because
— limit distribution: ratio of standard Cauchy and Chi-squared variables
— ϕ̂n converges faster than√n even if E(S1/S0) =∞

Remark As E(Xt|Xt−1) = |ϕ|(α−1)Xt−1 = sign(ϕ)Xt−1 in the Cauchy case, we show that even if
E(Xt|Xt−1) 6= ϕXt−1, ϕ̂n converges to ϕ !

⇒ the empirical auto-correlation function reveals serial dependence in reverse time, not in direct time
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Limit theory of OLS estimator of noncausal MAR(p, q)Placeholder

• Let Xt be a strong MAR(p, q) process
Φ(L)Xt = ϕ◦(F)ϕ•(B)Xt = εt with P(|ε0| > x) = x−αL(x)

and denote by Φ̂n the OLS estimator of Φ, the parameters of Φ(L)

• Fries & Zakoian (2018) show that
a2

n

bn
(Φ̂n − Φ)

d−→R−1(ζ − ZΦ)

with R = ρ(|i− j|)i,j=1,...,p+q, ζ = (ζ1, . . . , ζp+q), Z = (ζi−j)i,j=1,...,p+q

ζl =
∞∑

j=1

(
ρ(j + |l|) + ρ(|l| − j)− 2ρ(j)ρ(|l|)

) Sj

S0
,

and ζ0 = 0 where Sj are i.i.d. α-stable and S0 is positive α/2-stable
Remark causal and noncausal parameters are not identifiable in the MAR(p, q)
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Least Absolute Deviation (LAD)Placeholder
• The LAD criterion is derived via a likelihood approximation assuming that the underlying noise εt is
Laplacian

fε = (2σ)−1 exp
(
− |εt|σ−1), σ > 0

⇒ the approximate log-likelihood is
Ln(θ|εt) = −(n− r) log(2σ)− 1

σ

n∑
t=1

|εt|

and can be maximized with respect to the scale parameter to obtain
σ̂ = (n− r)−1

n∑
t=1

|εt|

and derive the following concentrated likelihood objective function
Qn(θ|εt) = −(n− r)(1 + log(2))− (n− r)−1 log

(
2(n− r)−1)− log

(
n∑

t=1

|εt|

)
where θ is a r vector of parameters
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Least Absolute Deviation for generalized Mixed Phase ARMAPlaceholder
• As the Laplace distribution has fat tails, it is attractive here
• Let Xt be a generalized Mixed Phase ARMA

ϕ◦(F)ϕ•(B)Xt = θ◦(F)θ•(B)εt

with εt a SWN in the domain of attraction of α-stable distributions
• Wu (2011) shows that the LAD objective function

Qn(θ|εt) ≡
n+p−q∑

t=1

|
θ◦q◦

ϕ◦p◦
εt(θ)|

with p = p◦ + p•, q = q◦ + q• and θ a vector of p + q parameters
• In practice, to build εt(θ), Wu and Davis (2010) suggest

1 to compute forwards v◦t (θ) = Φ(L)Xt − θ•1 v◦t−1(θ)− . . .− θ•q•v◦t−q• (θ) recursively for t = 1, . . . , n + p
and v◦t (θ) = 0 for t ≤ 0

2 to compute backwards εt(θ) given that v◦t (θ) = θ◦(F)εt and hence
εt(θ) =

1

θ◦q◦

(
v◦t+q◦ (θ)− εt+q◦ (θ)− θ◦1 εt+q◦−1(θ)− . . .− θ◦q◦−1εt+1(θ)

)
for t = n + p− q◦, . . . ,−q◦ + 1 and εt(θ) = 0 for t > n + p− q◦.
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Limit theory of the LAD for generalized Mixed Phase ARMAPlaceholder
• Wu (2011) shows that the LAD estimator θ̂ = arg min

θ∈Θ
Qn(θ|εt)

an(θ̂ − θ)
d−→νmin, an = inf{x : P(|ε1| > x) ≤ n−1}

with νmin a random variable with no closed form expression
⇒ the LAD estimator is n1/α-consistent> n1/2 when α ∈ (0, 2)

• As νmin is untracktable⇒ bootstrap : Davis and Wu (1997) & Cavaliere et al. (2018)
• Davis and Wu (2010) discuss the finite variance case
⇒ for instance, if Xt is a strong MAR(p, q) with Laplacian errors

√
n(ϕ̂• −ϕ•) d−→N

(
0,

1
4f 2
ε (0)E

(
v2

t

)), √n(ϕ̂◦ −ϕ◦) d−→N

(
0,

1
4f 2
ε (0)E

(
u2

t

))
with vt = ϕ◦(F)Xt , ut = ϕ•(L)Xt and ϕ◦ = ϕ◦1 , . . . , ϕ

◦
p (ϕ• resp.)

• To evaluate f 2
ε (0) a logistic kernel can be used (see Hecq et al. 2017)
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Generalized Covariance (GCov) EstimatorPlaceholder
• Motivation: estimate semi-parametric dynamic models with i.i.d. errors.
• Applicable to models like non-linear mixed causal-noncausal VAR, Stochastic Volatility...
• Let the model be: g(Ỹt; θ) = ut , where ut is i.i.d. (Ỹt contains current/lagged Yt).
• Core Idea: Minimize a residual-based multivariate portmanteau statistic.
• Define residuals ût(θ) = g(Ỹt; θ).
• Let Γ̂(h; θ) be the sample autocovariance of ût(θ) at lag h.
• Define R̂2(h, θ) = Γ̂(h; θ)Γ̂(0, θ)−1Γ̂(h; θ)′Γ̂(0; θ)−1.
• GCov Estimator of Gourieroux & Jasiak (2023)

θ̂T(H) = arg min
θ

H∑
h=1

Tr[R̂2(h, θ)]
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Properties of the GCov EstimatorPlaceholder

• Asymptotic Properties: Under regularity conditions:
— Consistent: θ̂T(H)

p−→ θ0— Asymptotically Normal: √T(θ̂T − θ0) ∼ N[0,Ω(θ0)−1]— Semi-parametrically efficient
• Identification:

— Identifies parameters characterizing serial dependence— Does not identify drift or scale parameters affecting only the marginal distribution of ut

• Drawbacks: relies on higher moment conditions (although simulations support good performance
in absence of finite variance)
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Empirical papersPlaceholder

1. Forecasting extreme trajectories using seminorm representations by G. de Truchis, S. Fries, A.
Thomas, 2025

2. Autoregression-based estimation of the new Keynesian Phillips curve by M. Lanne and J. Luoto, 2013
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Empirical Application: Forecasting El Niño/La NiñaPlaceholder

• Context: El Niño and La Niña are major climate anomalies with significant societal and economic
impacts (extreme weather, agriculture, commodity prices, macroeconomic fluctuations)

• They are often measured by the Southern Oscillation Index (SOI), derived from air pressure
differences

• The SOI exhibits patterns resembling explosive bubbles followed by crashes, making it suitable for
non-causal modeling

• Goal: Apply the seminorm representation theory to forecast:
— The probability of returning to normal conditions (reversal probabilities)
— The exact timing of the peak and end of El Niño/La Niña episodes (reversal dates)

• Uses the results from de Truchis, Fries & Thomas (2025)
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Data and Model SelectionPlaceholder

• Data: Monthly SOI index.
• Sample Period: 01/1951 to 01/2024, split into:

— In-sample: 01/1951 - 12/1991 (for estimation)
— Out-of-sample: 01/1992 - 01/2024 (for forecast evaluation)

• SOI Time Series Plot:

• Model Selection:

— ACF and PACF analysis suggests an AR structure
— Estimation using GCoV estimator favors a purely non-causal AR(2) model

(1− ϕ◦1 F − ϕ◦2 F2)Xt = εt

— Errors εt are assumed α-stable to capture heavy tails
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Forecasting Reversal ProbabilitiesPlaceholder
• Goal: Estimate the probability of El Niño and La Niña reversal
• Methodology: Approximate P(Crash at t + h|Extreme at t, Pattern matched)

— Condition 1: extreme magnitude ‖Xt‖ > x, approximated by Xt ≥ qτ (e.g., 90th or 95th quantile)
— Condition 2: observed pattern

(Xt−m, . . . , Xt)/‖Xt‖
falls in a small neighborhood B(V0) around a theoretical pattern ϑ0dk0/‖dk0‖

— Target Event: future path returns to central values
• Results (Selected): Probabilities (in %) of returning to central values (δ = 0.5)

In-Sample Out-of-SampleHorizon (h) p0.95 p̂0.95 p0.95 p̂0.95

h = 3 54.17 75.00 63.46 67.31
h = 5 83.33 87.50 92.31 84.62

Notes: pq = theoretical prob., p̂q = empirical freq. for quantile q = 0.95. m = 2.

• High probability of reversal within 5 months: unlikely persistence of very extreme La Niña events
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Forecasting Reversal Dates: MethodologyPlaceholder

• Goal: Predict the exact peak and end date of an El Niño/La Niña episode
• Leverage the deterministic nature of asymptotic forecasts for MAR(0,2) when m ≥ 1

• If ‖Xt‖ is large and (Xt−m, . . . , Xt) matches a specific MA(∞) segment, the future path is determined
• 4-Step Procedure:

1. Compute the observed normalized pattern (Xt−m, . . . , Xt)/‖Xt‖ for a chosen m ≥ 12. Compute theoretical patterns ϑdk/‖dk‖ for a range of k (using the exact δk coefficients)
dk = (δk+m, . . . , δk, . . . , δk−h)

3. Find the unique k0 such that ϑ0dk0/‖dk0‖ is closest to the observed pattern with ϑ0 the sign of the event4. The future path is predicted to follow the shape of ϑ0dk0
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Forecasting Reversal Dates: El Niño 1991/1992 ExamplePlaceholder

• Scenario: forecast the El Niño event starting at the end of the in-sample period (Dec 1991) with Xtlarge and negative (ϑ0 = −1)
• Pattern Matching:

— Try different past window lengths m ∈ [1, 10]

— For m = 1, 2 and m ∈ [5, 10], the procedure robustly identifies k0 = 1

— Retain k0 = 1 with m = 10. This means the observed pattern matches the segment (δ11, . . . , δ1)

• Prediction:

— Since k0 = 1, the process is predicted to follow the shape−d1/‖d1‖

— The coefficients δk for k ≤ 0 are zero for MAR(0,2). The peak occurs at t + k0 = t + 1. The reversal (returnto zero) occurs shortly after, at t + k0 + 1 = t + 2

— Predicted peak date: Jan 1992. Predicted reversal date: Feb 1992
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Forecasting Reversal Dates: El Niño 1991/1992 ExamplePlaceholder
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Forecasting Reversal Dates: Out-of-Sample PerformancePlaceholder

Table: Forecasting out-of-sample El Niño and La Niña anomalies

Type of anomaly El Niño El Niño La Niña El Niño La Niña La Niña El Niño La Niña La Niña La Niña La Niña
Start date 12/1991 07/1994 11/2007 12/2009 07/2010 11/2010 07/2015 11/2021 02/2022 08/2022 11/2022
Peak date 01/1992 09/1994 02/2008 02/2010 09/2010 12/2010 10/2015 01/2021 03/2022 10/2022 12/2022
End date 04/1992 10/1994 03/2008 03/2010 11/2010 04/2011 11/2015 03/2021 05/2022 11/2022 02/2023
Forecasted Peak 01/1992 09/1994 02/2008 03/2010 08/2010 01/2011 09/2015 01/2021 04/2022 10/2022 01/2023
Forecasted End 02/1992 10/1994 03/2008 04/2010 09/2010 02/2011 10/2015 02/2021 05/2022 11/2022 02/2023
Peak forecast error 0 0 0 1 -1 1 -1 0 1 0 -1
End forecast error -2 0 0 1 -1 -2 -1 -1 0 0 0
k0 1 2 3 3 1 2 2 2 2 2 2
m 10 10 10 9 10 10 10 10 10 10 10

• The 4-step procedure was applied to predict all El Niño and La Niña events (14 total) in the
out-of-sample period (1992-2024).

• Forecasting starts when SOI first crosses the threshold (±1)
• Accuracy Summary:

— Average error in predicting the peak date: 0.42 months— Average error in predicting the end date (reversal): 0.57 months
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Empirical paper 2 : stylized factsPlaceholder

• New Keynesian Phillips curve (NKPC) :
πt = γfEtπt+1 + λxt

inflation rate πt depends linearly on
• the expected inflation rate next period, Etπt+1 , and
• a measure of marginal costs, xt.

• Hybrid NKPC (Gali and Gertler, 1999) : also include lagged inflation
πt = γfEtπt+1 + γbπt−1 + λxt

• Inflation is highly persistent→ debate on the source :
• dependence on past inflation in forming expectations ?
• agents’ forward-looking behavior ?
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Empirical paper 2 : stylized factsPlaceholder

• Main issue: the marginal cost variable xt is not directly observable
• use real unit labor cost
• use the output gap

• Following the rational expectations literature
πt = γfπt+1 + γbπt−1 + ηt+1,

where ηt+1 = ξt+1 + λxt , with ξt+1 = γfEtπt+1 − γfπt+1

• If ηt were i.i.d., this would be the MAR(1, 1) model of Lanne and Saikkonen (2011a)
• In practice, need to allow ηt to be autocorrelated, hence assume the autocorrelation in the error
term ηt to be adequately captured by a (potentially noncausal) MAR(p− 1, q− 1) process

ϕ◦(F)ϕ•(B)yt = εt
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Empirical paper 2 : datasetPlaceholder

• U.S. NKPC with quarterly data from 1955 : 1 to 2010 : 3

• Inflation is computed as πt = 400 ln(Pt/Pt−1),
• πGDP

t : Pt is the implicit price deflator of the GDP or
• πCPI

t : Pt is the consumer price index for all consumers
• proxies for the marginal cost:
• the real unit labor cost and
• linearly detrended logarithmic real GDP per capita
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Empirical paper 2 : classical GMM estimationPlaceholder

• The estimated coefficients, their statistical significance and even their signs vary from one instrument
set to another

• The results vary depending on the marginal cost proxy being used
• Overall it appears to be difficult to obtain general results concerning the issue of forward-looking vs.
backward-looking inflation dynamics using the GMM
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Empirical paper 2: noncausal autoregressionsPlaceholder

Step 1 : Autocorrelation and non-normality of residuals
• Specify a Gaussian autoregression with serially uncorrelated errors and check whether the residuals
are normally distributed

• Use Ljung–Box autocorrelation and Jarque–Bera normality tests
• Normality is rejected, excess kurtosis points towards a student distribution
• Identify the need for 5 AR lags for πGDP and 4 lags for πCPI
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Empirical paper 2 : noncausal autoregressionsPlaceholder

Step 2: Find the correct orders of causal and noncausal lag polynomials, p and q

• Estimate all MAR(p, q) models with t-distributed errors where the sum of p and q equals 5 for πGDP

and 4 for πCPI

• Choose the specification that maximizes the log-likelihood function
• Finding: For both series, a mixed model involving both leads and lags is selected : MAR(2, 3) and
MAR(3, 1) respectively
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Empirical paper 2 : noncausal autoregressionsPlaceholder
Step 3: Estimation of the hibrid NKPC by ML

Table 3
Estimation results of the new Keynesian Phillips curves based on the U.S. inflation series.

π GDP
t π CPI

t

)1,3()3,2(MARledoMRA

γb 981.0203.0
)060.0()990.0(

γf 867.0576.0
)750.0()680.0(

σ 719.1451.1
)653.0()801.0(

ν 010.3725.4
)607.0()094.1(

The row labeled AR Model gives the best-fitting AR( p, q) model that  the estimation of the NKPC is based on.
σ and νare the scale and degree-of-freedom parameters of the error distribution, respectively. The figures
in parentheses are ML standard errors based on the Hessian matrix.

MAR
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Empirical paper 2 : further resultsPlaceholder

• Finding the correct variable driving the process of inflation is crucial for identification in conventional
GMM and ML estimation approaches put forth in the previous literature

• Because here we have no estimate of λ, the deep parameters cannot be uniquely solved, but λxt canbe solved as
λxt = πt − γ̂fEtπt+1 − γ̂bπt−1

once the NKPC is estimated and the obtained time series is informative about the properties of the
implied drivers of the inflation series.

• The authors find that the driving processes of the two inflation series exhibit relatively low
persistence

• This indicates that persistence is mostly intrinsic instead of being inherited from a persistent driving
process
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Empirical paper 2 : ConclusionPlaceholder

• The results lend support to both forward-looking and backward-looking dynamics, with the former
clearly dominating

• Themodel doesn’t require to prespecify any marginal cost proxy driving the inflation. Hence, it
facilitates computing the most plausible driving process given the estimated parameter values

• Consequently, inflation persistence appears to be intrinsic as opposed to being inherited from a
persistent driving process
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