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Back to basics

+ Consider the linear model X; with s € (0, 1] and vy € R a linear filter :

oo o0
X; = Z Yige—j, tE€Z, supEle® < oo, Z []* < o0 M
t

j=—o0 j=—o0

+ Can this model generate the following dynamics ?
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= Yes ! Even if X; is strictly stationary !



Linear Time Series

= Let start with some definitions and notations

Definition (1)

A stochastic process {X: }tcz is a linear time series if

X; :f( s &t—1,Et, Et41,y - - -

where € is a white noise and f(.) is a linear function

+ In the following we will consider the particular class of famous linear processes : ARMA processes

+ We will see that even if ARMA process are linear, they can generate non-linear dynamics



White noises

Definition (2)

A Gaussian White Noise . is a sequence of i.i.d. random variable with &, ~ N(0, o2)

Definition (3)

A Strong White Noise e, is a sequence of i.1.d. random variable with E(e;) = 0 and E(?)

Definition (4)

A Weak White Noise &; is a sequence of uncorrelated random variable with E(¢;) = 0 and E(£?) = o

Example &; = utUry1 - - - ey is @ Weak White Noise
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Strong linear process

Definition (5)
X: is a strong linear stochastic process if it has an MA(co) representation

oo

oo
X= Y s 3 Il <oo

j=—o00 j=—o0

with s € (0, 1] and e, ~ SWN(0, ¢2) a Strong White Noise



Strict stationarity

Definition (6)

A stochastic process {X: }+cz is a strictly stationary time series if

d S
Xn) — (X1+th2+h“ ‘e ~xn+h)

forh,n>1

Remark The term stationarity, without further qualification, will however stand for weak stationarity in the
following

Remark Obviously, in the Gaussian case strict stationarity and weak stationarity are equivalent



Wold decomposition

Definition (7)

Any purely stochastic (centered) weakly stationary time series has a unique weak linear causal representation

where &, is a weak white noise

* The representation is causal in the sense that only past shocks describe the dynamic of X;



ARMA processes

Definition (8)
A linear time series {X: }ccz is an ARMA(p, q) if

p
X=X yt+ZOJ i—j <= @(B)X: = 6(B)ex
j=1

where e is a SWN, p(B) =1 — 3" ;B and 0(B) =1 — ! | 6;B

« X; is stationary if ¢(B) and 6(B) have no common roots and
p(z)=0=|z| #1, VzeC

= no root on the unit circle or equivalently ¢(z) # O for all |z| = 1

+ Obviously, X;B' = X;_;. Later we will also use X;F' = X;;, F = B~}



Causal ARMA processes

Definition (9)

Let X; be a stationary ARMA(p, q). Then, X; is causal if o(z) # O for all |z| < 1 or equivalently
p(z)=0=|z| > 1, VzeC.

lllustration with a simple AR(1) : X = 1 Xe—1 + &¢

* If [¢1] < 1, X has a linear Wold representation because

oo

> AB

j=0

has absolutely summable coefficients and
oo
X = Zdﬁf—l'

j=0

is the unique stationary solution

= X; has a strong causal MA(co) representation which is a Wold representation



Non-Causal ARMA processes

Definition (10)

Let X; be a stationary ARMA(p, q). Then, X; is non-causal if p(z) # O for all |z| > 1 or equivalently
p(z)=0=|z| <1, VzeC.

lllustration with a simple AR(1) : X; = ¢1Xe—1 + &, & ~ SWN
s If e > 1,375, @, B does not converge... however

— Consider X¢ 41 = @1 Xt + €r41

— It follows that X; = @1‘1@1)@ = gbl_erJrl — gél_lét+1 and iterating
oo o0
i1 j -1 .
Xe = — thlj EtHj+1 = Z 99]15r+j7 P1 =P s Et = —P1&t41
=0 =0
where 35, | Fl has absolutely summable coefficients

= Future shocks drive the dynamics : Xy = ¢1Xi+1 + &; is non-causal



Non-Causal AR and stationary solution
Let X; be a non-causal AR(1) defined by X; = ¢1X;—1 + &

+ Recall that X; = @] 'Xe1 — @] '&e41 and that iterating we have
Xe=—¢1 1 — o — @1 g + @1 Kepprr = Z Precss
* If X, is stationary, E(X?) is finite and time independent so that
k .
E((Xr -3 90’1€r+j)2> = @?%HZE((XMH)Q) —0ask — o0
j=0

which arises from the condition |p1] = |37 < 1
= Zj‘(:o ()0]‘1€t+j is the unique stationary solution of X;
* However, X; depends on future shocks : not a Wold representation

Remark InX; = ¢1X;—1 + & the roots are ill-located whereas in X; = p1X;+1 + ; the roots are well-located



Invertible ARMA

Definition (11)

Let X; be a stationary ARMA(p, q). Then, X; is invertible if 0(z) # O for all |z| < 1 or equivalently
0(z)=0=|z| > 1, VzeC.

lllustration with an ARMA(1, 1) : X; — p1Xe—1 = & + bhee—1, [01] < 1
* The power expansion of 0 is ((z) = > 7=, —#,7 and hence
e = ((B)p(B)X: = m(B)X:
with > || < ocoas|61] < 1

= The invertible solution of X; is

e =X¢ — (901 + 91) Z *ellflxt—j

j=1

as ¢ is expressed in terms of present and past values of X;, s < t



Non-invertible ARMA

Definition (12)

Let X; be a stationary ARMA(p, q). Then, X; is non-invertible if 0(z) # O for all |z| > 1 or equivalently
0(z)=0=|z| <1, VzeC.

lllustration with an ARMA(1, 1) : Xe — p1Xe—1 = & + O1ec—1, |61] > 1

+ Applying a similar reasoning to noncausal ARMA we obtain

oo

= —p10; Xt + (p1+ 61) Z Xf+J

= X is noninvertible as ¢; is expressed in terms of present and future values of X;, s > t
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Minimum phase and Non-Minimum phase processes

* Let X; be a stationary ARMA(p, q)

Definition (13)

Ife(z)=0=|z| > 1, VzeCoandf(z) =0= |z| > 1, Vze C, X;iscausal and invertible. Such a
process is called minimum phase

Definition (14)

fe(z)=0=|z| <1, VzeCoandf(z) =0= |z| <1, Vz e C, X;isnon-causal and non-invertible.
Such a process is called non-minimum phase

* Let X; be a stationary AR(p + q)

Definition (15)
Ifo(z) =0=|z| # 1, Vz € C with some zeros inside and outside the unit circle, X; is

mixed-causal/noncausal. Such a process is called Mixed-AR or MAR(p, q) with p and q denoting the number of
non-causal and causal lags respectively. The MAR enters the class of mixed phase processes.




Mixed phase AR processes

Definition (1)

A linear time series {X: }ccz is an AR(p + q) if it is strictly stationary and satisfies the equation

P(B)Xe = &

p+q
p(B)=1-> @B =0=|z|#1

=1

and e is a strong white noise

+ Here we clearly allow the roots of ¢ (B) to be outside and/or inside the unit circle

+ When ¢(B) has zeros both outside and inside the unit circle the process is mixed phase and called a
MAR(p, q)



A

The MAR(p, q)

Definition (1)
A linear time series {X; }¢cz is a MAR(p, q) if p(B)X: = &: can be decomposed as
¢° (F)g" (B)X: = &

©°(z) #O0forall|z| < 1

®*(z) # 0 forall|z| <1

+ Defining e; as a Gaussian noise would lead to an identification issue

= In the following, e, will be assumed to be Non-Gaussian

21/100



MAR(1,1)

Example (1)
Let X; be a MAR(1, 1) defined by p(B)X: = €. Then, X; can be decomposed as

(1-¢°B)(1-*B)Xe =2, [¢°|>1, [¢*I<1
or equivalently

O «
—P Ert1

* Then, the stationary solution of X; is given by
o\k

(¥°) e ()"
Xt = Z 1-— (po(post"’k + 1-— (,OO(P' + Z 1— (po(pogt_k

j=1

j=1
or equivalently by the two-sided MA(oo) representation

= 1 1
Xe= 2 e where v(h) = O = S




The generalized Mixed Phase ARMA

Definition (18)
A linear time series {X; }+cz is a generalized ARMA(p®, p®,q°,q") if p(B)X: = 6(B)e: can be decomposed as

¢° (F)" (B)X: = 0° (F)6" (B)e:

implying the stationary solution Xe = 3 °  __ vjec—j if

+ X, is purely causal when p°® = 0 and purely non-causal when p® = 0

... purely invertible when q° = 0 and purely non-invertible when q* = 0

'/\\ 23/100




The generalized Mixed Phase ARFIMA

Definition (19)
A linear time series {X; }«cz is a generalized ARFIMA(p®, p®, q°,q*) if (1 — B)°o(B)X; = 0(B)e, can be
decomposed as
6 o .
(1-B)"¢"(F)e"(B)X:

implying the stationary solution Xe = 3 = vjec—j if

p° : p® :

C(F)=1-> ¢'F, o"B)=1-> ¢'B, ¢°(2),0"(z) #0, V|z| <1
=1 j

=1

qa° q®
0°(F)=1->Y 6'F, 0°(B)=1-> 07F, 6°(2),0°(z) #0, V|z| < 1
=1 Jj=1

where ¢)(B) = ¢(B)~'0(B) and § € (—1/2,1/2)

* Generalized Mixed Phase ARMA and ARFIMA models are introduced by Wu and Davis (2010) and Wu
(2014)

'/\\ 24/100




Mixed phase baseline paths

+ For agiven tand T, a strong linear process can be represented as

Xi = Z E‘rlfgtwtf‘r

T=—00
if the process is causal and as

X; = Z 5717—2t77/1r—7—

T=—00

if the process is noncausal, that is a combination of baseline paths with stochastic i.i.d. coefficients

+ If the process is mixed phase we have

X = Z erlr<etr—r + Z x>

T=—00 T=—00



Mixed phase baseline paths

* Xe = Xe—1+ e/ Xe = °Xeqp1 +ec I Xe = °Xeq1 + @ X1 + e, 7 = 30

. Causal baseline path with ¢° =0.8
T T T
05|
0 | | T | |
30 35 40 45 50 55 60
1 Noncausal baseline paths ¢ =04
T T T T
I
/i
05 /
0 I I I I 4,7/’/ |
0 5 10 15 20 25 30
1 Mixed baseline paths with ¢° =0.8 and qﬁu =04
T T
05 |
/
/
0 I I /// I \7 e I
0 10 20 30 40 50 60
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Tracking error in minimum phase

* Let e, alarge positive shock occuring at time 7
— If t < 7 the weight of that large shock increases exponentially as t approaches 7

— Att = 7 + 1itlooks like a brutal bubble burst

« For instance, consider a non-causal AR(1) with |¢| = |7 '] < 1

Xe=etpeerit+. ...t Tleito ey, t<T
O T T e 4 e, tH1<T

Xey1 = €41+ Qe+ ...+ €
t=rT1

XT:5T+(10€T+1+--~,
t>T1

XT+1 = Er+1 + PYET42 + ... 5
* In a mixed phase process, if t > 7, the bubble burst is smooth and the weight of that large shock

decreases exponentially
W 27/100



. The linear model

. Mixed-Phase processes

. a-stable MAR

. Prediction

. Simulation of MAR
. Estimation of MAR

. Applications




Conditional expectation

+ LetXep1 and Xe = p+ p(1)(Xe—1 — p) + ¢ two stationary variables such that conditional distribution
of X¢4+1 given that X = x; is
N+ p(1)(x — p), 0% (1 = p(1)*))
with p(h) = ~v(h)/~(0) and |p(1)] < 1.
Proposition (1)
For g(.) a real function, the best mean square predictor of X;+1 is

aro 3 — 2 =
alggr(l;tr)ﬂli((xm 9(Xe)) >

Proposition (2)

For g(X;) = aX; + b, the best mean square linear predictor of X;+1 is

arg m)%r)lIE((XtH —9(Xt)) ) =

9(X;

= In the Gaussian case, the best mean square predictor is linear

W 29/100




Best linear predictor and errors

* In Propositions (1) and (2), X = p + p(1)(Xe—1 — ) +&¢
+ It follows that the best linear predictor of X;41 is
EL(Xe111X) = 1+ p(1)(Xe — )
... leading to the following prediction error
eep1 = Xey1 — o+ p(1)(Xe — )
* The predictor EL(X¢+1|X:) will be uniquely determined if
E(Error x Predictor Variable) = 0
= As e4+1is a SWN, this condition is fulfilled
E(et41X:) =0

Note EILL = best approximation of expectation as a linear function



Non-Causal AR and causal representation

Xe = p1Xe41 + e or Xy = ¢1Xi—1 + &; leads to 3 types of errors (noises)
1 =X — SDer—o—l
— Ase 1 = —p1& L Xi—1, & is not the innovation of X; and
et £ Xe — EL(X¢|Xs, s < t)
2 & = X; — ¢1X¢—1 is just an equivalent representation X;

— As —¢p16r £ X;_1, & is not the innovation of X; and
g £ Xe — EL(X¢|Xs, s < t)

Note The best predictor in mean square sense, E(X¢|Xs, s < t), will be nonlinear if & is non-Gaussian with finite
variance (Rosenblatt, 2000, p. 101)

3 & = X; — ¢1Xt—1 is a weak causal representation of X;
— &t ~ WWN (except when ¢ is Gaussian, & ~ SWN)

— Moreover, & is the linear innovation of X; because one can show that
& = Xt — EL(X¢|Xs, s < t)



Non-Causal ARMA and causal representation

Definition (20)

Let X; be a stationary ARMA(p, q) defined as 3(B)X: = 0(B)&;. Then, it is always possible to find polynomials
»(B) and 6(B) and a weak white noise sequence & such that ¢(B)X; = 0(B)é..

+ Accordingly, any noncausal ARMA has a weak causal representation
Remark €; will not be a Strong White Noise unless &; is Gaussian
+ In the Gaussian case, all representations are equivalent (¢, £¢, and &)

= Causal and Non-Causal ARMA processes are indistinguishable



Non-uniqueness of Gaussian MA processes

+ To understand the identification issue in the MA representation
. consider the following Gaussian MA(1) process

Xe =&+ 081, & NN(Oyaﬁ)

= If 8 # 0 we easily see that several representations coexist
Xe =&t + %st,l, et ~ N(O,agéz)
where both &; and e are Strong White Noises
= Both MA(c0) representations have the same probability structure

oo o o]
Xe= ) Wey= ) e

j=—o0 j=—o00
because &; and ¢; are two i.i.d. Gaussian random variables

Remark We have a two-sided MA(co) because we do not say which representation is invertible or not



Non-uniqueness of Gaussian MA processes

Proof We use the autocovariance functions that summarize all the probability structure in the Gaussian
case:

yx.e(h) = Cov(Xeyn, Xe) = Cov(Ecin + 0Fcin_1,& + 05:1)
=7e(h) + 07z (h+ 1) + Oye (h = 1) + 05z (h)
= 0';(1 + éz)]lh:() + O'Egé]lw:l

x.e(h) = Cov(Xeyn, Xe) = Cov(eein + 0 eryn_1,6c 4+ 0 'er 1)
=7e(h) + 0 'ye(h+ 1)+ 0 'ye(h = 1) + 0 . (h)
= 020* (1 + 0 ") Lneo + 026°0 "Lypy—1
= 02(1 4 0*)Lpeo + 0201 =y

with 1 the indicatrice function, & ~ N(0,0%) and & ~ N(0, 020?)

* Hence, vx,z(h) = ~x,-(h) and given the Gaussian nature of &; and &, the two representations of X;
have a identical probability structure



Non-uniqueness of Gaussian ARMA processes

+ Consider the non-causal Gaussian ARMA(1, 1)

Xe— g1 X1 =&+ 0151 1= g(B)X. = 0(B)&, ¢ > 1, |61 > 1

* The spectral density of X; is

G(e ™) 12 cr8
F) ‘ (e~ ’)‘ ’gp(e M1 27
* Usep(B)=1- -Band#(B) =1 — é—lB ine: = 0(B) ' p(B)X:
« Then, the spectral density of ¢, is
Loy = | 0re P Lot 2ol B oF _ pléiTel of
c 1—¢le=d 11T —gre=™| 20 @i 27 27 27’

constant and hence ¢; is also a Gaussian (strong) white noise
= The probability structure is the same for
©(B)X; = O(B)e: and 3(B)X: = 0(B)&;

and their two MA(co) representations coexist



Uniqueness of linear process representation

Definition (21)
Uniqueness means that the only way for Xz, a linear process, to admit two MA(oo) representations is

the existence of a constant scaling factor c € R

and a shiftin timel € Z

such that

Xe = Z Pjéej = Z (i

Jj=—o0 j=—o0

. 1-
€ = €& and Y = Ez/)Hz

+ Uniqueness is not found for Gaussian processes... is it similar for Non-Gaussian processes ?

= For finite variance non-Gaussian noises, uniqueness has been demonstrated (Rosenblatt, 2000, Th. 1.3.1)

= For infinite variance noises, we will detail some results

1/\\ 36/100
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How fat should we go

Non-Gaussian distributions are crucial to identify non-causality

As non-causality is appropriate to model explosive (bubble) behavior, heavy-tail distributions are of
interest

The literature has primarily focused on the Student’s t distribution

_ vt
I(4EL) 1/ey2) °
o= EE) (115
felov) I'(v/2)/mvo + v\o
with o > 0 and v > 0 but sufficiently small to depart from the Gaussian distribution

= Hecq, Lieb and Teg (2016) extensively discuss this approach and investigate the question “How fat
should we go” in terms of heavy tails

Remark The Student’s t distribution is symmetric and therefore not necessarily appropriate to model some
financial or macro phenomena (typically, bubbles are generally positive, right tail events)



Introduction to Stable distributions

+ If the tails of the Student’s t distribution are not sufficiently heavy
... the family of Stable laws offers an attractive alternative

Definition (22)
A real probability measure 1 is said to be a-stable if ¥ k € N 3b* > 0 such that

X1+...—|—Xk§b;‘.X+ek

where L(X1) = ... = L(Xk) (X) = pand X1 + ... + X are independent and where 3o € (0, 2] such
that b* = K/




Some remarks on Stable distributions

 If g, is a random variable that follows a stable distribution, then
Et S(a7 57 a, m)

where
— the stability parameter o € (0, 2] is also a tail index

— B € [—1, 1] is the asymmetry parameter
— o € (0, 00) is the scale parameter

— m € Ris the location parameter (if m = 0, & is strictly stable)
« Ifze ~ S(e, 8,1,0) then, e = z.0 + m ~ S(a, B, 0,m)
Normal If e ~ S(2, 8,0, m) then, f-(2, 3,1,0) = (v/27) ' exp(—c?/2)
—1
(
(

Cauchy Ife; ~ S(1,0,0,m) then, f-(1,0,1,0) = (w(1+¢%))
Lévy Ifer ~ S(1/2,1,0,m) then,

£:(1/2,1,1,0) = \/753/2 exp(5-

with f-(.) the density function



Analytic representation of Stable distributions

+ In most cases, neither the probability density, f-(.), nor the cumulative distribution, F-(.), functions
are analytically expressible

+ Fortunately, the characteristic function ¢.(.) = E(e” ") has a tractable expression for o # 1

log p-(u) = fao‘|u|°‘<1 — if(signu) tan (%)) + imu

Remark If f-(.) exists, . (.) = E(e™ ") is also the Fourier transform of f-(.) and one can see that it
completely defines its p.d.f.

Remark When a = 1, log ¢<(.) simplifies to

log p-(u) = —a|u|(1 + iﬁ(signu)% log |u\> + imu



Numerical evaluation of Stable distributions

+ Using the inverse Fourier transform of ¢.(.), we obtain

[e5s}

fela, Byo,m) = (2%)_1/ exp ( —is(e — m))apg((rs)ds

— 00

* f=(.) has no closed form solution but a numerical evaluation is possible

= Settingo = 1and m = 0 we have

fo(a,3,1,0) =7 " / exp(—s™) cos (se + [ tan (%)(s - sa)>ds
0
when o # 1 and
- [T 2
fela, 8,1,0) =7 1/ exp(—s) cos (sa + sﬁ; logs) ds
0
whena =1
= Numerical evaluation of these integrals is possible in R and MATLAB

Remark For any o > 0 and m we have f.(a, 8,0, m) = a’lfgfl(s,m)(aﬁ, 1,0)



Numerical evaluation of Stable Laws probability density function

Standard Stable Distribution PDF Plots with 3 =0

Standard Stable Distribution PDF Plots with & = 0.5
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* The tail index « € (0, 2) is such that for ¢, > 0 and as x — oo,
PX < —x) ~ca(l—B)x “andP(X >x) ~ca(l+B)x “

Remark If X ~ S(a, 8,0,m)witha € (0,2), EIX|* < ccifand only if s < o



Domains of attraction of a-stable distributions

Definition (23)

For v an a-stable distribution and e: an i.i.d. sequence, we say that L(e1) belongs to the domain of attraction
of u, also denoted L(e1) € Do (p) if for somex > 0

P(e; > x) ~x” “L(x)

with L(x) is a slowly varying function at infinity and o« € (0, 2) and if there exists a constant ¢ € [0, 1] such that

lim P(Sl > %) =c
x—o0 P(lea] > x)

Corollary A necessary and sufficient condition for £(e;) to belong to D (1) is
log |p<(s)| ~ —c®|s|*L(1/|s|]) ass — O

where ¢, (s) is the characteristic function of &;



Absolute convergence of infinite variance sequences

Proposition (3)

Let e; be an i.i.d. sequence such that L(e1) € Dq (). If 1j is a sequence of constants such that

Z [4j|* < oo for some s € (0, ) N [0, 1]

j=—00

then the infinite series,

> ey

j=—c0

converges absolutely with probability one.

* This proposition due to Cline (1983) establishes strict stationary conditions for any MA(oo) linear
sequence with infinite variance



a-stable MA(oo) process

Proposition (4)
Let e; and €; be two i.i.d. processes such that
)
€ = Z e
j=—o0

where L(e1) € Do (p) with o € (0, 2). Then, if

> [l < oofors € (0,a)N0,1]

j=—0c0

the MA representation is trivial (all except one MA coefficients 1[1,» have to be null)

+ Gouriéroux and Zakoian (2015) prove Propositions (4) and (5)

= An a-stable MA(oco) process cannot be i.i.d.

Remark This result is very important in view of proving the uniqueness of the strong MA representation

A

under of stable laws with a € (0, 2)

46/100



A

Uniqueness of a-stable strong MA(co) representation

Proposition (5)

Let ; and €; be two i.i.d. processes such that

D e = Y Yy
j=—o0 j=—o0
where L(e1) € Dq(u) with « € (0, 2) and
> [l < oofors € (0,a)N0,1]

j=—o0

Now suppose that 1L(B) is invertible with

$(B) ' = > B suchthat 3 [ < oo

j=—o0 j=—o0

Then, for some constants ¢ € Rand 1l € Z, e, = c&.—; and ¢; = %J)HI

47/100



Stable Noncausal AR(1) and unconditional stationary distribution

* Let X; be a stable strong noncausal AR(1)
XtZSOXt+1+Et7 ‘90| < 17 EtNS(a7ﬁva>o)7 [eRS (0>2)

+ We know that X; has the following strictly stationary solution

oo
X = Z ery
j=0

and we can now compute the unconditional stable distribution of X;

o
Xt~8<oz,,8,7,0), ifa#1andg >0
(1= |epfe)t/e
1—Jo|* o ,
X~S<a,ﬂ , ,0),|fa7éland<,0§0
' T+ [ple” (1—p|)/e

1-|p| o 2 plog ||y .
x~3(1, 7  —BoZ ),lfa:l
f T el T 1ol 77 n (1= 92

and state that E(|X;|") < oo ifand only if u < «

Remark When ¢ < 0, X; is less asymmetric than ¢; because ¢ affects 3



Stable Noncausal AR(1) and conditional moments

* Let X; be a strong stable noncausal AR(1)
Xe =pXep1+ e, ol <1, &~S8(a,B,0,0), ac(0,2)
+ Gouriéroux & Zakoian (2017): for the backward conditional density
E(1X|" | Xet1) < o0 iffb < a
+ Gouriéroux & Zakoian (2017): for the forward conditional density
E(|Xetn|“[Xe—1) < 00, a.s., iffc < 2a+1, «€(0,2),
foranyh > 0and 3 # 1,0r |8] = 1if "' < 0.1f 8 # 1land "' > 0

E(|Xetn| [ Xe—1) < 00 a.s. Ve > —1
+ X; is also a causal homogeneous Markov process as

L(Xe|Xe—1,Xe—2,...) = L(Xe|Xe—1)

Remark The number of finite forward conditional moments is ¢ > (b = u)



Stable Noncausal AR(1) and forward conditional expectation

The forward (causal) conditional expectation always exists...

. but the unconditional and backward (noncausal) conditional expectations exist only if & > 1

Gouriéroux & Zakoian (2017) : if 5 = 0 (symmetric stable laws : SaS)
EXenlXe1) = o] "X, Yh>0, a€(0,2),
with ||® = sign(¢) so that in the Cauchy case (o = 1)
E(Xe4n|Xe—1) = sign(¢)Xe—1, Vh >0
and when ¢ > 0, X; behaves as a stationary martingale !
Remark when ¢ > 0and a € (0, 1), X; is a stationary submartingale

* Fries & Zakoian (2019) : if a € (0,2) and 8 € (—1, 1)

o 2 lo
BXesnle) = el "X — L+ 1) 280 5L iz 0



Cauchy Noncausal AR(1) and forward conditional moments

+ Let X; be a strong Cauchy noncausal AR(1)
+ Gouriéroux & Zakoian (2017) : the causal predictive density is

IR ST i € ol 2\ el
onm (Xe—n — ¢"Xe)? 0% + (1 — |p|)2X2 1— o]

= the second order conditional moment is heteroscedastic

Sx (Xt \erh) =

2 1 o?
BRe) = et =T
= X; admits a semi-strong representation (a la Drost & Nijman, 1993)
Xi = sign(¢)Xe—1 + & where & = 7
0_2
lel(1 = lol)
where E(7:|X;—1) = 0, E(32|X;—1) = 1 and i}, is a Weak White Noise

o= (eIt = )Xt +

Remark X; = unit-root (if » > 0) + ARCH (based on X2_; rather than & ;)

* Fries & Zakoian (2019) extend these results to the Cauchy MAR(p, q)



Strong causal representation for the Cauchy Noncausal AR(1)

+ As mentioned in (20), a weak causal representation exists...

... but, itis also possible to derive a strong causal representation
+ Use some Gaussian innovations given by ;' = &~ (F(X¢|X;—1)) with
. ®71(.) the Normal c.d.f. and F(X;|X;_1) the conditional c.d.f. of X; :

A 14 (1— 2x? 52
F(xr|xt71>:flog< U-lel X &

7r T+ X1 — X)? (1= |¢])?

T - 1-7 _
+ — (E — sign(e) tan " (X, — prt)> + — (tan (1= |oD)X) + ﬁ)
T\ 2 ™ 2

L eOeDes el (= e, — (1 - 20D)
(=2 + (1= o)X, (=20l + (1= o)X

t—1

+ Inverting the relation ef = ® ' (F(X;|X;—1)), one can derive

X =G6(Xe—1,er), G(Xe—1,.) =F '(®()|Xe—1), e ~N(0,1)

= the strong causal AR(1) representation is highly nonlinear



The Lévy Noncausal AR(1)

* Let X; be a strong Lévy noncausal AR(1)
Xe=pXey1+e, 0<e<l, &~S8(1/2,1,0,0), ac(0,2)
+ As for the Cauchy case, Gouriéroux & Zakoian (2017) prove that

— X has a causal predictive density given by
3/2
1 Xe—1
Xl X)) = — —m8M8M8M8M8™—
e m(xr<xt1 —er)>
—(Xe—1 — /X
X exp (X1 2\/979 t)
X1 Xe(1— /)2 (Xem1 — 9Xo)

= All the causal forward conditional moments exist whereas even the unconditional first moment does not

) Lo<px <X 1

X: admits an ARCH type (probably) semi-strong representation
Xe = Y2X 1+ &, E(&X_1)=0
albeit the form of &; is tedious to derive

— The strong causal (non-linear) representation X; is untracktable



What we known on the Stable Noncausal AR(1): summary

Law Representation Equation Properties

Cauchy Strong noncausal Xe = pXey1 + & e/o ~i.i.C(0,1)

o] <1 Weak causal linear Xe = @Xe—1 + & & ~ WWN(0, o)
Semi-strong causal linear  X; = sign(p)Xi—1 + 7 7 ~ WWN
Strong causal nonlinear X = G(Xe+1,€;) el ~N(0,1)

Lévy Strong noncausal X; = pXeq1 + & g~ i.i.L(O, ﬁ)

0< ¢ <1 Weakcausallinear X = oXe_1 + & e ~ WWN(0, o)
Semi-strong causal linear X; = L,o_l/QX[,l + vy ~ WWN
Strong causal nonlinear  no closed form expression

Stable Strong noncausal X; = Xey1 + € e ~ 1.i.d(0, o?)

lp| <1 Weak causal linear X = @oXe_1+ & & ~ WWN(0, o%)

Semi-strong causal linear

Strong causal nonlinear

no closed form expression

no closed form expression
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Prediction of linear causal processes with infinite variance

The result in P(2) can be generalized to the non-Gaussian L? framework

arg_min E((Xetn = PXesn))?) = EL(Xern| For)

where P (Xe1n) is a predictor of Xern and # = X;, ..., X3

Cline & Brockwell (1985) deal with the causal symmetric a-stable case

= the best predictor cannot be defined in a mean square sense... however

arg min)E(\X[H. - P(Xt+h)\a) = PL(Xeyn|-Z-1)

P Xeyn
where IPIL(.) is a linear projection defined by the minimum dispersion
« Ifa € (1,2], the PL(.) is unique and EL(X; |- %—1) = PL(Xe4n|-Zt-1)

« If « € (0, 1], the PL(.) is not unique



Prediction of linear stable non-causal processes

+ In the non-causal L? framework the optimal predictor is more tricky
= E(Xu4n|-F—1) is generally a non-linear function of the observed values
+ We know that E(|X|*|Xc+1) < co onlyforb < a
= fortunately, E(|Xc1|°|-Zi—1) < oo for ¢ < 2a + 1 so that
EXitn|-Zi—1) < 00 Va €(0,2)
+ For some specific non-causal models we have a closed form expression :
— strong non-causal AR(1) with stable errors for Yh > 0:
Ben o) = ol H DNy L (h+ 1) 20152
— strong SaS mixed-causal MAR(1, 1) for Vh > 0:

h41
EXeyn|Fe—1) = (‘P.)h+1 <Xr1 + X1 — ¢*X—2) Z(‘P<a1>%@.)]>
j=1

where o<*> = sign(¢°)|p°|* (see Fries & Zakoian, 2019 for the MAR(1, q))



Bubble prediction in stable non-causal processes

Consider X; = ¢Xi+1 + &, e ~ S(a,0,0,0) and ¢ € (0, 1)
= multiple bubbles are likely to occur for large values of ;

Remark E(Xein|Xe—1) = || "FV@=DX, ; always predicts an exponential decay to the central values at rate
—1

@

¥

= E(Xi4n|Xi—1) describes paths that depart from the realized trajectory

If the predictive density is known, once estimated, one can compute
PXepn — @Xerny1 > cfXe),
the probability of bubble collapse at t + h for some critical level ¢

= As the predictive density is generally unknown Gouriéroux & Jasiak (2016) suggest a non-parametric
approach

= Fries (2022) investigates higher moments through the joint density of (X¢+n, X¢)



Fries (2022) : a-stable random vectors and spectral measure

+ Samorodnitsky and Tagqu (1991) show that SaS random vectors X are defined by a unique pair
(T, p) such that Vu € R?and s1,...,s4 € s

x(w) = exp ( — [ Iw)|" (1~ i(sign(u, $))w(a, (u,s)) ) D(ds) + ils. u>>

Sa

is the characteristic function of X with (., .) the scalar product,
w(a, x) := tan (%) ifa# landw(1,x) := _2 log ||
s

and I a spectral measure on the unit sphere S; and p° € R¢

* T’ := scale, asymmetry and dependence between X(y), ..., X € X and p is a non-random shift
vector

Results For some v > 0, ]E(X(Vz) |X(1)> < oo if
[s1]7"I'(ds) < coand v < min(a + v, 2a + 1)
S

sothatif & > 3/2 and v > 4 — ¢, the fourth moment exists



Fries (2022) : non-causal a-stable AR(1) process and spectral measure

* Fries (2022) shows that for X; a non-causal a-stable AR(1) process...
.. Xt = (X¢, Xe+n) is a-stable and has a spectral measure
_ o ah <a>\hqgn
I, = 7; <(1|90 +1- (p=°%)"95)a(0,0)
1

+ (1 + |¢|2h>a/2(1 + 795)5(1%,))

with 4(x) the Dirac measure atx € R, §1 = {—1, +1},

—a o 2 1-— ‘50|a
7= ———andf=p-—1"_
1— gl 1—[pf<e>

and finally sp = (", 1)/1/1 4+ ]2 € S,
+ The analytical form of I'; allows to compute E(X]+h|xh>

= see Fries (2018) for the momentsy =1,...,4



Fries (2022) : non-causal a-stable AR(1) process and bubble behavior

* Fries (2022) investigates how the standardized conditional moments

m, (x) = B (X[, X =)

behave during a bubble driven by large values (i.e. as x — oo) for ¢ > 0

mi(x) ~ (¢~ "x)p"", ifa € (0,2)
ma(x) ~ (9 "x)p™" (1 — "), ifa € (1/2,2)
o ah

ma(x) —» ——— 22 ifa € (1,2)
(1 — o)
_ ah

my(x) — 1-6e7 620 , ifo € (3/2,2)
(p()é

* These are the moments of a weighted Bernoulli distribution !

h

— charging probability " to the weight ¢ ~"x ...

.. and probability 1 — " to the value 0

= ©°" .= probability that the bubble survives at least h more time periods



Limitations of the Spherical Representation

+ de Truchis, Fries & Thomas (2025) suggest to extend this approach by considering
X = Xe—my -+, Xey X1, - oo, Xen)
where X; is defined as a general a-stable infinite moving average
+ Samorodnitsky & Taqqu (1991) defines the spectral measure I on the unit sphere S+ 144
= This representation is based on a norm (e.g., Euclidean) of the full trajectory vector X;
* Problem for prediction !
= the conditioning event, ||X:||c > x, is not observable at time t as it contains h future values

+ de Truchis, Fries & Thomas (2025) propose a new representation theory to solve this



de Truchis, Fries & Thomas (2025): Seminorm Representation

The key idea: replace the norm with a seminorm || - || that only depends on the observed past.

The seminorm is defined to ignore all future components
(X—m, .y X0 X1, .o, xn)]| = || (X=my . -+, %0, 0, . .., 0)||

= the unit sphere S, 111 is forced to become a unit cylinder CMFIH,I

Fundamental result: not all processes admit such a representation as process is representable on
this cylinder if and only if it is “anticipative enough”

= Purely causal processes are non-representable in this framework.

= This theory directly links anticipativeness to the predictability of extreme events.



de Truchis, Fries & Thomas (2025): Prediction Framework

+ The prediction problem becomes

— finding the future, path defined by a Borel set A on the cylinder, that matches a known pattern

— given an extreme past trajectory, let say the Borel V C ST‘H‘_P that defines B(V) = V x R?

* The limite behavior of X;/||X|| reveals the discrete nature of the tail distribution

C(x X _rHlanEw)
Jim P <||Xr| € 4| IXl>x, X © Bm) = TTII(BV))

where

|[X:|| > x = The observed past is extreme.
B(V) = The shape of the observed past matches pattern V.
A = The (unobserved) future path we are forecasting.

= For anticipative AR(p > 2), the tail distribution degenerate to a single Dirac masses.

= If the past pattern is identified, the future path becomes asymptotically deterministic.
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Gouriéroux & Jasiak (2016) : partial fraction representation
* Let X; be a strong MAR(1, 1) process

(1-¢°F)(1 = ¢ B)Xe = @°(F)@*(B)X: =&, o[ <1, [¢*] <1

+ Gouriéroux and Jasiak (2016) suggest a partial decomposition of &;

e = ®°(F)u, = ®°(B)v;

where u; = ®*(B)X; and v¢ = ®°(F)X; hence leading to

1 1 °L
Xt: L] o o + @ L] E[
1—p*e°\1—@°F 1—¢°L

1 o
= T (P +v)
1 .
= ﬁ(ut‘l'@ thl)
1—-gp%p

where v; and u; are the causal and noncausal components of &,



Beyond partial fraction decomposition

* The approach of Gouriéroux & Jasiak (2016) is general...
= ...but analytical solutions are complex and essentially known only for the MAR(1,1) case
* For higher orders (p, q), usual methods rely on recursive algorithms
+ Problem: these methods introduce a systematic truncation bias by approximating the infinite sum

+ de Truchis & Thomas (2025) propose an exact analytical solution for MAR(p, q)



Exact analytical solution

+ We use the MA(co) representation under the strict stationarity assumption:

X = [‘PO(F) ]7 e = Z OkEetr
kEZ
+ By the fundamental theorem of algebra, we have ©*(B) =[], (1 — \iB) and

@°(F) = [1}_,(1 = GF).
+ de Truchis & Thomas (2025) obtain via the contour integral method:

» Future coefficients (non-causal, k > 0):

C.(P*1)+k
] . (71)4
Z Hm;éj(cf - qm) : ?zl(Ain - 1)
 Past coefficients (causal, k < 0):
(a—1)+]k|
2 -1y

Z Hl;&: ) : j:1(/\i<i - 1)



Simulation (exact)

+ Step 1: Coefficient computation
— Use the exact formulas to compute the 6§y for k € [—m, m].
— mis chosen large enough so that & ~ 0 if [k| > m.

+ Step 2: Innovation generation

— Simulate a long path of i.i.d. innovations & (e.g., a-stable $(a, 8, &, 0) or Student’s t).

+ Step 3: Simulation (Convolution)

— Compute x; by direct convolution (a simple finite MA filter):

m
Xt = Z OkErtk

k=—m

Remarks: = Avoids the recursive approximation of the u; and v, components.
= Eliminates the systematic truncation bias of recursive methods.

= The ¢ coefficients are also the basis for new forecasting methods ("pattern-based forecasting").



Simulation of noncausal AR(1) processes

+ Inall cases, ¢ = 0.8 / the bottom-right case is e; ~ S(1.8,0,0.01,0)
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Simulation of noncausal MAR(1, 1) processes

* Inall cases, ¢° = 0.8, ¢* = 0.4/ the bottom-right case is & ~ §(1.8,0,0.01, 0)
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Incomplete literature review

+ Ordinary Least Squares : Davis and Resnick (1986)
— Distribution assumptions : very general and mild
— Limit theory : depends on distribution parameters (« if g is a-stable)
— Other : simple but cannot identify the causal and noncausal components
+ Stable Maximum Likelihood : Andrews et al. (2009)
— Limit theory : converges nt/e if gy is a-stable
— Other : computationally cumbersome
+ Least Absolute Deviation : Davis and Wu (2010)
— Limit theory : locally Gaussian and converges n/2ifeis Laplacian
— Other : simple but sensitive to causal and noncausal misspecification
+ Semi-parametric log-concave projected MLE : Davis and Zhang (2017)
— Powerful and very general albeit tedious to implement
Frequency domain Minimum Distance : Lobato and Velasco (2018), Velasco (2022)

— Powerful and general albeit requiring higher moments to exist
* Generalized Covariance (GCov) : Gourieroux and Jasiak (2023)

— Powerful and general albeit requiring higher moments to exist



Autocorrelation of strong noncausal AR(p)

* Assumed that e, inX; = ZJZ’?OO jec—j has Pareto-like tail

P(lee| > x) =x “L(x) and Y _ |4)/° < oo, fors € (0,a) N[0, 1]
= X; is stationary and ¢; enters the domain of attraction of a-stable laws

+ Davis and Resnick (1986) investigates the limit theory for sample autocorrelation of strong
non-Gaussian linear processes

pn(h) = ( > xtxt_h> <ZX3>
t=h+1 t=1

and prove that n'/ (ﬁ,.(h) - p(h)) 25 0 where

o(h) = ( ) ijj+h>( > wﬁ)l

j==o0 j=—o0
* Note that for h = 1, pn(1) is the OLS estimator of p(1) = ¢

Remark p(h) # theoretical autocorrelations of X; as the latter do not exist



Limit theory of OLS estimator of strong noncausal AR(p)

+ Then, Davis and Resnick (1986) prove that forh > 1,
o= (1), pa(h)) and p = (p(1),..., p(h))’

the limit distribution of p, is a function of stable variables

a

fn(ﬁn _p)i>(<177<h)
with an = inf{x : P(le1] > x) <n~'}, by = inf{x : P(|e1e2| > x) <n~'} and

oo

=2 (o0 + o0 =1) = 2000 O

where §; are i.i.d. a-stable and Sy is positive «/2-stable

« If the law of |e;| is asymptotically equivalent to a Pareto distribution

a2 [ n\"
b, ~ \ log(n)

= the limit theory of the OLS estimator ¢, = p, depends on «



Limit theory of OLS estimator of noncausal Cauchy AR(1)

+ Let X; be a strong Cauchy AR(1) process

= Then, the OLS estimator ¢ satisfies

n ~ d
log(n) ((p" - @) — (1 +99)Sl/S0

where 81 ~ C(0, 1) and Sy ~ £(0, 1) and hence 1/8y ~ x*(1)
= the Cauchy case is very surprising because

— limit distribution: ratio of standard Cauchy and Chi-squared variables

— ¢n converges faster than y/n even if E(S1/Sg) = oo

Remark As E(X;|X; 1) = |¢|“ VX, 1 = sign(¢)X;_1 in the Cauchy case, we show that even if
E(X¢|Xi—1) # @Xe—1, $n cOnverges to ¢ !

= the empirical auto-correlation function reveals serial dependence in reverse time, not in direct time



Limit theory of OLS estimator of noncausal MAR(p, q)

+ Let X; be a strong MAR(p, q) process
D(L)X: = ¢° (F)¢® (B)X; = &r with P(Jeo| > x) = x~ “L(x)
and denote by &, the OLS estimator of ®, the parameters of D(L)

* Fries & Zakoian (2018) show that

with R = p([i = j])ij=1,...p4+0: € = (C1, - -+, Gpta)s Z = (Gij)ij=1,....p+q

Z o+ 1) + o1 — ) — 20)p (|z\>)s%,

and (o = 0 where §; are i.i.d. a-stable and Sy is positive a/2-stable

Remark causal and noncausal parameters are not identifiable in the MAR(p, q)



Least Absolute Deviation (LAD)

* The LAD criterion is derived via a likelihood approximation assuming that the underlying noise ¢, is
Laplacian
f- = (20) 'exp (- |st|071), oc>0

= the approximate log-likelihood is

n

Ly(Bler) = —(n —r)log(20) — % Z e

t=1

and can be maximized with respect to the scale parameter to obtain

n
g=m-=r""Y |
=1

and derive the following concentrated likelihood objective function

0u(0le) = —(n —r)(1+1og(2)) — (n— 1) log (2(n — 1) ") — log (Z |>

t=1

where 0 is a r vector of parameters



Least Absolute Deviation for generalized Mixed Phase ARMA

+ As the Laplace distribution has fat tails, it is attractive here
+ Let X; be a generalized Mixed Phase ARMA

¢ (F)o" (B)X. = 0° (F)0" (B)e:
with e, a SWN in the domain of attraction of a-stable distributions

* Wu (2011) shows that the LAD objective function

n+p—q 90
0|Et

with p = p° +p°®, q = q° + q° and 0 a vector ofp + q parameters
* In practice, to build &¢(0), Wu and Davis (2010) suggest

1 to compute forwards v (8) = ®(L)X; — 03ve_,(0) — ... — OgeVe_qe (8) recursivelyfort=1,...,n+p
andvp (@) =0fort <0

2 to compute backwards £¢(0) given that vp (@) = 6°(F)e; and hence
1 o o
et(8) = 5o (VP10 (6) = craqe (6) = Ofersqo—1(0) — ... = 032 _12041(6))
qO

fort=n+p—q°,...,—q° +1lande;(0) =0fort >n+p—q°.



Limit theory of the LAD for generalized Mixed Phase ARMA

Wu (2011) shows that the LAD estimator 8 = arg gﬂig Qn(O|er)
€O

an(0 — 0) —% viin,  an = inf{x: P(|e1| > x) <n"'}
with v,in @ random variable with no closed form expression
= the LAD estimator is n'/®-consistent > n'/2 when « € (0, 2)

* As vmin is untracktable = bootstrap : Davis and Wu (1997) & Cavaliere et al. (2018)

Davis and Wu (2010) discuss the finite variance case
= for instance, if X; is a strong MAR(p, q) with Laplacian errors

1
CAf2(0)E(v?)

with v = ¢° (F)X;, ur = ¢°*(L)X; and ¢° = @7, ..., ¢, (p° resp.)

V" — %) iw(o ) Vi(e® so°>i>N<o 1)

TAf2(0)E(u?)

To evaluate f2(0) a logistic kernel can be used (see Hecq et al. 2017)



Generalized Covariance (GCov) Estimator

Motivation: estimate semi-parametric dynamic models with i.i.d. errors.

Applicable to models like non-linear mixed causal-noncausal VAR, Stochastic Volatility...

Let the model be: g(¥; 8) = u,, where u; is i.i.d. (Y; contains current/lagged Y).

Core Idea: Minimize a residual-based multivariate portmanteau statistic.

Define residuals @:(0) = g(Y¢; 0).

Let I'(h; #) be the sample autocovariance of il; () at lag h.

Define R?(h, 0) = I'(h; 0)I'(0,0)~'I'(h; §)'T'(0;0)~*

GCov Estimator of Gourieroux & Jasiak (2023)

Or(H) = arg HllIl i Tr[R?(h, )]

h=1



Properties of the GCov Estimator

« Asymptotic Properties: Under regularity conditions:
— Consistent: f7(H) 2500
— Asymptotically Normal: v/T(f7 — ) ~ N[0, 2(6) 1]

— Semi-parametrically efficient

+ Identification:

— Identifies parameters characterizing serial dependence
— Does not identify drift or scale parameters affecting only the marginal distribution of u;

+ Drawbacks: relies on higher moment conditions (although simulations support good performance
in absence of finite variance)
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Empirical papers

1. Forecasting extreme trajectories using seminorm representations by G. de Truchis, S. Fries, A.
Thomas, 2025

2. Autoregression-based estimation of the new Keynesian Phillips curve by M. Lanne and . Luoto, 2013



Empirical Application: Forecasting El Nifio/La Nifa

+ Context: El Nifio and La Nifia are major climate anomalies with significant societal and economic
impacts (extreme weather, agriculture, commodity prices, macroeconomic fluctuations)

+ They are often measured by the Southern Oscillation Index (SOI), derived from air pressure
differences

+ The SOI exhibits patterns resembling explosive bubbles followed by crashes, making it suitable for
non-causal modeling

+ Goal: Apply the seminorm representation theory to forecast:

— The probability of returning to normal conditions (reversal probabilities)

— The exact timing of the peak and end of El Nifio/La Nifia episodes (reversal dates)

+ Uses the results from de Truchis, Fries & Thomas (2025)



Data and Model Selection

+ Data: Monthly SOl index.
« Sample Period: 01/1951 to 01/2024, split into:

— In-sample: 01/1951 - 12/1991 (for estimation)

— Out-of-sample: 01/1992 - 01/2024 (for forecast evaluation)

* SOI Time Series Plot:

* Model Selection:
— ACF and PACF analysis suggests an AR structure
— Estimation using GCoV estimator favors a purely non-causal AR(2) model
(1= 5F — 3 F)Xe = &

— Errors e are assumed a-stable to capture heavy tails



Forecasting Reversal Probabilities

+ Goal: Estimate the probability of El Nifio and La Nifia reversal

+ Methodology: Approximate P(Crash at t + h|Extreme at t, Pattern matched)
— Condition 1: extreme magnitude ||X;|| > x, approximated by X; > q- (e.g., 90th or 95th quantile)

— Condition 2: observed pattern
Xe—m, -, Xe) /|| Xe |

falls in a small neighborhood B(V() around a theoretical pattern dody, /||d, ||

— Target Event: future path returns to central values

* Results (Selected): Probabilities (in %) of returning to central values (§ = 0.5)

Out-of-Sample
Po.9s  Po.95

In-Sample
Horizon (h) | po.9s  Po.9s

54.17 75.00 63.46 67.31
83.33 87.50 92.31 84.62

h=3
h=5

Notes: pq = theoretical prob., p; = empirical freq. for quantile ¢ = 0.95. m = 2.

+ High probability of reversal within 5 months: unlikely persistence of very extreme La Nifia events



Forecasting Reversal Dates: Methodology

+ Goal: Predict the exact peak and end date of an El Nifio/La Nifia episode
+ Leverage the deterministic nature of asymptotic forecasts for MAR(0,2) whenm > 1

« If ||X;|| is large and (X¢—m, . . ., X;) matches a specific MA(co) segment, the future path is determined

*+ 4-Step Procedure:

1. Compute the observed normalized pattern (X;—m, . . ., X¢)/||X¢|| for a chosenm > 1
2. Compute theoretical patterns ¥dy /||dx|| for a range of k (using the exact dj coefficients)

dy = (6k+m7"'76k7"'76k7h)

3. Find the unique ko such that Yody, /||dy, || is closest to the observed pattern with g the sign of the event
4. The future path is predicted to follow the shape of ¥qdj,



Forecasting Reversal Dates: El Nifio 1991/1992 Example

+ Scenario: forecast the El Nifio event starting at the end of the in-sample period (Dec 1991) with X;
large and negative (Vo = —1)

+ Pattern Matching:

— Try different past window lengths m € [1, 10]
— Form = 1,2 and m € [5, 10|, the procedure robustly identifies kg = 1

— Retain kg = 1 with m = 10. This means the observed pattern matches the segment (11, ...,01)

* Prediction:

— Since kg = 1, the process is predicted to follow the shape —d;/||d1||

— The coefficients i for k < 0 are zero for MAR(0,2). The peak occurs att + kg = t + 1. The reversal (return
to zero) occurs shortly after, att + ko + 1 =t + 2

— Predicted peak date: Jan 1992. Predicted reversal date: Feb 1992



Forecasting Reversal Dates: El Nifio 1991/1992 Example
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Forecasting Reversal Dates: Out-of-Sample Performance

Table: Forecasting out-of-sample El Nifio and La Nifia anomalies

Type of anomaly El Nifio

Start date 12/1991
Peak date 01/1992
End date 04/1992
Forecasted Peak 01/1992
Forecasted End 02/1992

Peak forecasterror 0
End forecast error -2
ko 1
m 10

El Nifio
07/1994
09/1994
1071994
09/1994
10/1994
0

0

2

10

La Nifia
11/2007
02/2008
03/2008
02/2008
03/2008
0

0

3

10

El Nifio
12/2009
02/2010
03/2010
03/2010
04/2010
1

1
3
9

La Nifia
07/2010
09/2010
11/2010
08/2010
09/2010
-1

-1

1

10

La Nifia
11/2010
12/2010
04/2011
01/2011
02/2011
1

-2

2

10

El Nifio
07/2015
10/2015
11/2015
09/2015
10/2015
-1

-1

2

10

La Nifia
11/2021
01/2021
03/2021
01/2021
02/2021
0

-1

2

10

La Nifia
02/2022
03/2022
05/2022
04/2022
05/2022
1

0

2

10

La Nifia
08/2022
10/2022
11/2022
10/2022
11/2022
0

0

2

10

La Nifia
11/2022
12/2022
02/2023
01/2023
02/2023
-1

0

2

10

* The 4-step procedure was applied to predict all El Nifio and La Nifia events (14 total) in the
out-of-sample period (1992-2024).

+ Forecasting starts when SOI first crosses the threshold (£1)

* Accuracy Summary:

— Average error in predicting the peak date: 0.42 months
— Average error in predicting the end date (reversal): 0.57 months

A
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Empirical paper 2: stylized facts

+ New Keynesian Phillips curve (NKPC) :
e = Y Eemep1 + Axe

inflation rate 7, depends linearly on
e the expected inflation rate next period, E;m¢+1, and
e a measure of marginal costs, x;.

Hybrid NKPC (Gali and Gertler, 1999) : also include lagged inflation

Ty = ’YfEtﬂ'tJrl + Wwre—1 + AX;

Inflation is highly persistent — debate on the source:
e dependence on past inflation in forming expectations ?
e agents’ forward-looking behavior ?



Empirical paper 2: stylized facts

Main issue: the marginal cost variable x; is not directly observable

e use real unit labor cost
e use the output gap

Following the rational expectations literature
Tt = VfTe41 + Vo Te—1 + Net1,

where 41 = o1 + Axe, With {1 = YEemers — e

If ne were i.i.d., this would be the MAR(1, 1) model of Lanne and Saikkonen (2011a)

In practice, need to allow 7 to be autocorrelated, hence assume the autocorrelation in the error
term 7 to be adequately captured by a (potentially noncausal) MAR(p — 1,q — 1) process

©°(F)p* (B)y: = &



Empirical paper 2 : dataset

+ U.S. NKPC with quarterly data from 1955 : 1to0 2010 : 3

« Inflation is computed as m; = 400 In(P;/P:_1),
o PP . P, is the implicit price deflator of the GDP or

o 1 : P, is the consumer price index for all consumers

+ proxies for the marginal cost:
e the real unit labor cost and

e linearly detrended logarithmic real GDP per capita



Empirical paper 2 : classical GMM estimation

+ The estimated coefficients, their statistical significance and even their signs vary from one instrument
set to another

+ The results vary depending on the marginal cost proxy being used

+ Overall it appears to be difficult to obtain general results concerning the issue of forward-looking vs.
backward-looking inflation dynamics using the GMM



Empirical paper 2: noncausal autoregressions

Step 1: Autocorrelation and non-normality of residuals

+ Specify a Gaussian autoregression with serially uncorrelated errors and check whether the residuals
are normally distributed

+ Use Ljung-Box autocorrelation and Jarque-Bera normality tests
e Normality is rejected, excess kurtosis points towards a student distribution

o Identify the need for 5 AR lags for 7" and 4 lags for 7!



Empirical paper 2 : noncausal autoregressions

Step 2: Find the correct orders of causal and noncausal lag polynomials, p and q

+ Estimate all MAR(p, q) models with t-distributed errors where the sum of p and q equals 5 for 6P
and 4 for 7!

+ Choose the specification that maximizes the log-likelihood function

+ Finding: For both series, a mixed model involving both leads and lags is selected : MAR(2, 3) and
MAR(3, 1) respectively



Empirical paper 2 : noncausal autoregressions

Step 3: Estimation of the hibrid NKPC by ML

Table 3
Estimation results of the new Keynesian Phillips curves based on the U.S. inflation series.
TGP TP
AR Model MAR(2,3) MAR(3,1)
Y 0.302 0.189
(0.099) (0.060)
Y 0.675 0.768
(0.086) (0.057)
o 1.154 1917
(0.108) (0.356)
Y 4.527 3.010
(1.490) (0.706)

The row labeled AR Model gives the best-fitting AR(p q) model that the estimation of the NKPC is based on.
0 and Vare the scale and degree-of-freedom parameters of the error distribution, respectively. The figures
in parentheses are ML standard errors based on the Hessian matrix.



Empirical paper 2 : further results

Finding the correct variable driving the process of inflation is crucial for identification in conventional
GMM and ML estimation approaches put forth in the previous literature

Because here we have no estimate of )\, the deep parameters cannot be uniquely solved, but Ax; can
be solved as
AXe = T — ’AYfEtﬂ'rJrl - ’AYbﬂ't—l

once the NKPC is estimated and the obtained time series is informative about the properties of the
implied drivers of the inflation series.

The authors find that the driving processes of the two inflation series exhibit relatively low
persistence

This indicates that persistence is mostly intrinsic instead of being inherited from a persistent driving
process



Empirical paper 2 : Conclusion

+ The results lend support to both forward-looking and backward-looking dynamics, with the former
clearly dominating

+ Themodel doesn't require to prespecify any marginal cost proxy driving the inflation. Hence, it
facilitates computing the most plausible driving process given the estimated parameter values

+ Consequently, inflation persistence appears to be intrinsic as opposed to being inherited from a
persistent driving process
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