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Financial series

ARCH / GARCHmodels appeared in the context of the debate on the
linear non-linear representation of stochastic temporal processes

Nonlinearity in variance

A major contribution of the ARCH literature is the finding that apparent
changes in the volatility of economic time series may be predictable and
result from a specific type of nonlinear dependence rather than exogenous
structural change in variables (Berra et Higgins, 1993, page 315).

• specific representation of non-linearity
• simple modelling of uncertainty
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Financial Series

Notations

St : asset (or portfolio) price at time t

pt : asset (or portfolio) log-price at time t

rt : the continuously compounded or log-return of a financial asset (or
portfolio) at time t

rt = pt − pt−1

rt = log(1 +Rt) with Rt =
St−St−1

St−1

Their properties have been amply commented upon in the financial lit-
erature
These stylized facts are mainly concerned with daily stock prices
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Nonstationarity of price series
The stochastic process St is generally non-stationary in the sense of
second-order stationarity

Stationarity of return series
The stochastic process rt is compatible with the second-order stationarity
property
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Nonstationarity of price series
The stochastic process St is generally non-stationary in the sense of
second-order stationarity

Stationarity of return series
The stochastic process rt is compatible with the second-order stationarity
property
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Autocorrelation
Absence of autocorrelation for the price variations : (a)

The series of price variations generally displays small autocorrelations,
making it close to a white noise (Efficient Market Hypothesis ou EMH)

Autocorrelations of the squared price returns : (b)
Squared returns (r2

t ) or absolute returns (|rt|) are generally strongly
autocorrelated
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Volatility clustering

Large absolute returns |rt| tend to appear in clusters

Turbulent (high-volatility) sub-periods are followed by quiet (low-volatility)

periods. These sub-periods are recurrent but do not appear in a periodic
way (which might contradict the stationarity assumption)

In other words, volatility clustering is not incompatible with a homoscedas-
tic (i.e. with a constant variance) marginal distribution for the returns
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Fat-tailed distributions
The empirical distribution of daily returns does not resemble a Gaussian
one: classical tests typically lead to rejection of the normality assump-
tion at any reasonable level

The densities have fat tails and are sharply peaked at zero: they are
called leptokurtic (check the coefficient of Kurtosis)

When the time interval over which the returns are computed increases,
leptokurticity tends to vanish and the empirical distributions get closer
to a Gaussian (Aggregational Gaussianity property)
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Fat tails vs different dispersion levels
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Conditional fat tails

Even after accounting for volatility clustering, (by using for example
ARCH / GARCH models as we will see in the next section), the distri-
bution of the residuals is leptokurtic

Its kurtosis is however smaller than in the unconditional case (for the
residuals of a simple ARMA type of model)
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Leverage effects

Asymmetry in the response of volatility to positive and negative past
returns, respectively

A diminishing price generates an increase in volatility larger than a price
increase of the same amount

h 1 2 3 4 5 6 7

ρ̂ (h) − 0.012 − 0.014 − 0.047 0.025 − 0.043 − 0.023 − 0.014
ρ̂|r|(h) 0.175 0.229 0.235 0.200 0.218 0.212 0.203
ˆ +

t− h, | t|) 0.038 0.059 0.051 0.055 0.059 0.109 0.061
ρ̂(− −

t− h, | t|) 0.160 0.200 0.215 0.173 0.190 0.136 0.173

We use here the notation +
t = max t, 0) and −

t = min t, 0).

r

r r
r r

r r r r

ρ
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Leverage effects vs Gain/Loss Asymmetry

Gain/Loss Asymmetry : The distribution of prices may be asymmetric,
there are more drops than increases (check the coefficient of Skewness)
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Seasonality

Calendar effects: the day of the week, the proximity of holidays, among
other seasonalities, may have significant effects on returns

Following a period of market closure, volatility tends to increase, reflect-
ing the information cumulated during this break

The seasonal effect is also very present for intraday series (beyond the
scope of this course)

Table: January effect

Average return (monthly %)
Period January Other months
1904-1928 1.3 0.44
1929-1940 6.63 -0.6
1940-1974 3.91 0.7
1904-1974 3.84 0.42
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Seasonality

Calendar effects: the day of the week, the proximity of holidays, among
other seasonalities, may have significant effects on returns

Following a period of market closure, volatility tends to increase, reflect-
ing the information cumulated during this break

The seasonal effect is also very present for intraday series (beyond the
scope of this course)

Table: Week-end effect

Monday Tuesday Wednesday Thursday Friday
French (1980) 1953-1977 -0.17 0.02 0.1 0.04 0.09
Gibbons and Hess (1981) 1962-1978 -0.13 0 0.1 0.03 0.08
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Summary

Any satisfactory statistical model for daily returns must be able to cap-
ture these main stylized facts, mainly leptokurticity, the unpredictability
of returns, and the existence of positive autocorrelations in the squared
and absolute returns

Classical formulations (such as ARMA models) centered on the second-
order structure are inappropriate

There is evidence of conditional heterokedasticity (time-varying volatil-
ity):

V(rt|rt−1, rt−2, ...) 6≡ const

Conditional heteroscedasticity is perfectly compatible with stationarity
(in the strict and secondorder senses), just as the existence of a noncon-
stant conditional mean is compatible with stationarity
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Modelling Approaches

Objective : account for the very specific nature of financial series (price
variations or log-returns, interest rates, etc.)

Recall the traditional forecast analysis (cf. Box et Jenkins)

Exemple:
Stationary AR (1): rt = θrt−1 + εt, with εt i.i.d N(0, σ2

ε)

E(rt+1) = 0

E(rt+1|rt, rt−1, ...) = θrt

provides a model specification for the conditional mean
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Modelling Approaches

Engle (1982)’s idea : account for other conditional moments of the return
processus

But, for an AR(1) process

E(r2
t+1) = σ2

ε/(1− θ2)

E(r2
t+1|rt, rt−1, ...) = σ2

ε

are constants

Such models are unable to measure changes in forecast error variance
although we want them to be impacted by their past evolution
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Modelling Approaches

Solution

Models that capture time-varying volatility are written in the multiplica-
tive form

rt = σtzt

where (zt) and (σt) are real processes such that:
σt is measurable with respect to a σ-field, denoted It−1;
(zt) is a weak white noise process with unit variance, zt being independent
of It−1 and σ(ru;u < t);
σt > 0

This formulation implies that the sign of the current price variation (that
is, the sign of rt) is that of zt, and is independent of past price variations
Most importantly, if the first two conditional moments of rt exist, they
are given by E(rt|It−1) = 0, E(r2

t |It−1) = σ2
t

The random variable σt is called the volatility of rt
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Modelling Approaches

As Cov(rt, rt−h) = E(zt)E(σtrt−h) = 0, (rt) is a weak white noise.
The series of squares, on the other hand, generally have nonzero auto-
covariances: (rt) is thus not a strong white noise
The kurtosis coefficient of rt, if it exists, is related to that of zt, denoted
kz by E(r4t )

{E(r2t )}2 = kη[1 + V ar(σ2)

{E(σ2)2} ]

Hence, the leptokurticity of financial time series can be taken into ac-
count in two different ways:

either by using a leptokurtic distribution for the weak white noise sequence
(zt ),
or by specifying a process (σ2

t ) with a great variability
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Modelling Approaches

Different classes of models can be distinguished depending on the
specification adopted for σt

Conditionally heteroscedastic (or GARCH-type) processes

Here It−1 = σ(rs; s < t) is the σ-field generated by the past of rt
The volatility is here a deterministic function of the past of rt
Processes of this class differ by the choice of a specification for this func-
tion
The standard GARCH models are characterized by a volatility specified
as a linear function of the past values of r2

t

Stochastic volatility processes

Here It−1 is a σ-field generated by vt, vt−1, · · ·, where (vt ) is a strong
white noise and is independent of (zt )
volatility is a latent process
a popular specification is the one where the process log σt follows an AR(1)
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Conditionally heteroscedastic processes

In these models, the key concept is the conditional variance, that is, the
variance conditional on the past
We can reproduce the autocorrelation empirically seen in conditional
volatility by using the information in the previous value(s) of the squared
returns
⇒ in an ARCH(q) specification, perturbations follow an autoregressive
process of order q
⇒ ARCH(q) are autoregressive conditionally heteroskedastic models
V(rt) = const

V(rt|It−1) = f(rt−1, rt−2, · · · ; θ)
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ARCH test

Usual (Ljung-Box) autocorrelation test on squared returns

H0: ρ1 = ρ2 = . . . = ρK = 0

QLB(K) = T (T + 2)

K∑
k=1

ρ̂2
k

T − k
d−→

T→∞
χ2(K),

where ρ̂k is the empirical autocorrelation

ARCH-LM test
Auxiliary regression

ε̂2
t = φ0 + φ1ε̂

2
t−1 + · · ·+ φpε̂

2
t−p + ηt

H0’: φ1 = · · · = φp = 0

Test-statistic: LM(p)= T ×R2 d−→
T→∞

χ2(p)
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Family of ARCH-type models

• linear models
(ARCH(q), GARCH(p, q) et IGARCH(p, q))

• non-linear models (i.e. asymmetric models)
(EGARCH(p, q), GJRGARCH(p,q), TGARCH(p, q)...)
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ARCH models Engle (1982)

Definition
rt follows an ARCH(1) if

rt = zt
√

(σ2
t ), σ2

t = α0 + α1r
2
t−1

zt - strong white noise

σ2
t - deterministic and positive process conditionally on the σ-field

V(rt|It−1) = V(zt
√

(σ2
t )|It−1)

= σ2
tV(zt|It−1)

= σ2
t , V(zt|It−1) normalized to 1

⇒ σ2
t is the conditional variance of rt
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Modèles ARCH

Moments of ARCH(1) process
i)

E(rt|It−1) = E(ztσt|It−1)

= σtE(zt|It−1) = 0 if zt is weak white noise

E(rt) = E(E(rt)|It−1) = 0
ii)

V(rt|It−1) = V(ztσt|It−1)

= σ2
tV(zt|It−1)

= σ2
tV(zt)

= σ2
t = α0 + α1r

2
t−1.

V(rt) = E
(
(rt − E(rt))

2
)

= E(r2
t )

From the autoregressive structure of r2
t in ARCH models under

stationnarity hypothesis (E(r2
t ) = α0 + α1E(r2

t )) we have that

E(r2
t ) = V(rt) =

α0

1− α1
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ARCH(q) Models

Definition
rt follows an ARCH(q) Process if

rt = ztσt

with σ2
t = α0 +

∑q
i=1 αir

2
t−i

and where zt is a weak white noise such that E(zt) = 0 et E(z2
t ) = σ2

z .

• This model fulfils the martingale difference and time-varying conditional
variance properties

E(rt|rt−1) = 0 and V(rt|rt−1) = α0 +
∑q
i=1 αir

2
t−i
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ARCH-errors model

Linear autoregressive model Yt = E(Yt|Yt−1) + εt

with εt a weak white noise
E(ε) = 0 and E(εtεs) = 0 if s 6= t,

satisfying the martingale difference hypothesis
E(εt|εt−1) = 0.

We assume that the residuals have an ARCH(q) representation: εt = ztσt

with σ2
t = α0 +

∑q
i=1 αiε

2
t−i

where zt is a strong white noise
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ARCH-errors model

• AR(1) - ARCH(1) Exemple

Yt = µ+ ρYt−1 + εt, εt = ztσt

with σ2
t = α0 + α1ε

2
t−1 and |ρ| < 1

The model describes the evolution of both the conditional mean and the
conditional variance of Yt through time

• εt : résiduals
• zt : standardized residuals

Residuals εt satisfy the properties of an ARCH process:
martingale difference; time-varying conditional variance; zero conditional
auto-covariances; leptokurtic distribution
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IBM example
Log-return models with ARCH errors 
	
IBM example 

 

Example I: Price of IBM Stock
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Example II: Danish Stock Market Index (KFX)
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IBM example

Log-return models with ARCH errors 
	
 
 

Table 2 : ARCH(10 estimation for S&P500

Coe↵. Estimate Std. Error t-stat
! 0.2605 0.0155 16.785
↵1 0.0366 0.0099 3.700
↵2 0.0809 0.0123 6.575
↵3 0.0657 0.0118 5.585
↵4 0.0866 0.0133 6.525
↵5 0.1035 0.0140 7.420
↵6 0.0746 0.0125 5.943
↵7 0.0780 0.0130 6.002
↵8 0.0892 0.0135 6.452
↵9 0.0875 0.0134 6.530
↵10 0.0789 0.0130 6.074

Note : Inference is conducted through a maximum likelihood
estimation.

Notes

Example:	EsMmaMon	of	an	ARCH(10)		
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Non-negativity constraints and Limits of ARCH

Non negativity constraints

For a ARCH(1) model , α0 ≥ 0; α1 ≥ 0

For an ARCH(q) model, αi ≥ 0, ∀i = 0, 1, . . . , q

Limitations of ARCH(q) models
q, number of lags of the squared residuals, is potentially very large
Non negativity constraints might be violated
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Generalised ARCH(1,1) or GARCH(1,1) Models

Due to Bollerslev (1986)
The conditional variance of the error term (or one-period ahead estimate
of the variance of the error term) depends on own past values and on
past values of the squared residuals

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1

with α0 > 0, α1 > 0 and β > 0

GARCH(1,1) model containing 3 parameters is a very parsimonious in-
finite ARCH model
The GARCH forecast variance is a weighted average of three different
variance forecasts. One is a constant variance that corresponds to the
long run average. The second is the forecast that was made in previous
period. The third is the new information that was not available when
the previous forecast was made
This could be viewed as a variance forecast based on one period of in-
formation. The weights on these three forecasts determine how fast the
variance changes with new information and how fast it reverts to its long
run mean
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GARCH(p,q) Models

Definition
A process εt satisfies a GARCH(p, q) representation if

εt = ztσt,

σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
i=1 βiσ

2
t−i,

where zt is a weak white noise

and where α0 > 0, αi ≥ 0 , i = 1, ..., q and βi ≥ 0, i = 1, ..., p

The conditional variance of the error term depends on own p past values
and on q past values of the squared residuals
But in general a GARCH(1,1) model will be sufficient to capture the
volatility clustering in the data
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GARCH Models

Conditional Moments

E(εt|εt−1) = 0

V(εt|εt−1) = σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
i=1 βiσ

2
t−i,

Unconditional Variance

V(rt) = E(rt − E(rt)
2) = E(r2

t )

V(rt) = E(r2
t ) =

α0

1−
∑max(p,q)
i=1 (αi + βi)
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GARCH Models

Under additional assumptions (implying the second-order stationarity
of ε2

t ), we can state that if εt is GARCH(p, q), then ε2
t is an ARMA(p,

q) process

ε2
t = α0 +

max(p,q)∑
i=1

(αi + βi)ε
2
t−i + vt −

p∑
i=1

βivt−i

where vt = ε2
t − σ2

t are the innovations of the process
GARCH processes are hence able to capture the characteristic feature
of financial series is that squared returns are autocorrelated
The sum α+β is referred to as the persistence of the conditional variance
process
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GARCH Models

Contrary to standard time series models (ARMA), the GARCH struc-
ture allows the magnitude of the noise ε2

t to be a function of its past
values.
Thus, periods with high volatility level (corresponding to large values of
ε2
t−i) will be followed by periods where the fluctuations have a smaller
amplitude.
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GARCH Stationarity

Definition
A process εt satisfies a GARCH(p, q) representation if

εt = ztσt,

σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
i=1 βiσ

2
t−i,

where zt is a weak white noise and where α0 > 0, αi ≥ 0 ,i = 1, ..., q and
βi ≥ 0, i = 1, ..., p is asymptotically second-order stationary if and
only if

q∑
i=1

αi +

p∑
j=1

βj ≤ 1
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GARCH

Drost & Nijman, 1993 define 3 types of GARCH

The strong GARCH where zt is a Strong White Noise

The semi-strong GARCH where zt is a Weak White Noise

The weak GARCH where only projections of the conditional variance
are considered
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Examples of GARCH(1,1)

Exemple: Log-returns model with GARCH(1,1) errors	

i)  α1+β1 ~≤1 ;  ii) β1 >>α1  ;  iii)               and              for daily data   
 
 

β1
∧

> 0.9 α1
∧

< 0.1
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IGARCH(p,q) (Engle and Bollerslev, 1987)

When
q∑
i=1

αi +

p∑
j=1

βj = 1

the model is called an integrated GARCH(p, q) or IGARCH(p, q) model
(see Engle and Bollerslev, 1986)
There is a unit root in the autoregressive part of the ARMA represen-
tation of ε2

t representation
Returns are strictly stationary with an infinite variance

G. de Truchis & E. Dumitrescu Économétrie non-linéaire 40/96



Stylized Facts GARCH family of models Multivariate GARCH models

Maximum Likelihood (ML)

Method used to estimate parameters of ARCH and GARCH models;
idea is to choose the parameters that maximize the chance (likelihood)
of the data occurring
Easy to implement once the density function of zt is specified
Let us call θ the vector of the parameters to be estimated.
If zt are assumed to be normally distributed, then the log likelihood
function for a sample of T observations is:

`(ε1, ε2, ..., εT ; θ) =
T∑
t=1

logf
(
εt|It−1

)
= −T

2
log(2π)− 1

2

T∑
t=1

log
(
σ2
t (θ)

)
− 1

2

T∑
t=1

ε2
t (θ)

σ2
t (θ)

,

where ε2t (θ)

σ2
t (θ)

= z2
t
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Maximum Likelihood (ML)

z2
t = z2

t (θ) =
rt − E(rt|It−1)

σ2
t

and

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

Note that σ2
t is not observed for t = 0,−1, . . . ,−p+ 1

To initialize the process, the unobserved squared residuals are
1 set to their sample mean;
2 set to the unconditional variance;
3 obtained using a pre-sample;
4 or considered as additional parameters to be estimated

Under the normality hypothesis, this estimator
√
T (θ̂ − θ0)

d−→N (0, V −1
T (θ0))

G. de Truchis & E. Dumitrescu Économétrie non-linéaire 42/96



Stylized Facts GARCH family of models Multivariate GARCH models

Maximum Likelihood (ML)
The estimator of θ does not have a closed-form formula
numerical optimization methods are used
We need

1 Initial condition
2 Moving rule
3 Stopping rule
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Maximum Likelihood (ML) Example

G. de Truchis & E. Dumitrescu Économétrie non-linéaire 44/96



Stylized Facts GARCH family of models Multivariate GARCH models

Maximum Likelihood (ML) Example 2
Annualized GARCH(1,1) volatility fitted to daily US market returns

σ2
t = 0.0

(4.46)
+ 0.09

(8.59)
ε2
t−1 + 0.9

(80.19)
σ2
t−1

Volatility is
Time-varying
Persistent
Mean reverting
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GARCH Extensions

GARCH models are doing better than ARCH models (e.g., persistence
in volatility) but there are still some issues (e.g., tails are not enough
fat, etc).
Improvements in various directions:

Non-normality of the conditional distribution:
e.g. GARCH-t model
Asymmetric GARCH models :
e.g. Exponential GARCH model (EGARCH), Threshold GARCH model
(TGARCH), GJR model
Trade-off mean vs variance : e.g. GARCH-in-mean model
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GARCH Extensions

In case of non-normality:

Student distribution
Skewed Student distribution
Generalized error distribution (GED)
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GARCH Extensions
Student distribution

If zt follos a Student distribution with v degrees of fredom, where v ∈ R
satsfies v > 2, then the log-likelihood associated with an observation and
the parameter set θ is given by :

`(θ, εt) = log
[
Γ
(v + 1

2

)]
− log

[
Γ
(v

2

)]
− 0.5

[
log[π(v − 2)] + log(σ2

t ) + (1− v) log
(
1 +

z2
t

v − 2

)]
with Γ(.) the Gamma function and where zt = εt−Eεt

σt
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GARCH Extensions
Asymmetric GARCH

The GJR-GARCH(1,1) Model

Due to Glosten, Jaganathan and Runkle, 1993

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1 + γε2
t−1It−1

where It−1 =

{
1 if εt−1 < 0

0 otherwise

For a leverage effect, we would see γ > 0

We require α1 + γ ≥ 0 and α1 ≥ 0 for non-negativity
We require α1 + 0.5γ + β < 1 for stationarity
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GARCH Extensions
Asymmetric GARCH

The GJR-GARCH(1,1) Model

Using monthly S&P 500 returns, December 1979- June 1998
Estimating a GJR model, we obtain the following results

rt = 0.172
(3.198)

σ2
t = 1.243

(16.372)
+ 0.015

(0.437)
ε2
t−1 + 0.498

(14.999)
σ2
t−1 + 0.604

(5.772)
ε2
t−1It−1
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Extension 4. GARCH Asymétriques

TGARCH(1,1), (Zakoian, 1994)

A process εt satisfies a TGARCH(1,1) representation if and only if

εt = ztσt

σt = α0 + αposIεt−i≥0εt−1 − αnegIεt−i<0εt−1 + β1σt−1

where the standardized residual zt is a weak white noise and Iεt−1<0 is an
indication function such that Iεt−i<0 = 1 si εt−i < 0 et Iεt−i<0 = 0 sinon

• The asymmetric dynamics is specified for the squared root and not for the
conditional variance
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News Impact Curves
Asymmetric GARCH

The news impact curve plots the next period volatility (σt) that would
arise from various positive and negative values of εt−1, given an esti-
mated model
News Impact Curves for S&P 500 Returns using Coefficients from GARCH
and GJR Model Estimates
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EGARCH
Asymmetric GARCH

Suggested by Nelson (1991)
The variance equation is given by

log(σ2
t ) = α0 +

q∑
i=1

aizt−i +

q∑
i=1

bi(|zt−i| − E[|zt−i|]) +

p∑
i=1

βilog(σ2
t−i)

Advantages of the model
Since we model the log σ2

t , then even if the parameters are negative, σ2
t

will be positive
one identifies a sign effect aizt−i and a magnitude effect bi(|zt−i| −
E[|zt−i|])
E[|zt−i|] depends on the distribution of zt

E[|zt|] =

√
2

π
Loi Gaussienne

E[|zt|] = 2
γ( v

2
)
√
v − 2

√
π(v − 1)Γ( v

2
)

Loi de Student (v)
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GARCH-in-mean or GARCH-M (Engle, 1987)

Asset pricing models suppose that higher risks should be rewarded by
higher returns
The GARCH-in-mean model lets the mean of an asset’s returns to be
determined by its lagged conditional volatility

rt = µ+ δG(σ2
t ) + εt, εt ∼ N (0, σ2

t )

σ2
t = α0 + α1ε

2
t + βσ2

t−1,

with G(σ2
t ) a linear, log-linear or square-root function

The parameter δ can be interpreted as the price of risk and can thus be
assumed to be positive
Hence, if δ > 0, increases in risk (given by increases in conditional
volatility) lead to higher mean returns
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Plan

1 Stylized Facts
2 GARCH family of models
3 Multivariate GARCH models
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Multivariate GARCH models

While the volatility of univariate series has been the focus of the previous
chapters, modeling the comovements of several series is of great practical
importance

The standard linear modeling of real time series has a natural multivari-
ate extension through the framework of the vector ARMA (VARMA)
models

Similarly, here we introduce the concept of multivariate GARCH model

Essential for asset pricing and risk management crucially depend on the
conditional covariance structure of the assets of a portfolio
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Multivariate GARCH models
Let us denote by rt a column vector of k asset returns and the vector of
their conditional expectations by µt

... returns’s equation implies a conditional covariance matrix Ht:

rt − µt = εt = H
1/2
t zt, H

1/2
t (H

1/2
t )′ = Ht

εt is a vector, not a scalar as previously
where Ht is a matrix k × k with elements hijt
and zt is i.i.d Gaussian such that E(zt) = 0 and E(ztz′t) = I with I a k×k
identity matrix

The conditional covariance matrix Ht takes the form

Ht = f(Ht−1, Ht−2, · · · , εt−1, εt−2, · · · )

If H1/2
t exists, Ht is positive definite

⇒ the transformation f(.) ought to insure that Ht is symmetric and positive
definite

But f(Ht−1, Ht−2, · · · , εt−1, εt−2, · · · ) is complex...
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Multivariate GARCH models

Choosing a specification for Ht is obviously more delicate than in the
univariate framework because:

(i) Ht should be (almost surely) symmetric, and positive definite for all t

(ii) the specification should be simple enough to be amenable to probabilistic
study (existence of solutions, stationarity, ... ), while being of sufficient
generality

(iii) the specification should be parsimonious enough to enable feasible esti-
mation

(iv) but, the model should not be too simple to be able to capture the -
possibly sophisticated - dynamics in the covariance structure
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Multivariate GARCH models

Moreover, it may be useful to have the so-called stability by aggre-
gation property

If εt = H
1/2
t zt is satisfied, the process (ε̃t) defined by ε̃t = Pεt, where

P is an invertible square matrix, is such that

E(ε̃t|ε̃u, u < t) = 0, V(ε̃t|ε̃u, u < t) = H̃t = PHtP

The stability by aggregation of a class of specifications for Ht requires
that the conditional variance matrices H̃t belong to the same class for
any choice of P

Relevance: if the components of the vector εt are asset returns, ε̃t is a
vector of portfolios of the same assets, each of its components consisting
of amounts (coefficients of the corresponding row of P ) of the initial
assets
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Multivariate GARCH models

Generally zt is assumed to follow the multivariate Gaussian distribution,
zt ∼ N(0, I), since it provides the basis of QML estimation as in the
univariate case

Another choice of density for zt is the multivariate t

Multivariate skewed distributions can also be used (e.g. the skewed-t of
Bauwens and Laurent, 2005)

As in the univariate case, distributions with fat-tails and skewness are
usually better fitting data than the Gaussian
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Multivariate GARCH models

Unlike the ARMA models, however, the GARCH model specification
does not suggest a natural extension to the multivariate framework

Indeed, the (conditional) expectation of a vector of size k is a vector of
size k, but the (conditional) variance is a k × k matrix

Important milestones are

the BEKK model of Engle and Kroner (1995)
the constant conditional correlation (CCC) model of Bollerslev (1990)
the dynamic correlation model (DCC) of Engle (2002a)
the time-varying correlation (TVC) model of Tse and Tsui (2002)

Earlier models had too many parameters to be useful for modeling more
than two asset returns jointly (e.g. VEC model)
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VEC models

Take the case of a bivariate GARCH(p,q) (k = 2):

Ht =

(
h11t h12t

h21t h22t

)
⇒ ht = vec(Ht) =


h11t

h12t

h21t

h22t


Note: The operator vec(.) consists in vectorizing a matrix by stacking
the columns of the matrix on top of one another

Using this operator, Engle et Kroner (1995) propose the VEC model:

ht = ω +

q∑
i=1

αivec(εt−iε
′
t−i) +

p∑
i=1

βiht−i

with ω a k × 1 vector, and αi and βi k × k matrices

Problem: the model is big and some equations are redundant
e.g. h12t = h21t as Ht is a covariance matrix

it will not in general produce positive definite covariance matrices Ht
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VECH models
Apply a vech(.) operator now to the previous GARCH(p, q):

Ht =

(
h11t h12t

h21t h22t

)
⇒ ht = vech(Ht) =

h11t

h21t

h22t


Note: The operator vech(.) consists in vectorizing a matrix by stacking
the columns of the lower triangular part of its argument square matrix
One obtains the VECH model where ht = vech(Ht)

Definition
The process εt is said to admit a VEC-GARCH(p,q) representation (relative
to the i.i.d sequence zt) if it satisfies

εt = H
1/2
t zt, where Ht is positive definite such that

vech(Ht) = ω +

q∑
i=1

A(i)vech(εt−1ε
′
t−1) +

p∑
j=1

B(j)vech(Ht−j),

where ω is a vector of size {k(k+1)/2}×1, and the A(i) and B(j) are matrices
of dimension k(k + 1)/2× k(k + 1)/2.
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VEC models

In particular, for a VECH-GARCH(1,1)

ht =

h11t

h21t

h22t

 =

c1c2
c2

+

α11 α12 α13

α21 α22 α23

α31 α32 α33

 ε21,t−1

ε1,t−1ε2,t−1

ε22,t−1

+

β11 β12 β13

β21 β22 β23

β31 β32 β33

h11,t−1

h21,t−1

h22,t−1



every conditional covariance is a function of lagged conditional variances
as well as lagged cross-products of all components

More parsimonious model than the VEC-GARCH

But the VECH-GARCH still implies a big number of coefficients
Problem: VEC and VECH are not able to generally insure that Ht is
positive definite
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Diagonal VECH-GARCH models

To further simplify the model and its estimation, one may assume that
volatilities and covariances depend only on their past values (Bollerslev,
Engle, and Wooldridge, 1988)

⇒ Non-diagonal coefficients of Ai and Bi are null

E.g. VECH-GARCH(1,1)

ht =

h11t

h21t

h22t

 =

c1c2
c2

+

α11 0 0
0 α22 0
0 0 α33

 ε21,t−1

ε1,t−1ε2,t−1

ε22,t−1

+

β11 0 0
0 β22 0
0 0 β33

h11,t−1

h21,t−1

h22,t−1



More parsimonious than the VEC-GARCH

The VEC-GARCH is stable by aggregation

In this case it is also possible to obtain conditions for positive definiteness
of Ht for all t
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BEKK model

Developed by Baba, Engle, Kraft and Kroner, in a preliminary version
of Engle and Kroner (1995)

Definition
Let (zt) denote an i.i.d. sequence with common distribution. The process
(εt) is called a BEKK-GARCH(p, q), with respect to the sequence (zt), if it
satisfies

εt = H
1/2
t zt

Ht = C′C +
N∑
n=1

q∑
i=1

Ainεt−iε
′
t−iA

′
in +

N∑
n=1

p∑
i=1

B′inHt−iB
′
in

with Ain, Bin, n ∈ {1, . . . , N}, and C matrices of dimension k × k

Each BEKK model implies a unique VECH model, while the converse
implication is not true

The BEKK class contains the diagonal models by choosing diagonal
matrices Aik and Bjk
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BEKK model

Definition
Ht is positive definite if matrices Ht−i, i = 1, . . . , p, are almost surely
positive definite and

ker{C}
p
∩
j=1

N
∩
n=1

ker{Bjn} = {0}

This is a weak condition, requiring only that C and Bjn are full rank
(e.g. triangular C with positive diagonal elements)
an identifiability restriction is needed, Hjj,t being invariant to a change
of sign of the j-th row of any matrix Ai

BEKK-GARCH(1,1) in the bivariate case (k=2) with N = 1

Ht = C
′
C +

(
α11 α12

α21 α22

)′ ( ε21,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε22,t−1

)(
α11 α12

α21 α22

)
+

(
β11 β12

β21 β22

)′ (h2
11,t−1 h12,t−1

h21,t−1 h2
22,t−1

)(
β11 β12

β21 β22

)
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Stationarity of the BEKK model

Definition
Let C be an upper triangular n× n matrix and Ain, Bin be n× n parameter
matrices. Let zt be an i.i.d. process with mean zero and unit variance. Hence
zt is independent of It−1, and cov(zt|It−1) = cov(zt) = I.
There exists a covariance stationary BEKK process εt, such that εt = H

1/2
t zt,

where Ht = cov(εt|It−1) and It = σ(εt, εt−1, . . .) if and only if all the eigen-
values of

∑q
i=1 Ain⊗Ain+

∑N
n=1

∑p
i=1 Bin⊗Bin are less than one in modulus.
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General BEKK model

A general BEKK- GARCH(1,1) representation requires N > 1

But the number of parameters increases with N

Need to find the minimal N which eliminates restrictions defined by the
need of positive definiteness and identifiability

Engle et Kroner (1995) give two such conditions:
Denote w = k(k+1)/2. Then N should be big enough such that the total
number of elements in the matrices is at least w2

Let ai,j,n be the i, j-th element of a matrix A1,n. Then, there should
exist a matrix A1,n which contains the pair ail,n, ajm,n or the pair ajl,n,
aim,n for all i, j, l,m between 1 and n

Similar restriction are needed for matrices B1n
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General BEKK model

Example
For k = 2, the following matrices satisfy the two aforementioned condi-
tions

A11 =

(
a11,1 a12,1

0 a22,1

)
; A12 =

(
a11,2 a12,2

a21,2 0

)
; A13 =

(
a11,3 0
a21,3 a22,3

)
The coefficients of a BEKK representation are difficult to interpret (highly
artificial constraints on the volatilities and covolatilities)
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Stability of the BEKK model by aggregation

Definition
Let (εt) be a BEKK-GARCH (p, q) process. Then, for any invertible m×m
matrix P , the process ε̃t = Pεt is a BEKK- GARCH(p, q) process.

Proof.
Letting H̃t = PHtP

′, G̃ = PC′CP ′, Ãin = PAinP
−1 and B̃in = PBinP

−1,
we get

ε̃t = H̃
1/2
t zt

H̃t = G̃+

N∑
n=1

q∑
i=1

Ãinεt−iε
′
t−iÃ

′
in +

N∑
n=1

p∑
i=1

B̃′inHt−iB̃
′
in,

and G̃ being a positive definite matrix, the result is proved.
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Estimation of the BEKK model

Under the assumption that zt are i.i.d. conditionally on initial values,
the quasi log-likelihood function of the BEKK model is given by

Ln(θ) = Ln(θ; ε1, . . . , εn) =
n∑
t=1

−n
2

log(2π)− 1

2
log |Ht| −

1

2
ε′tH

−1
t εt,

where

εt = H
1/2
t zt

Ht = C′C +
N∑
n=1

q∑
i=1

Ainεt−iε
′
t−iA

′
in +

N∑
n=1

p∑
i=1

B′inHt−iB
′
in
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Estimation of the BEKK model

Comte and Lieberman (2003) provide conditions for strong consistency
and asymptotic normality of the quasi maximum likelihood estimator

Strong consistency

θ̂n → θ0 almost surely when n→∞

Asymptotic normality
√
n(θ̂n − θ0)

d−→N (0, J−1IJ−1),

where J is a positive definite matrix and I is a positive semi-definite
matrix, defined by

I = E
(∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′
)
, J = E

(∂2lt(θ0)

∂θ∂θ′
)
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Conditional correlations

Multivariate GARCH models allow one to compute conditional vari-
ances and covariances

Conditional correlations can hence be reconstructed

ρij,t =
hij,t√
hii,thjj,t

with {i, j} = 1, · · · , k and i 6= j
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Constant Conditional Correlations models

Suppose that for a multivariate GARCH process of the form εt = H
1/2
t z̃t

all the past information on εit, involving all the variables εj,t−i, is sum-
marized in the conditional variance

The standardized innovations zit = h
−1/2
ii,t εit are sequences of i.i.d (0,1)

variables generally correlated
Denote the covariance matrix R = V(zt) = (ρi,j), with zt = (z1t, . . . , zkt)

In CCC models the conditional covariances hij,t are obtained as hij,t =
ρi,j
√

(hii,thjj,t) for i 6= j and they are time varying although the corre-
lations are constant

In matrix notations,

Ht = DtRDt = ρi,j
√

(hii,thjj,t)

with Dt a k × k diagonal matrix with
√
h11,t, · · · ,

√
hkk,t on its main

diagonal

⇒ Ht is positive-definite if hii,t is positive for all i and Rt is positive-definite
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Constant Conditional Correlations models

Definition
Let z̃t be a sequence of i.i.d. variables. A process εt is called CCC-GARCH(p,
q) if it satisfies

εt = H
1/2
t z̃t

Ht = DtRDt

ht = ω +

q∑
s=1

Asεt−s +

p∑
v=1

Bvht−v,

where R = cov(ztz
′
t) is a correlation matrix, Dt = diag(

√
ht), ht is the vector

of k conditional variances with elements (hii,t), εt is the vector of k squared
innovations (non-standardized), ω is a m×1 vector with positive coefficients,
As and Bv are k × k matrices with nonnegative coefficients

Note that εt = Dtzt, where zt = R1/2z̃t is a centered vector with covari-
ance matrix R such that εi,t = h

1/2
ii,tzi,t

Note that hii,t may depend on the past of all the components of εt
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Strict stationarity of the CCC model

Definition
The CCC-GARCH(p,q) model admits a second-order stationary solution if
the vector of parameters is such that the roots of the polynomial det(I −∑s
i=1(Ai+Bi)λ) with s = sup(p, q), are outside the unit cercle. This solution

is unique and ergodic.
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Strict stationarity of the CCC model

Definition
A necessary and sufficient condition for the existence of a strictly stationary
and nonanticipative solution process for the CCC model is γ < 0, where γ is
the top Lyapunov exponent of the sequence {Dt, t ∈ Z} (see Aue, Hormann,
Horvath, and Reimherr, 2009). This stationary and nonanticipative solution,
when γ < 0, is unique and ergodic, with

Dt =



ΩtA1 ΩtA2 . . . ΩtAq ΩtB1 ΩtB2 . . . ΩtBp

I 0 . . . 0 0 0 . . . 0
0 I . . . 0 0 0 . . . 0

...
...

. . .
...

...
...

...
0 0 I . . . 0 0 . . . 0
A1 A2 . . . Aq B1 B2 . . . Bp

0 0 . . . 0 I 0 . . . 0
0 0 . . . 0 0 I . . . 0

...
...

...
...

...
. . .

...
0 0 . . . 0 0 . . . I 0



,

and Ωt = diag(z2
it) matrix.
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Estimation of CCC models

by the quasi-maximum likelihood method

Overall there are k + k2(p + q) + k(k − 1)/2 parameters to estimate
θ = (ω′, α′, β′, ρ′)′

Let (ε1, . . . , εn) be a sample of length n of the unique nonanticipative
and strictly stationary variable εt of the CCC model

Conditionally on nonnegative initial values ε0, . . . , ε1−q, h0, . . . , h1−p, the
Gaussian quasi-likelihood is written as

Ln(θ) = Ln(θ; ε1, . . . , εn) =

n∏
t=1

1

(2π)k/2|Ht|1/2
exp

(
− 1

2
ε′tH

−1
t εt

)
,

where Ht are recursively defined, for t ≥ 1, by

Ht = DtRDt, Dt = {diag(ht)}1/2 (1)

ht = ht(θ) = ω +

q∑
s=1

Asεt−s +

p∑
v=1

Bvht−v (2)
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Estimation of CCC models

Under the assumption that each conditional variance is specified as a
function of its own lags and the ith element of εt (denoted by εit), for
example, by a GARCH(1,1) equation, an important simplification is
obtained in QML estimation

This assumption splits the log-likelihood function into two parts

ln(θ) = logLn(θ) =− 1

2

n∑
t=1

(2 log |Dt|+ log |R|+ z′tRzt)

=− 1

2

n∑
t=1

(2 log |Dt|+ z′tzt)

− 1

2

n∑
t=1

(log |R|+ z′tRzt − z′tzt)

The parameters of the conditional variances appear only in Dt (first
term), while the parameters of the conditional correlation matrix Rt
appear only in the second term
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Estimation of CCC models

So the estimation can be performed in two steps
Estimate univariate GARCH models for each asset i = 1, . . . , k and con-
struct standardized residuals

zt = D−1
t εt

In a second step, estimate the correlation model (i.e. the constant condi-
tional correlations) based on

E(ztz′t) = D−1
t HtD

−1
t = R,

where R is symmetric and positive definite

Remark: The separate estimation of each conditional variance model and
of the correlation model is the key to enable estimation of MGARCH
models of conditional correlations when k is large, where large means
more than, say, 5

Remark 2: The price to pay for this is the impossibility of including
spillover terms in the conditional variance equations, i.e. terms involving
εt−1,j or ht−1,j for j 6= i

G. de Truchis & E. Dumitrescu Économétrie non-linéaire 81/96



Stylized Facts GARCH family of models Multivariate GARCH models

Estimation of CCC models

A QMLE of θ is defined as a measurable solution θ̂n = argmax
θ∈Θ

Ln(θ)

Under several assumption the following asymptotic properties of the
QMLE estimator can be established (Francq and Zakoïan, 2010)

Strong consistency

θ̂n → θ0 almost surely when n→∞

Asymptotic normality
√
n(θ̂n − θ0)

d−→N (0, J−1IJ−1),

where J is a positive definite matrix and I is a positive semi-definite
matrix, defined by

I = E
(∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′
)
, J = E

(∂2lt(θ0)

∂θ∂θ′
)
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CCC models

The hypothesis of CCCs is not tenable except for specific cases and short
periods

Several tests of the null hypothesis of constant correlations exist: see
Longin and Solnik (1995), Tse (2000), Engle and Sheppard (2001), Bera
and Kim (2002a), and Silvennoinen and Terasvirta (2005). The tests
differ because of the specification of the alternative hypothesis

Indeed, many empirical work show that the matrix R is time-varying

Ht = DtRtDt,

with Rt measurable with respect to the past variables {εu, u < t}
Dynamic conditional correlations GARCH (DCC-GARCH) of Engle et
Sheppard (2001) is the most well known multivariate approach introduc-
ing dynamics for the conditional correlation

For reasons of parsimony, it seems reasonable to choose diagonal matrices
As and Bv as discussed on slide 80 regarding the definition of CCC
models (on slide 76), corresponding to univariate GARCH models for
each component
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DCC models

Dynamic conditional correlations GARCH models are an extension of
CCC-GARCH, obtained by introducing a dynamic for the conditional
correlation (Engle 2002)

Definition
The DCC process is a martingale difference sequence εt relative to a given
filtration It, whose conditional covariance matrix Ht = cov(εt|It−1) satisfies

Ht = DtRtDt

where Dt = diag(h
1/2
11,t . . . h

1/2
kk,t) and Rt is a k×k time varying correlation

matrix of zt.
Besides, hii,t is defined as univariate GARCH(p, q) model where the usual
restrictions for non-negativity and stationarity are imposed.

The univariate GARCH models can have different orders

The number of parameters to be estimated is quite large when k is large
(e.g. equal to (k + 1)(k + 4)/2 in bivariate case for a DCC(1,1))
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DCC models
Different DCC(1,1) models are obtained depending on the specification of
Rt

Simple GARCH-like formulation

Rt = θ0R+ θ1Ψt−1 + θ2Rt−1,

with R a constant correlation matrix, and Ψt−1 the empirical correlation
matrix of zt−1, . . . , zt−M

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2,

where
Qt = θ0Q̄+ θ1zt−1z

′
t−1 + θ2Qt−1

with θ1 > 0, θ2 > 0, θ1 + θ2 < 1, θ0 = 1− θ1 − θ2, and Q̄ = cov(ztz
′
t)

One can test the assumption of constant conditional covariance matrix
through the restriction θ2 = θ3 = 0

Both ensure that Ht is positive definite if Rt is positive definite with
elements in the unit cercle. For this, Qt and its initial value have to be
positive definite.
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General DCC (M,N)

εt = H
1/2
t z̃t

Ht = DtRtDt

where

Dt = diag(h
1/2
11,t . . . h

1/2
kk,t) (3)

Rt = diag(Qt)
−1/2Qt diag(Qt)

−1/2, (4)

Qt = (1−
M∑
i=1

θ1i −
N∑
j=1

θ2j)Q̄+
M∑
i=1

θ1izt−iz
′
t−i +

N∑
j=1

θ2jQt−j (5)

Less parsimonious than DCC(1,1)
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Estimation of the DCC model

Suppose that the process zt is multivariate Gaussian distributed such that
E(zt) = 0 and E(ztz

′
t) = I.

The DCC model can be estimated by a two-step procedure as the con-
ditional variance Ht = DtRtDt can be divided into volatility part and
correlation part (Engle 2002)

The method is thought to produce consistent but not efficient estimators

The log-likelihood takes the form of

ln(θ) = −1

2

n∑
t=1

(
log(|Ht|) + ε

′
tH
−1
t εt

)
= −1

2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + ε

′
tD
−1
t R−1

t D−1
t εt

)
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Estimation of the DCC model
In the first step the likelihood involves replacing Rt with the identity
matrix I

l1,n(θa) = −1

2

n∑
t=1

(
2 log(|Dt|) + log(|I|) + ε

′
tD
−1
t I−1D−1

t εt
)

= −1

2

k∑
i=1

n∑
t=1

(
log(hii,t) +

ε2
ii,t

hii,t

)
,

where θa corresponds to the vector of parameters of the univariate
GARCH model for all returns series
Once θa is estimated, hii,t is estimated such that zt and Q̄ can be esti-
mated as well
In the second step, θb = (θ1, θ2) is estimated, given the estimated pa-
rameters from step one

l2,n(θb|θ̂a) = −1

2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + ε

′
tD
−1
t R−1

t D−1
t εt

)
= −1

2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + z′tR

−1
t zt

)
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Estimation of the DCC model

Asymptotic properties of the two-step estimation procedure have been
studied in Engle and Sheppard (2001)

However, Aielli (2009) showed that the estimation of Q by R̂ is incon-
sistent since

E(ztzt) = E(E(ztz
′
t|It−1)) = E(Rt) 6= E(Qt)

The consistent DCC (cDCC) relies on a consistent specification of Qt

Qt = (1− θ1 − θ2)Q̄+ θ1 diag(Q
1/2
t−1)zt−1z

′
t−1 diag(Q

1/2
t−1) + θ2Qt−1,

such that Q̄ is the unconditional covariance matrix of diag(Q
1/2
t−1)zt
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Multivariate GARCH models: example

Returns on 4 stock market indices: AEX, DAX, PX and DJIA from
January 2007 to December 2012

             Unconditional Correlation coefficients of the returns series

AEX DAX PX DJIA

AEX  1
DAX 0.8568444 1
P 0.5330840 0.4924072 1
DJIA 0.5630591 0.6086716 0.3260289 1
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Multivariate GARCH models: example

BEKK model
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Multivariate GARCH models: example

DCC model: smoother volatilities
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Multivariate GARCH models: example
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Multivariate GARCH models: example
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Multivariate GARCH models: example

Residuals for AEX (similar for the other three series)
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Multivariate GARCH models: example

Residual QQ plots (for each of the four series AEX, DAX, PX, DJIA
using BEKK, GO-GARCH and DCC model)
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