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Back to basics

+ Standard time series analysis rests on important concepts such as stationarity, spherical errors, and
on a central family of models, the autoregressive moving average (ARMA) models.

+ But these concepts are insufficient for the analysis of financial time series

1 First recall standard time series properties

2 Then discuss the main stylized facts of financial series
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Objective

+ Modeling financial time series is a complex problem (see Mandelbrot 1963)
— There is a variety of the series in use (stocks, exchange rates, interest rates, etc.)
— The availability of very large data sets at different frequencies

— Mainly because of statistical regularities (stylized facts) which are common to a large number of financial
series and are difficult to reproduce artificially using stochastic models
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Definitions

Definition 1

A stochastic process, {Y:(w),w € Q,t € R}, is an ordered sequence or random variables defined on a
probability space (2, F,P) with

() the set of events
F a o-field representing the events

IP a probability mesure such that IP(A) is the probability of event A

= In the following {Y:(w),w € Q,t € R} is denoted {Y: }¢cr or Y;
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Definitions

Definition 2

A time series denoted {y: }+ct or y: is a set of realizations of a stochastic process {Y; }:cz withZ O T

Definition 3

An infinite time series denoted {Y:}:2_ . is an infinite set of realizations of a stochastic process {Y: }tez
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Definitions

Definition 4

The unconditional central moments of Y. may be written as the expected value of h(Y:), which is a continuous
function of Y,

B(h(Y) = [ h(T)f (%),

with f(Y) the unconditional density function of Y;

+ To compute the expected value of Y; we choose h(Y;) = Y;

E(Ye) = pue

+ To compute the variance of Y; we choose h(Y;) = (Y; — E(Y;))?

V(%) = o?
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Definitions

Definition 5

The autocovariance function of Y; is obtained from the joint density of (Y¢, Yyt—1, ..., Ye—n) and is denoted by

v(h) = Cov(Y, Ye—1)

= E((% = ) (Yoo — )
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White noises

Definition 6

A Gaussian White Noise €. is a sequence of i.i.d. random
variable with e; ~ N (0, o2)

Definition 7

A Strong White Noise ¢, is a sequence of i.i.d. random variable
with E(e:) = 0 and E(?) = o2

Definition 8
A Weak White Noise é. is a sequence of uncorrelated random
variable with E(&;) = 0 and E(é2) = o2. For instance
€t = UtUey1 - - - Urrk IS a Weak White Noise.
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Second order stationarity

* Let {Y;}+ecz, denoted Y¢, be a sequence of random variables

Definition 9

Y; is second order stationary if

VteZ, E(Y;) =pu < oo
Vt,h € Z, Cov(Y:,Yryn) = v(h) < oo

vVt € Z, V(Y;) = 0% < oo as Cov(Ye, Ypyp) = V(Ye) forh =0

« We summarize here the stability in distribution of the process Y; only through its first two moments

— Relevant in the Gaussian case but restrictive in general

— This weak form of stationarity is simple to test
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Strict Stationarity

+ Let Y; be a sequence of random variables

Definition 10
Y; is strictly stationary if the joint distribution of Y; and Y..n, Vt, h does not depend on t but only on h

(Yts-waytfh) (YT'«"'sYTfh)

witht # T

+ The joint distribution of the process Y; should hence be shift-invariant in time

— Relevant in non-Gaussian and Gaussian cases

— This strong form of stationarity is difficult to test
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Theorem : Wold decomposition

Theorem 1

Let {Y:}{—q be a second order stationary process. We can show that Y. can always be written as a weighted sum
of innovations of Y;: and a deterministic component yi;

Y = e + Z ajee—j
j=0

aj2 < ooande; ~i.i.d.(0,0% < o0)

+ The mean-square convergence of g; is important as
o0
2 2 2
E(Y;) = E ajo; < 00
j=0

ifform >n E(3 " a5 — > @) <c= Y2 a7 < oo
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Wold Theorem and autocovariance

* The rate of decrease of the coefficients a; determines also the shape of the autocovariance of y; as
() = B((% = ) (Yoo = pu))
= E( Z AmEt—m Z as+h5t—s+h>
m=0 s=0

= Z AmAs4nhYe (m -5+ h)

m,s=0

oo
2
=0 E AmAs+n

m,s=0
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Stochastic trend and unit root

« Suppose an AR(1): Yy = pYr_1 + &, & ~ i.i.d. (0,02 < c0)

* Ifp=1wehaveY, =Y, + Z o e and hence

Cov(Yy, Y,—j) = (t —j)o et V(Y) = <Zat_,> =to?

= The variance of Y; depends of t = Y, is non-stationary
= p = 1 places a solution of the lag polynomial on the unit circle, so Y; is a unit root process

= Y; is arandom walk of conditional expectation

t—1
E(Y:|Yi—1,Yi2, - ,Yo) =Yi_1 = Zsr,j = stochastic trend
j=1

= Y:is a discrete martingale of stochastic trend >, e:—;
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Stochastic trend and differenciation

* Suppose an AR(1): Ye = pu + pYe1 + &, & ~ ii.d. (0,02 < o0)

« If p=1and Yo = 0, the MA(c0) representation gives

t t—1 t
Ye=pYot+pud J+> pdej=pt+) ey
j=0 j=0 j=0

+ We see that

+ The variance and expected value are not independent of t

= Y, is an explosive processus of random walk type and derivative p

Y: is first difference stationary as

AY,=(1-LY, =Y, -V 1 =p+e
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Financial Series

Notations

St
Pt
It
It

r'e

: asset (or portfolio) price at time t
: asset (or portfolio) log-price at time t
: the continuously compounded or log-return of a financial asset (or portfolio) at time ¢

=Pt — Dt—1
_ St—S8—1

=log(1+ R:) with R, =

Se—1

* Their properties have been amply commented upon in the financial literature

* These stylized facts are mainly concerned with daily stock prices

17/215



+ Nonstationarity of price series
— The stochastic process S; is generally non-stationary in the sense of second-order stationarity

+ Stationarity of return series
— The stochastic process r; is compatible with the second-order stationarity property
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Autocorrelation

+ Absence of autocorrelation for the price variations : (a)
— The series of price variations generally displays small autocorrelations, making it close to a white noise
+ Autocorrelations of the squared price returns : (b)

— Squared returns (r? ) or absolute returns (|r¢|) are generally strongly autocorrelated
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Volatility clustering

+ Large absolute returns |r;| tend to appear in clusters

 Turbulent (high-volatility) sub-periods are followed by quiet (low-volatility) periods. These

sub-periods are recurrent but do not appear in a periodic way (which might contradict the
stationarity assumption)

+ In other words, volatility clustering is not incompatible with a homoscedastic (i.e. with a constant
variance) marginal distribution for the returns
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Fat-tailed distributions

+ The empirical distribution of daily returns does not resemble a Gaussian one
+ The densities have fat tails and are sharply peaked at zero: they are called leptokurtic

* When the time interval over which the returns are computed increases, leptokurticity tends to vanish
and the empirical distributions get closer to a Gaussian (Aggregational Gaussianity property)

Note : Below is represented the Kernel estimator of the CAC 40 returns density (solid line) and density of a
Gaussian with mean and variance equal to the sample mean and variance of the returns (dotted line).
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Conditional fat tails

+ Even after accounting for volatility clustering, (by using for example ARCH / GARCH models as we will
see in the next section), the distribution of the residuals is leptokurtic

+ Its kurtosis is however smaller than in the case of a residuals of a simple ARMA model
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Leverage effects

+ Asymmetry in the response of volatility to positive and negative past returns, respectively

+ Adiminishing price generates an increase in volatility larger than a price increase of the same
amount

Example: In the table below, r;” = max(r¢,0) and r; = min(r, 0)

Table: Various return autocorrelation

h ﬁr(h) ﬁ\r\ (h) ﬁ(rih,,lrt‘) ﬁ(_rr__h/’ |rt|)
1 -0.012 0.175 0.038 0.160
2 -0.014 0.229 0.059 0.200
3 -0.047 0.235 0.051 0.215
4 0.025 0.200 0.055 0.173
5 -0.043 0.218 0.059 0.190
6 -0.023 0.212 0.109 0.136
7 -0.014 0.203 0.061 0.173
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Seasonality

+ Calendar effects: the day of the week, the proximity of holidays, among other seasonalities, may
have significant effects on returns

+ Following a period of market closure, volatility tends to increase, reflecting the information
cumulated during this break

+ The seasonal effect is also very present for intraday series (beyond the scope of this course)

Table: January effect

Average return (monthly %)

Period January Other months
1904-1928 1.3 0.44
1929-1940 6.63 -0.6
1940-1974 3.91 0.7
1904-1974 3.84 0.42
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Seasonality
+ Calendar effects: the day of the week, the proximity of holidays, among other seasonalities, may
have significant effects on returns

+ Following a period of market closure, volatility tends to increase, reflecting the information
cumulated during this break

+ The seasonal effect is also very present for intraday series (beyond the scope of this course)

Table: Week-end effect

Monday Tuesday Wednesday Thursday Friday
French (1980) 1953-1977 -0.17 0.02 0.1 0.04 0.09
Gibbons and Hess (1981) 1962-1978 -0.13 0 0.1 0.03 0.08
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Summary

+ Any satisfactory statistical model for daily returns must be able to capture these main stylized facts,
mainly leptokurticity, the unpredictability of returns, and the existence of positive autocorrelations in
the squared and absolute returns

+ Classical models (such as ARMA models) centered on the second-order structure are inappropriate
+ There is evidence of conditional heterokedasticity (time-varying volatility):
V(re|re—1,1e—2, ...) # const

+ Conditional heteroscedasticity is perfectly compatible with stationarity, just as the existence of a
non-constant conditional mean is compatible with stationarity
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Chapter 1

GARCH Type Models
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Modelling Approaches

+ Objective: account for the very specific nature of financial series
+ Example: Stationary AR(1) provides a model specification for the conditional mean
re=0r_1+e¢
with g, i.1.d. N(0,0?)

* We hence have
E(rt+1) =0

and
]E(rt+1|rt7 re—1, ) = 91}
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Modelling Approaches

+ Engle (1982)'s idea : account for other conditional moments of the return processus
+ But, for an AR(1) process
2 2 2
E(riy1) = o02/(1—-07)
E(rt2+1|r:7 re—1, ) = O'g
are constants

+ Such models are unable to measure changes in forecast error variance although we want them to be
impacted by their past evolution
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Modelling Approaches

Solution
+ Models that capture time-varying volatility are written in the multiplicative form
e = 0¢Zt
+ where (z;) and (o¢) are real processes such that:
— ot is measurable with respect to a o-field, denoted Z,_1;

— 2z is a strong white noise process with unit variance, z; being independent of Z,_; and o (ry;u < t);

—O'r>0

+ This formulation implies that the sign of the current price variation (that is, the sign of r;) is that of z,
and is independent of past price variations

+ Most importantly, if the first two conditional moments of r; exist, they are given by

E(r|Z-1) = 0, E(rf|Zi-1) = of

* The random variable o is called the volatility of r;
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Modelling Approaches

* As Cov(re, 1) = E(2z.)E(oeri—p) = 0, r2, generally have nonzero autocovariances
= r¢is a weak white noise

* The kurtosis coefficient of r¢, if it exists, is related to that of z,

E(r)) Var(o?)
B2~ T R

* Hence, the leptokurticity of financial time series can be taken into account in two different ways:

— either by using a leptokurtic distribution for the weak white noise sequence (z; ),

— or by specifying a process (¢2) with a great variability
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Modelling Approaches

Different classes of models can be distinguished depending on the specification adopted for o,

+ Conditionally heteroscedastic (or GARCH-type) processes
— HereZ;_1 = o(rs;s < t) is the o-field generated by the past of r¢
— The volatility is here a deterministic function of the past of r¢
— Processes of this class differ by the choice of a specification for this function

— The GARCH model is characterized by a volatility specified as a linear function of the past values of r?

+ Stochastic volatility processes
— HereZ;_, is a o-field generated by v¢, vi_1, - - -, where (v¢ ) is a strong white noise and is independent of (z; )
— volatility is a latent process

— a popular specification is the one where the process log o follows an AR(1)
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Conditionally heteroscedastic processes

+ In these models, the key concept is the conditional variance: the variance conditional on the past

+ We can reproduce the autocorrelation empirically seen in conditional volatility by using the
information in the previous value(s) of r?

= in an ARCH(q) specification, perturbations follow an AR process of order q

= ARCH(q) are autoregressive conditionally heteroskedastic models
V(r¢) = const

V(rt‘l—tfl) :f(rr—hrth-, co §0)
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ARCH test

Usual (Ljung-Box) autocorrelation test on squared returns
. H02p1:p2:...:p1<:0

K ~2
Qus(K) = T(T + 2) P

T — kioaX
k=1

where py is the empirical autocorrelation

ARCH-LM test
+ Auxiliary regression
&2 = b0 + ¢lét2—1 + ¢p<§r2—p + e
cHO g1 =---=¢p, =0
+ Test-statistic: LM(p) = T x R? B X*(p)

T— o0
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Family of ARCH-type models

 Linear models
= ARCH(q), GARCH(p, q), IGARCH(p, q), etc.
+ Non-linear models (i.e. asymmetric models)

= EGARCH(p, q), GJRGARCH(p,q), TGARCH(p, q), etc.
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ARCH models Engle (1982)

Model 1
r: follows an ARCH(1) if

/ 2 2
re = Z¢ (O’tz), o; = o+ airi_q

and z. s a strong white noise with o2 deterministic and positive process conditionally on the o-field

* For the ARCH we have :

V(re|Ze-1) = V(zen/ (07)|Zi-1)
= U?V(Z[‘Itfl)
=02

* If V(z¢|Z;—1) is normalized to 1 we can see that o7 is the conditional variance of r;
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Moments of ARCH(1) process

+ Regarding the conditional mean :

E(rt|It_1) = E(ZtUt‘It_l)

= 0¢E(2|Z;—1) = 0if z is weak white noise
+ Regarding the unconditional mean :
E(r:) = E(E(re)|Ze-1) =0
+ Regarding the conditional variance :
V(rdZeo1) = 0 V(2e|Teo1) = 07V (2¢)
= 03 = o + alrtz_l.
+ Regarding the unconditional variance :
V(re) = E((re — E(r))*) = E(r7)

+ Under stationarity assumption, we hence have E(r?) = ao + a1 E(r?) and

Qo

E() = V() = 722
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ARCH(q) Models

Model 2

r: follows an ARCH(q) process if r: = z:o: with

q
p) 2
o = Qo + E il
i=1

and where z; is a strong white noise such that E(z;) = 0 et E(z?) = o2.

This model fulfills the martingale difference and time-varying conditional variance properties

q
E(rere—1) = 0and V(rre—1) = oo + Zal-rf,,»

i=1
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ARCH-errors model

Model 3

Consider r. = E(r¢|re—1) + ¢ with e; a weak white noise satisfying the martingale difference hypothesis :

E(e) = 0 and E(gce;) = 0.

Then, r: follows an ARCH-errors model if ; = z:o: with

q
2 2
o = Qo + E Qily_;
i=1

and where z; is a strong white noise
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Example of ARCH-errors model

e AR(1) - ARCH(1)
Yo = p+ pYe1 + e 60 = zi0v
with o = ao + aze? ;and |p| < 1

The model describes the evolution of both the conditional mean and the conditional variance of Y;
through time

e &, : residuals
e 7, : standardized residuals

Residuals ¢; satisfy the properties of an ARCH process:
martingale difference; time-varying conditional variance; zero conditional auto-covariances; leptokurtic
distribution
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IBM example

(A) IBM stock, percent month-on-month (B) Squared returns
25+
750 -
0 J.ﬂn“mﬂu i (AR J,h_‘ il ‘H I ‘,. | M ‘ 500
251+
L L L Il LAl AN /Y M il Vil L (WL
1940 1960 1980 2000 1940 1960 1980 2000
1.0 (C) ACF - Returns 1.00 (D) ACF - Squared returns
0.5 0.75
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Non-negativity constraints and Limits of ARCH

* Non negativity constraints

— Fora ARCH(1) model, ag > 0; 7 >0

— Foran ARCH(q) model, o; > 0, Vi=0,1,...,q
+ Limitations of ARCH(q) models

— g, number of lags of the squared residuals, is potentially very large

— Non negativity constraints might be violated
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IBM example - ARCH(10)

Coeff. Estimate Std. Error  t-stat

w 0.2605 0.0155 16.785
o %1 0.0366 0.0099 3.700
o 0.0809 0.0123 6.575
o3 0.0657 0.0118 5.585
oy 0.0866 0.0133 6.525
Qs 0.1035 0.0140 7.420
Qe 0.0746 0.0125 5.943
a7 0.0780 0.0130 6.002
o 0.0892 0.0135 6.452
Qg 0.0875 0.0134 6.530
10 0.0789 0.0130 6.074
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Generalised ARCH(1,1) or GARCH(1,1) Models

« Bollerslev (1986): the conditional variance depends on its own past values and on past values of &2
* GARCH(1,1) model containing 3 parameters is a very parsimonious infinite ARCH model
of = ao + cuer g + Bot,

with g > 0,01 > 0and 8 >0
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The GARCH(p, q) model

Model 4

A process e satisfies a GARCH(p, q) representation if e, = z:o: and

q
2 2 2
oy = o + E Qigr_i + E ‘
=il i

where z; is a weak white noise and where co > 0, ; > 0,i=1,...,qand ;i > 0,i=1,....,p

+ The conditional variance of the error term depends on own p past values and on q past values of the
squared residuals

+ Butin general a GARCH(1,1) model will be sufficient to capture the volatility clustering in the data
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Moments of GARCH

Conditional Moments

« E(etler—1) =0

+ Vieder1) =0t = a0+ p oueri + P Biot—;
Unconditional Variance

* V(ro) = E(re — E(r)*) = E(r7)

« V() = E(r?) = ap (1 — Z?‘:ﬂf(”’q)(af + Bi> -
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The GARCH model meets financial stylized facts

+ Under additional assumptions (second-order stationarity of £2), we can state that if <, is GARCH(p, q),
then e? is an ARMA(p, q) process

max(p,q) P
€t2 = o + Z (ci + ﬂi)Erz_f +ve— Zﬂivr—i
i=1 i=1

where v, = £2 — o2 are the innovations of the process

* GARCH processes are hence able to capture one important characteristic of financial series: squared
returns are autocorrelated

« The sum a + S is referred to as the persistence of the conditional variance process
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The GARCH model meets financial stylized facts

+ Contrary to standard time series models (ARMA), the GARCH structure allows the magnitude of the
noise &2 to be a function of its past values.

+ Thus, periods with high volatility level (corresponding to large values of £2_;) will be followed by
periods where the fluctuations have a smaller amplitude.
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GARCH Stationarity

Theorem 2

A process e satisfies a GARCH(p, q) representation if e = z:0y,

q 14
2 2 2
0y = o + E Qi€ + E Bioi—i
i=1 =l

where z; is a weak white noise and where ag > 0, ; > 0,i=1,...,qand 5; > 0,i =1, ...

Also, € is asymptotically second-order stationary if and only if
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GARCH

Drost & Nijman, 1993 define 3 types of GARCH
+ The strong GARCH where z; is a Strong White Noise
* The semi-strong GARCH where z; is a Weak White Noise
+ The weak GARCH where only projections of the conditional variance are considered

= We focus on the simplest case : the strong GARCH
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Examples of GARCH(1,1)

Table: Estimation results

S&P500 DAX

statistic std error statistic std error
Daily returns ap 0.0074 0.0012 0.0248 0.0031
None a 0.0513 0.0039 0.0910 0.0065
None b1 0.9422 0.0042 0.8954 0.0069
weekly returns ag 0.0829 0.0292 0.2369 0.0634
None g 0.1015 0.0165 0.1091 0.0165
None b1 0.8872 0.0174 0.8642 0.0195
Monthly returns ag 0.6531 0.4497 3.4344 1.8789
None a 0.1297 0.0419 0.1276 0.0487
None 51 0.8444 0.0505 0.7837 0.0817
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IGARCH(p.q)

* When
q p
EEDIEE
i=1 j=1
the model is called an integrated GARCH(p, q) or IGARCH(p, q) model (see Engle and Bollerslev, 1986)
« There is a unit root in the autoregressive part of the ARMA representation of 2 representation

+ Returns are strictly stationary with an infinite variance
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Maximum Likelihood (ML)

+ Easy to implement once the density function of z; is specified
+ Let us call 6 the vector of the parameters to be estimated

* If z; are assumed to be normally distributed, then the log likelihood function for a sample of T
observations is:

T
l(e1,€2,...,eT;0) = Zlogf(stﬂt_l)
=1

T o
T 1 e (0)
——Elog (2m) E log O't —5 E 72(0)’

20) o

where 26) =

52/215




Maximum Likelihood (ML)

— E(rdZ—
2 = 72(9) = Bl
O¢
and
q p
of = a0+ Zaif‘:tzfi + 251‘034

i=1 i=1

* Note that o2 is not observed fort =0, —1,...,—p+ 1

+ Toinitialize the process, the unobserved squared residuals are
1. set to their sample mean
2. set to the unconditional variance
3. obtained using a pre-sample
4

. or considered as additional parameters to be estimated

+ Under the regularity assumptions, this estimator

VT(0 = 60) =5 N (0, Vi L(60))
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Maximum Likelihood (ML)

« 0 does not have a closed-form formula and numerical optimization methods are used
* We need

1. Initial condition

2. Moving rule

3. Stopping rule

Maximum Likelihood Estimation:
Global
L maximum

Max

Local maximum

Bae

Where L is maximised dlogL/dB = 0.

Software use various algorithms for iterationto the global
maximum estimate of 3.




Maximum Likelihood (ML) Example

Residuals GARCH(1,1)

Observation U u x u; | variance, of | —In(c?) — Z—é
30/04/2004 | -0.01195 | 0.00014 0.00014 7.85 :
31/05/2004 -0.01082 | 0.00012 0.00014 8.03
30/06/2004 | -0.00015 | 0.00000 0.00014 8.91
31/07/2004 0.00719 | 0.00005 0.00010 8.70
31/08/2004 | -0.00272 | 0.00001 0.00009 9.26
30/09/2004 0.01046 | 0.00011 0.00007 7.99
30/11/2013 -0.00038 | 0.00000 0.00004 10.18
31/12/2013 0.00254 | 0.00001 0.00003 10.11
31/01/2014 0.00594 | 0.00004 0.00003 9.25
28/02/2014 0.00367 | 0.00001 0.00004 9.79
31/03/2014 | -0.00150 | 0.00000 0.00004 10.09

631

0.00

0.28

0.66

22
LLF = Z{ In(o?) — ;}
t
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Maximum Likelihood (ML) Example 2

+ Annualized GARCH(1,1) volatility fitted to daily US market returns

= 0.0 —|—0095t 1+ 09 O’t 1
(4.46)  (8.59) 0.19)

+ Volatility is : time varying, persistent, mean-reverting

10-2008, 80%

08-2011, 51%
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GARCH Extensions

* GARCH models are doing better than ARCH models (e.g., persistence in volatility) but there are still
some issues (e.g., tails are not enough fat, etc)

* Improvements in various directions:

— Non-normality of the conditional distribution: e.g. GARCH-t model
— Asymmetric GARCH models : e.g. Exponential GARCH model (EGARCH), Threshold GARCH model (TGARCH),
GJR model

— Trade-off mean vs variance : e.g. GARCH-in-mean model
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GARCH Extensions

In case of non-normality:
+ Student distribution
+ Skewed Student distribution

* Generalized error distribution (GED)
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GARCH Extensions

The GJR-GARCH(1,1) Model
+ Due to Glosten, Jaganathan and Runkle

2 2 2 2
o = o+ a1g,_ + Bor1 +yer1lia

lifeem1 <0
where ;1 = .
0 otherwise
+ For a leverage effect, we would see v > 0
+ We require a1 + v > 0 and a1 > 0 for non-negativity

« We require a1 4+ 0.5 + 3 < 1 for stationarity
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GARCH Extensions

The GJR-GARCH(1,1) Model
+ Using monthly S&P 500 returns, December 1979- June 1998

+ Estimating a GJR model, we obtain the following results

re=0.172
(3.198)

= 1.243 + 0. OlSst 1+ 0. 4980t 1+ 0 604st 1
(16.372)  (0.437) (14.999)

60/215




News Impact Curves

* The news impact curve plots the next period volatility (o) that would arise from various positive and
negative values of €;_1, given an estimated model

+ News Impact Curves for S&P 500 Returns using Coefficients from GARCH and GJR Model Estimates

0.14
0.12 \
0.1

0.08

0.06

Value of Conditional Variance
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Value of Lagged Shock
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EGARCH

+ Suggested by Nelson (1991)
+ The variance equation is given by
q q P
log(af) =ao + Zaizt—i + Z bi(|ze—i| — E[|ze—i]]) + Zﬁih)g(aii)
i=1 i=1 i=1
+ Advantages of the model

— Since we model the log o2, then even if the parameters are negative, o2 will be positive
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GARCH-in-mean or GARCH-M

Asset pricing models suppose that higher risks should be rewarded by higher returns

The GARCH-in-mean model lets the mean of an asset's returns to be determined by its lagged
conditional volatility
re = p+06(o7) + e, & ~ N(0,07)

with G(o?) a linear or square-root function and
o7 = o + ang; + Boi_1,
+ The parameter ¢ can be interpreted as the price of risk and can thus be assumed to be positive

+ Hence, if 6 > 0O, increases in risk (given by increases in conditional volatility) lead to higher mean
returns
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Portfolio: optimization problem

Consider two assets and their log-returns re = (r1,¢,72,¢)’, denoted r when stacked over time.

If the market is efficient, returns are unpredictable with mean p

hiie  hig
H, =
' (hzu h22r)

is however predictable if one can fit a stationary GARCH-type model for ri and ro ¢

The conditional covariance matrix

Let define 3;, the forecast of H; at date 7 and the expected (targeted) return for the portfolio, /i

What is of interest for the portfolio manager is to find a minimum risk portfolio (efficient) subjected
to provide the targeted return :

: 2 7
min o, (w) =wXrw
sc. Wwp=p and wi=1

with ¢ a unit vector and w the allocation weights

64/215




Portfolio: resolution
You should be able to derive the following results (based here on the Lagrangien).
L(w, A1, 02) = w'Srw+ MWy — ) + A (w'e — 1)
The partial derivatives lead to the following system
1.
2, w4+ p+Ae=0=>w= §ET 1(—/\1,u — Aau)
/ ~ ]- Iv—1 1 ’ o~
wu—u—0:>§>\1uET ;L—Q—EAZLET—M
1 _ 1

Wi—1=0= EM//ETIL + iAzL/ET =1

Denoting A = /Y7y = /27, B = p/S7 jpand € = /271 we have

A1 + By = 2ji
AN+ Chp =2

Solving this system we obtain

A1 = 2(Cii — A)(BC — A*) et \y = 2(B — Aji)(BC — A*) ™!
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Portfolio: resolution

+ Substituting in the weight equation we finally get

I P
w (1) = 557 s+ Aa]

2
- 1x [2 (%) 2 (B ’DAf‘) L] = 2.1[(ch— A+ (B Ay
1

= 257 [(Be— A+ (Cu— M) = £ 07 (B~ Aw) + 357 (Cu — A
=Ei+F
+ The minimal risk (efficient) portfolio is hence given by
oy (i) = w" (1) 27 w" (1)
+ If we omit the investor preferences (1) in the minimization problem the solution simplifies to

-1
N Yy

—1
VYT

and we get the so-called minimum-variance portfolio
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Portfolio: implementation

After estimating individual GARCH models,
collect conditional variance hy;, i = 1,2

Efficient Frontier

0.16] X Minimum Variance Portfolio

Forecast ﬂ,»i,t at horizon k, k being the
investment date or next portfolio rebalancing o1

As here we assume r; unpredictable, we just
use the unconditionnal mean as a predictor

Expected Return
°
g
8

In a univariate framework, we need a constant
correlation assumption to go further because :

pye = Tt
it =
v/ hii,chjj.e : ‘ Rk ¢ *
= If pj = p;j we can use the Pearson correlation
and hyj,: = +/hi,chjj,cpy to reconstruct X,
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Multivariate GARCH models

+ While the volatility of univariate series has been the focus of the previous chapters, modeling the
comovements of several series is of great practical importance

+ The standard linear modeling of real time series has a natural multivariate extension through the
framework of the vector ARMA (VARMA) models

Similarly, here we introduce the concept of multivariate GARCH model

Essential for asset pricing and risk management crucially depend on the conditional covariance
structure of the assets of a portfolio
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Multivariate GARCH models

Let denote by r: a column vector of k asset returns and the vector of their conditional expectations by 1

+ Returns’ equation implies a conditional covariance matrix H;:
1/2 1/2 1/2
rt*/ir:&:Hr/ Zt, Hr/ (Hr/ )’ = H:

— & is avector, not a scalar as previously
— where H is a matrix k x k with elements h;j

— and z; is i.i.d Gaussian such that E(z;) = 0 and E(z¢z;) = I with I a k X k identity matrix
* The conditional covariance matrix H; takes the form
H; :f(Hrthth oty Et—1,Et-2, " )

< If H,}/Q exists, H; is positive definite

= the transformation f(.) ought to insure that H; is symmetric and positive definite (strictly positive
eigen-values)

* Butf(He—1,Hi—2, -+ ,€t—1,&c—2, - ) is complex...
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Multivariate GARCH models

Choosing a specification for H; is obviously more delicate than in the univariate framework because:
(i) H¢ should be (almost surely) symmetric, and positive definite for all t

(i) the specification should be simple enough to be amenable to probabilistic study (existence of
solutions, stationarity, ... ), while being of sufficient generality

(iii) the specification should be parsimonious enough to enable feasible estimation

(iv) but, the model should not be too simple to be able to capture the - possibly sophisticated - dynamics
in the covariance structure
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Multivariate GARCH models

Moreover, it may be useful to have the so-called stability by aggregation property

Ifer = Htmz[ is satisfied, the process &; = Pe¢, where P is an invertible square matrix, is such that

E(&|éw,u <t) =0, V(&|éy,u < t) = H = PHP

The stability by aggregation of a class of specifications for H; requires that the conditional variance
matrices H; belong to the same class for any choice of P

* Relevance: if the components of the vector ¢, are asset returns, &; is a vector of portfolios of the
same assets, each of its components consisting of amounts (coefficients of the corresponding row of
P) of the initial assets
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Distribution of multivariate GARCH models

Generally z; is assumed to follow the multivariate Gaussian distribution, z; ~ N(0,I), since it
provides the basis of QML estimation as in the univariate case

Another choice of density for z; is the multivariate t

Multivariate skewed distributions can also be used (e.g. the skewed-t of Bauwens and Laurent, 2005)

As in the univariate case, distributions with fat-tails and skewness are usually better fitting data than

the Gaussian
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Representation of multivariate GARCH models

Unlike the ARMA models, however, the GARCH model specification does not suggest a natural
extension to the multivariate framework

Indeed, the (conditional) expectation of a vector of size k is a vector of size k, but the (conditional)

variance is a k x k matrix

Important milestones are
— the BEKK model of Engle and Kroner (1995)
— the constant conditional correlation (CCC) model of Bollerslev (1990)
— the dynamic correlation model (DCC) of Engle (2002a)
— the time-varying correlation (TVC) model of Tse and Tsui (2002)

Earlier models had too many parameters to be useful for modeling more than two asset returns

jointly (e.g. VEC model)
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VEC models

Take the case of a bivariate (k = 2) GARCH(p, q):

hi1e
hllt hth h12t

H, = = h, = H) =
' <h21r hzz:) ¢ = vec(H:) ha1e
haoe

Note : the operator vec(.) consists in vectorizing a matrix by stacking the columns of the matrix on top of
one another

Using this operator, Engle et Kroner (1995) propose the VEC model:

q 14
he=w+ > awvec(eriei) + Y Bihei

i=1 i=1

with w a k x 1 vector, and «; and f3; k x k matrices

Problem:

— the model is big and some equations are redundant: hyg; = hyy; as He is a covariance matrix

— it will not in general produce positive definite covariance matrices He
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VECH models

Apply a vech(.) operator now to the previous GARCH(p, q):

h h hi1e

Ht = e 12t = hr = VeCh(Ht) = h21t
ho1e  haae h

22

Note : The operator vech(.) consists in vectorizing a matrix by stacking the columns of the lower triangular
part of its argument square matrix

+ One obtains the VECH model where h; = vech(H;)

Model 5

The process € is said to admit a VEC-GARCH(p,q) representation (relative to the i.i.d sequence z;) if it satisfies

€ = Htl/zzt, where H; is positive definite such that

q P
vech(H;) = w + ZA(i)vech(st,ls{,l) + Z BYvech(H,_),

i=1 j=1

where w is a vector of size {k(k + 1)/2} x 1, and the A®) and BY) are matrices of dimension
k(k+1)/2 x k(k + 1)/2.
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VEC models

In particular, for a bivariate VECH-GARCH(1,1)

2
hi1e c1 ar ooy Qi3 €1 -1 B11
he=|hot | = |co| + |1 a2 a3 €1,0-162,0—1 | + | P21
haoe 2 az1 a3y 033 e, Bs1

B12
Baz

B32

B13
Ba3
B33

)

hi1,c—1
ho1c—1
hoo t—1

Every conditional covariance is a function of lagged conditional variances as well as lagged

cross-products of all components
More parsimonious model than the VEC-GARCH

But the VECH-GARCH still implies a big number of coefficients

Problem: VEC and VECH are not able to generally insure that H; is positive definite

)
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Diagonal VECH-GARCH models

To further simplify the model and its estimation, one may assume that volatilities and covariances

depend only on their past values (Bollerslev, Engle, and Wooldridge, 1988)

= Non-diagonal coefficients of A; and B; are null

For instance, the diagonal VECH-GARCH(1,1) gives

hiie €1 aip O 0 €1 fun O 0
he=|ha | =|co|+| 0O «c@pn O €1—16240—1 |+ | O B O
haoe 2 0 0 a3 €5, 1 0 0  Ps3

More parsimonious than the VEC-GARCH
The diagonal VEC-GARCH is stable by aggregation

In this case it is possible to obtain conditions for positive definiteness of H; for all t
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BEKK model

+ Developed by Baba, Engle, Kraft and Kroner, in a preliminary version of Engle and Kroner (1995)

Model 6
Let (z:) denote an i.i.d. sequence with common distribution. The process () is called a BEKK-GARCH(p, g), with
respect to the sequence (z:), If it satisfies

1/2
Et = IIr’ Zt

N p

HI_CC—"_ZZAUV-t l‘—f IA;H+ZZBIHH[ iDin

n=1 i=1 n=1 i=1

with A, Bin, n € {1, N}, and C matrices of dimension k x k

+ Each BEKK model implies a unique VECH model, while the converse implication is not true
+ The BEKK class contains the diagonal models by choosing diagonal matrices Ay and Bjx

Note: The sum over N introduces a complex generalization so we consider only the case N = 1 hereafter
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BEKK model

Theorem 3

H, is positive definite if matrices H;—i, i = 1, ..., p, are almost surely positive definite and

ker{c} A\ %lker{sjn} — {0}
j=1n=

* This is a weak condition, requiring only that C and By, are full rank (e.g. triangular C with positive
diagonal elements)

+ an identifiability restriction is needed, Hj;,; being invariant to a change of sign of the j-th row of any
matrix A;

+ BEKK-GARCH(1, 1) in the bivariate case (k = 2) with N = 1

/ ann an)’ 5% t—1 E1r—182,t—1 ai]p o2
H =cCc+ : 5
a1 Q2 €1,t—1€2,t—1 €511 Q1 Q)

n Bu B\ h%1,r—1 hipe1\ (B P
B2 Baz hoie—1 hiy, ) \Bar B
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Stationarity of the BEKK model

Definition 11

Let C be an upper triangular n X n matrix and A, Bin be n X n parameter matrices. Let z: be an i.i.d. process
with mean zero and unit variance. Hence z: is independent of Z._1, and cov(z¢|Z;—1) = cov(z:) = L

There exists a covariance stationary BEKK process e, such that e = Hr1 / er, where H, = cov(e¢|Z:—1) and

Z: = o(et,€c—1, - - ) if and only if all the eigenvalues of

q N 14
ZAin ® Ain + Z Z Bin @ Bin
i=1

n=1 i=1

are less than one in modulus.
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Estimation of the BEKK model

+ Under the assumption that z; are i.i.d. conditionally on initial values, the quasi log-likelihood function
of the BEKK model is given by

“\ n 1 1, -
Ly(0) = La(0;e1,...,6n) = Z —3 log(27m) — 3 log |H:| — EE;Ht ler,

t=1
where
1/2
£ = Ht/ Zt

N ¢ N p
Ho=CC+> ) Anseiclihin+ D> BiuHe iBj,

n=1 i=1 n=1 i=1
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Estimation of the BEKK model

+ Comte and Lieberman (2003) provide conditions for strong consistency and asymptotic normality of
the quasi maximum likelihood estimator

— Strong consistency
0n — 0o almost surely whenn — oo

— Asymptotic normality
VAl — 80) S N (0,7,
where ] is a positive definite matrix and I is a positive semi-definite matrix, defined by
., 0le(6o) Ole(0o) - 91:(6p)
I= ( ’ )7 ]_ ( ’ )
a6 o0 0000
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Conditional correlations

+ Multivariate GARCH models allow one to compute conditional variances and covariances

+ Conditional correlations can hence be reconstructed

with {i,j} =1,--- ,kandi #j
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Constant Conditional Correlations models

Suppose that for a multivariate GARCH process of the form
Et = Htl/Qét

all the past information on €y, involving all the variables €j ., is summarized in the conditional
variance

The standardized innovations z;; = h;tl/zs,vt are sequences of i.i.d (0,1) variables generally correlated

Denote the covariance matrix R = V(z;) = (pij), with z. = (21, - - . , Zke)

In CCC models the conditional covariances h;,; are obtained as hy,; = pij\/ (hii,chjj,c) fori # j and
they are time varying although the correlations are constant

In matrix notations,

H; = D:RD; = Pij (hii,th]j,t)
with D; a k x k diagonal matrix with y/hi1, -+, \/hkk,: on its main diagonal

= H, is positive-definite if hy; . is positive for all i and R; is positive-definite
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Constant Conditional Correlations models

Definition 12
Let z: be a sequence of i.i.d. variables. A process ¢ is called CCC-GARCH(p, q) if it satisfies
Er = Htl/zét
Ht = DrRDt

q 4
h=w+> A€ s+ Bhey,
s=1 v=1

where R = cov(z.z;) is a correlation matrix, D, = diag(+/h), h; is the vector of k conditional variances with
elements (hii;), €: is the vector of k squared innovations (non-standardized), w is a m X 1 vector with positive
coefficients, As and B, are k X k matrices with nonnegative coefficients

/9~ . . . .
« Note that &, = D;z, where z. = R'/?Z, is a centered vector with covariance matrix R such that
1/2
i = hy'  zie

+ Note that h;;» may depend on the past of all the components of ¢,
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Strict stationarity of the CCC model

Definition 13

The CCC-GARCH(p,q) model admits a second-order stationary solution if the vector of parameters is such that

the roots of the polynomial det(I — > ;_, (Ai + Bi)X\) with s = sup(p, q), are outside the unit cercle. This
solution is unique and ergodic.
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Estimation of CCC models

+ By the quasi-maximum likelihood method
« Overall there are k + k*(p + q) + k(k — 1)/2 parameters to estimate § = (w’, o/, 5, p')’

* Let (e1,...,en) be a sample of length n of the unique nonanticipative and strictly stationary variable
¢ of the CCC model

Conditionally on nonnegative initial values €o, . .., €1-¢, ho, . . . , h1_p, the Gaussian quasi-likelihood is
written as

n

1 1 /p7—1
Ln(e) = Ln(9;€1, e ,€n) = H Wexp ( — §EIH[ 6[),

t=1

where H; are recursively defined, fort > 1, by

H, = D.RD;, D, = {diag(h)}"? @)
a P
he =h(0) =w+) Aecsc+) Bhey (5)
s=1 v=1
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Estimation of CCC models

+ Under the assumption that each conditional variance is specified as a function of its own lags and the
i element of ¢, (denoted by &), for example, by a GARCH(1,1) equation, an important simplification
is obtained in QML estimation

+ This assumption splits the log-likelihood function into two parts

n
(21og |D¢| + log |R| + zRz:)

t=1

1,(0) =log L,(0) = — 3

1 n
=-3 > “(2log |Di| + zz:)
t=1
n
(log |R| + zRz: — z,2;)

t=1

1
2

+ The parameters of the conditional variances appear only in D; (first term), while the parameters of
the conditional correlation matrix R; appear only in the second term
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Estimation of CCC models

+ So the estimation can be performed in two steps

— Estimate univariate GARCH models for each asseti = 1, ...,k and construct standardized residuals

-1
Zt = Dt Et

— In asecond step, estimate the correlation model (i.e. the constant conditional correlations) based on
E(z:z) = D; 'H.D; * =R,
where R is symmetric and positive definite
Remark: The separate estimation of each conditional variance model and of the correlation model is the key

to enable estimation of MGARCH models of conditional correlations when k is large, where large
means more than, say, 5

Remark: The price to pay for this is the impossibility of including spillover terms in the conditional variance
equations, i.e. terms involving e;—1j or he—1,j forj # i
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Estimation of CCC models

« AQMLE of § is defined as a measurable solution , = arg max Ln(6)
0co

+ Under several assumption the following asymptotic properties of the QMLE estimator can be
established (Francq and Zakoian, 2010)

— Strong consistency
On — 0o almost surely whenn — oo

— Asymptotic normality
V(b — 00) <S5 N (0,7 Y,
where J is a positive definite matrix and I is a positive semi-definite matrix, defined by

Ol (6o) 9le(o) _ o 9PL(60)
a0 90’ ) ]_E( 2000 )

I:E(
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CCC models

+ The hypothesis of CCCs is not tenable except for specific cases and short periods

+ Several tests of the null hypothesis of constant correlations exist: see e.g. Silvennoinen and
Terasvirta (2005)

* Indeed, many empirical work show that the matrix R is time-varying
H. = DrRtDr,
with R measurable with respect to the past variables {e,,u < t}

+ Dynamic conditional correlations GARCH (DCC-GARCH) of Engle et Sheppard (2001) is the most well
known multivariate approach introducing dynamics for the conditional correlation

+ For reasons of parsimony, it seems reasonable to choose diagonal matrices A; and B, as discussed
on slide 88 regarding the definition of CCC models (on slide 85), corresponding to univariate GARCH
models for each component
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DCC models

+ Dynamic conditional correlations GARCH models are an extension of CCC-GARCH, obtained by
introducing a dynamic for the conditional correlation (Engle 2002)

Definition 14

The DCC process is a martingale difference sequence e relative to a given filtration Z;, whose conditional
covariance matrix Hy = cov(e;|Z;—1) satisfies

Ht = DthDt

where Dy = dlag(hilzt ,Li Zt) and R; is a k X k time varying correlation matrix of z.

Besides, hii ¢ is defined as univariate GARCH(p, q) model where the usual restrictions for non-negativity and
stationarity are imposed.

* The univariate GARCH models can have different orders

+ The number of parameters to be estimated is quite large when k is large (e.g. equal to
(k+ 1)(k +4)/2 in bivariate case for a DCC(1,1))
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DCC models

Different DCC(1,1) models are obtained depending on the specification of R,

+ Simple GARCH-like formulation
Ri = 6oR+ 01V_1 + 09Re_1,

with R a constant correlation matrix, and W._; the empirical correlation matrix of z;_1, ..., z.—m and
R = diag(Q:)~"/*Q; diag(Q:) %,
where B
Q: = 600 + 012c—12(1 + 02Q;—1
with 6; > 0, 0, > 0, 01 +60,<1,600=1—61— 6, and @ = cov(zrzé)

+ One can test the assumption of constant conditional covariance matrix through the restriction
0 =03=0

*+ Both ensure that H; is positive definite if R, is positive definite with elements in the unit cercle. For
this, Q¢ and its initial value have to be positive definite.
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Estimation of the DCC model

Suppose that the process z, is multivariate Gaussian distributed such that E(z;) = 0 and E(z.z;) = L.

+ The DCC model can be estimated by a two-step procedure as the conditional variance H; = D:R.D;
can be divided into volatility part and correlation part (Engle 2002)

+ The method is thought to produce consistent but not efficient estimators

+ The log-likelihood takes the form of

1o r
-5 > (log(|Hel) + e H, ')

t=1

1.(0)

1o g
—3 > (21og(|D:]) + log([Re|) + &.D; 'R; 'D; 'er)

t=1
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Estimation of the DCC model

* In the first step the likelihood involves replacing R; with the identity matrix I

1 T
Lin(6a) = —3 Z (21og(|D¢|) 4 log(|I|) + &.D; 'I7'Dp; lst)

t=1

k n 2
= =353 (tog(hu) + )

i=1 t=1

where 6, corresponds to the vector of parameters of the univariate GARCH model for all series
+ Once 6, is estimated, h; ; is estimated such that z; and Q can be estimated as well

* In the second step, 6, = (61, 62) is estimated, given the estimated parameters from step one

. 1w g
lo.n(0b]0a) = ) >~ (210g(|De]) + log(|Re|) + & D; 'R; Dy 'er)

t=1

1o _
=—3 >~ (21og(|De]) + log(|Re) + zR; 'z:)
t=1
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Estimation of the DCC model

+ Asymptotic properties of the two-step estimation procedure have been studied in Engle and
Sheppard (2001)

+ However, Aielli (2009) showed that the estimation of Q by R is inconsistent since

E(zz) = E(E(zz|Ti—1)) = E(R) # E(Q))

+ The consistent DCC (cDCC) relies on a consistent specification of Q;
= . 1/2 ’ . 1/2
Qr = (1 — 61 —62)Q + 61 diag(0Q,”7)zc—12,— 1 diag(Q,”7) + 6201,

such that Q is the unconditional covariance matrix of diag(Qtlle)zt
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Multivariate GARCH models: example

+ Returns on 4 stock market indices: AEX, DAX, PX and DJIA from January 2007 to December 2012
Unconditional Correlation coefficients of the returns series

AEX DAX PX DJIA
AEX 1
DAX 0.8568444 1
P 0.5330840 0.4924072 1
DJIA 05630591 0.6086716 0.3260289 1
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Multivariate GARCH models: BEKK model

AEX estimated volatility DAX estimated volatility
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Multivariate GARCH models: DCC model (smoother volatilities)

AEX estimated volatility
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Multivariate GARCH models: example

AEX & DAX return conditional correlation

1.00
1

0.80
1

T T T T T T
2007 2008 2009 2010 2011 2012 2013

100/215




Multivariate GARCH models: example

DAX & DJ return conditional correlation

iy ! i A
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Multivariate GARCH models: example

BEKK GO-GARCH
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Multivariate GARCH models: Residual QQ plots
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Efficiant Market Hypothesis (EMH)

+ The EMH applies rational expectations to asset pricing

— Let S; be an asset price and Z; the information available up to t
— EMH :if investors use all available information in forming expectations
IE(SH_l\L) = St

= future prices are impossible to forecast

+ As we also assume that
E(|St|) < oo and E(St+1 — St‘Ir) =0,

S: is defined as a martingale
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Brownian motion (or Wiener process)

* The martingale property is crucial in finance

= itis the cornerstone of most of asset pricing
theories

+ A particular type of martingale is the Wiener
process W, € M

Wo=0
Wegu — Wi, Vu > 0is independent of Wy, s < t
Wf+u - W ~ N(07 u)

W; is continuous in t

= Asset prices are often defined as Brownian
martingales

r Simulated Wiener Process

Figure: Al generated picture

St = ut+oWe, with p a drift and o a finite constant volatility
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Semimartingale

A stochastic process M; can satisfy locally the martingale property

= M, is a local martingale (LM) : M; € LM

M; enters a more general class of processes : the semimartingale (SM)

If a stochastic process §; € SM, then it can be decomposed as
Sr - At + Mr

where A is a cadlag adapted process with locally bounded variation

= “cadlag” means “continue a droit et limite a gauche”

)

“adapted” means “that cannot see into the future”

= “bounded variation” means “a function whose total variation is finite”

M; often describes the continuous part of the asset price dynamics

A; often describes a drift term or predictable path

107/215




o-martingale

+ Many asset prices are represented by semimartingales
= e.g. Brownian martingales are semimartingales
= e.g. stochastic volatility models can be semimartingales
= e.g. stochastic processes with jumps can be semimartingales
= if §; has an integral representation it is a o-martingale (more general)

1 Simulated Stochastic Process with Jumps
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Fundamental Theorem of Asset Pricing (FTAP)

+ Asset pricing requires market equilibrium to exist
* Under the EMH the market exists but risk free profit is impossible

= FTAP ensures that for an R%valued semimartingale § = (Se)o<e<r:

= if there exists a risk-neutral probability measure Q equivalent to the
. original probability measure P under which § is a o-martingale, then

. S does not permit free lunch with vanishing risk

= any arbitrage is mathematically prohibited
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A trivial model

+ Let's define P, Q and explain that theorem with a trivial model
a. (Bt)t=0,1 = 1Vt, the price of a risk free bond with null interest rate
b. (St)e=0,1, the price of a risky asset with §g = 1
+ 81 being uncertain, it is a random variable defined on a probability space
(€, (F)e=0,1,P)
= Qs the set of all possible outcomes
= JFtisthe set of events
= Pis a probability function assigning a probability to each event
+ To simplify, let 2 consist of only two elements g and b
= any random element w € €2 has outcomes g or b

= g and b stand for “good” and “bad™ and occur with probability
P(g) = P(b) = 1/2
= Attimet = 1, we finally define that

_ 2 for w=g
Sl(w)—{ 1/2 for w=b
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Option pricing

+ An interesting strategy to prevent b or g is to buy an Option
= the investor buys the right but not the obligation to buy S;

. attime t = 1 at the pre-defined strike price K = 1

+ At Option expiration (i.e. at time t = 1), the payoff is simply

. ) 1forw=g
Cl(w) - (Sl(w) _K)+ - { 0 for w="»b
+ Knowing C1(w), the Option pricing puzzle is to determine Co
= What is the price at which the investor will buy the Option today ?

— In M1 we have studied: for risky assets, “expectation” is a bad criterion
CO = EJP(CI) = 1/2 < E]}D(B]) = 1 < Ep(sl) = 1.25

Reminder : expectation operator is valid only for risk neutral investors

= The binomial model (Cox, Ross et Rubinstein) provides a solution

111/215




Reminder : binomial model

+ The investor going long in the Option can try to cover its position
= invests in a portfolio that replicates the Option profit (S1(w) — K)+
Pi1=a8S1+ BB =0
where « and § are the quantities invested in the stock and the bond
+ Solving that system (composed by each state of the nature) gives
a*=2/3and 8" = —1/3
* Indeed, the system is

Ci=1=2a+pforw=g
Ci=0=«a/2+Bforw=0>b
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Reminder : binomial model

+ Py equals the Option price Cy by “no arbitrage argument”

Py =2/38 — 1/3By = 1/3 = (o

* Proof by contradiction : suppose that Co = Ep(C1) = 1/2 # Py
= As the portfolio replicates the Option
... free lunch would be possible by going long in Py and going short in Co
. and getting back arbitrage profit Cy — Pp = 1/6

= Arbitrage opportunities vanish only for Co — Pg
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Risk-neutral measure (or equivalent martingale measure)

+ Suppose that the world is governed by a new probability measure Q
= Q assigns new weights to g and b such that Eg(S1) = Ep(B1)
+ As the bond is free of risk, Q is called risk-neutral probability measure
= recall that Eg(B1) = 1 and the unique solution ensuring Eq(S1) = 1is
Q(g9) = 1/3and Q(b) =2/3
asEq($1) =2x1/34+1/2x2/3=1

Strictly speaking, Q is a martingale measure for §

. or equivalently, § is a martingale under Q

+ The now valid expectation criterion can be applied to determine Co
Co=Eq(C:)=1x1/3+0x%x2/3=1/3

= (o is compatible with the “arbitrage-free” value obtained under P°
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Risk-neutral measure in continuous time models

This trivial example can be extended to more general processes
= let (St)o<e<t be a continuous-time Brownian martingale
S: = ocW;
modeled on a filtered probability space (€2, (F¢)o<e<T, P)
+ For Cr any contingent claim, i.e. a Fr-measurable random variable
= Co := Eq(Cr) yields the arbitrage-free prices for Cr when Q runs
. through the probability measures on Fr which are equivalent to P

. under which the stochastic process § is a martingale
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No free lunch with vanishing risk

* When the risk-neutral measure is unique, one may replicate Cr as

T
CT — C() + / P:dS[
0
where P; is a predictable trading strategy (e.g. replication portfolio)
= P, models the holding in § during the infinitesimal interval [t, t + dt]

+ Many models like the one of Black & Scholes use that result to find Co

+ We now get more intuition on the importance of the FTAP

= roughly speaking, the absence of arbitrage possibilities for a stochastic process § is equivalent to the
existence of an equivalent martingale measure for §
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Stochastic differential equation (SDE)

+ Financial observations are often sampled at high frequency
= to the limit, infinitesimal differences can be considered :
dt=(t+h)—t, h—0
+ Applied to §;, infinitesimal calculus comes down to the differential dS;

+ Assume the following It6 drift-diffusion for the returns of S;

t

+ As §; is stochastic, solving the SDE dS; is not immediate

= Itd's lemma is a powerful alternative to chain rule derivatives and states

1 2
d(f(St,t)) = %(St,t)dt—&— %(St,r)dst + 5g—sjt:(st,t)cﬂdt
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Solution of I1to drift-diffusion

+ Define f(S:,t) = log(S:) and apply Itd's lemma

d(log(S:)) = 0dt + Tas+ 2 - iQ o’Stdt
S 2\ &2

1 1
= = (uSdt + oS dW,) — =o’dt
St 2

= (u — %az)dt + odW;

+ Now, we can integrate and obtain the solution of the SDE

t t t
log(S:) = log(So) +/ puds — %/ o’ds +/ odW;
0 0 0

2
= log(8o) + ut — %t + oW,

2

St = Soexp <,ut — %t + aWr>

= Modeling log-price ensures the stochastic path to be positive
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Martingale property of the Wiener integral under P°

+ Any integrable process X;

— whose increments are independent

— and centered under probability measure P: E(X; — Xg) =0

. is @ martingale with respect to the filtration F; as for 0 < s < t we have

E(Xt|fs) - E(Xr _Xs +Xs|-Fs)

= E(X — X 7) + E(X|F)
=EX — X;) + X
= X;

* The Wiener process W;, whose stochastic integral representation is

t
Wt = / dW_g’
0

has centered and independent increments and hence W, € M
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Martingale property of the Itd integral under P

+ The Wiener integral is a particular type of It integral

. which is a stochastic generalization of the Riemann-Stieltjes integral (limit of Riemann sums) where
the integrands and the integrators are stochastic

. M
/0 quXT = Mh—>H;o Zl Uy (Xfi - Xfx’—l)
i=

witht —1 =19 <t; <... <ty =tandX, asemi-martingale

+ This more general representation, where X; is not necessarily a Wiener process, can help to generate
more realistic price dynamics

« If Xy = Wy, the Itd integral of any square integrable adapted process u; is a martingale as

t S
IE(/ quWT\}'S) :/ u-dw,
0 0
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No arbitrage in continuous time

+ Under a risk-neutral probability measure Q, the return of the risky asset
. equals the return of the risk-less asset if it is discounted by r

. S
S, — —rtS — vt
t e t B:/Bo

with r the risk-free rate of a zero-coupon bond B;
= The discounted process S, satisfies
dS; = d(e™"S;)
= 8d(e™™) + e "dS, + (de”")dS;
= —re S dt + e "dS, + (—re”"dt) e dS,
tdrules:dtedt =0 | dtedW, =0 | dW, e dW, = dt

= —re "S.dt + pe” "S.dt + oe S, dW;
= (u— r)g'tdt + oS.AW,

and §; € M under Q when x = r = no arbitrage by FTAP theorem

* When p # r, one can define a martingale under Q but Girsanov Theorem is necessary
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Time-varying instantaneous variance

« In previous model, S; as well as S; have constant volatility o but

. 1tdé’s lemma remains valid if volatility changes in time

* At this stage assume o is cadlag, a.s. positive and consider p; = log(S;)
dp: = midt + o dWe, mp = e — <7,:2/27 t>0

* It turns out that log returns are

t t
e =Pt — Pet—1 = / msds + / osdWs
t—1 t—1

t t
re~N / msds,/ oZdW,
t—1 -1

= Uf (resp. o;) is called instantaneous or spot variance (volatility)

. and distributed as follows
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Integrated Variance (IV)

« Over an interval of time [t — 1, t] the log-return variance is hence

t
IV, = / olds
t—1

+ Assuming that the time length of one dayist — (t — 1) =1

also called Integrated Variance

... VIV represents the daily log-return volatility
+ For any sequence of partitionst — 1 =to < t1 < ... < ty = t with

. sup{+1 — } — 0 for M — oo, the Quadratic Variation (QV) can be defined as

M—1
[pvp]f = plim Z(p5+1 - ptj)(ptj+1 - ptj) =1V
M—o00 =0

Note In the particular constant volatility case, IV, = ¢t
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Integrated Variance and semi-martingale

« Now, consider a more general representation with p. € SM
pr = A + M;
where A; has finite variation and M; is a local martingale
+ If A; is continous, it can be show that the QV
[p,ple = M;
even if M; is contaminated by discontinuities (jumps)

* However, one cannot ensure that QV converges to IV
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Simple continuous-time models

* Under the assumption that §; € SM, many models can be considered
* The simplest one is
t
S =So +/ osdW;
0
for which we have IV, = fot ogds over interval [0, t]

+ It appears as the solution of the SDE
dS[ = O'tdWr

* However,
= more general integrators (LZ) can be considered in place of W;
= many models exist for the stochastic dynamics of price (SP)

= many models exist for the stochastic dynamics of volatility (SV)
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LT : Lévy processes

Definition 15
A cadlag process (X;)e>o defined on (2, F,P) is a Lévy process if Xo = 0 and

For any increasing sequence to, - - - , tn, the random variables Xy, Xe; — Xey, -+, Xe, — X, _, Qre
independent

The law of X:+n — X; does not depend on t such that increments are stationary

X; is stochastically continuous, i.e. ’liné P(|Xeyn —Xe| > ) =0
(g

Note The last point just rules out nonrandom occurrence of discontinuities
= X; ~ L(.) can be discontinuous as we will see in a few slides

+ Lévy processes are more general than Brownian motions and possibly have non-Gaussian
increments
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LT : Infinite divisibility of Lévy processes

Let X; ~ L£(.) be sampled at regular time intervals 0, A, 2A, - -- ,nA

= the resulting process is still a random walk as

n—1 n—1
Xon = Z(X(k+1m —Xka) = Z AnXi
k=0 k=0

has i.i.d. increments ApXx

Moreover, their distribution is the same as the one of Xao whatever the sampling frequency

FornA =t > 0andn > 1,X; and Xa—/, have the same distribution

= X can be divided into n i.i.d. parts : it is infinitely divisible

A random walk can have arbitrary distribution whereas the distribution of increments of X; ~ £(.)
has to be infinitely divisible

= the most common eligible distributions are the Gaussian, the a-stable and the Poisson distributions
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SP : Ornstein-Uhlenbeck (OU) model

+ The OU model appears as the counterpart of an AR(1) process
dX[ = 0{(0 — Xt)dt + O'th
withd > 0ando >0

* The solution of the Ornstein-Uhlenbeck SDE is
t
X =Xoe “+60(1—e )+ a/ e 079 g, (6)
0

* In the financial literature, the OU coefficients can be interpreted as
— 0 represents the asset equilibrium value
— o the volatility of shocks coming from the diffusion
— « the rate at which these shocks vanish & X; reverts towards the mean

— when (6) is used to model interest rates, it is also known as Vasicek model
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SP : Hull-White (HW) model

The HW model extends the Vasicek model
with 6(t) a time-dependent coefficient

The solution of the SDE is

t t
X; = Xoe ' + a/ 000, ds + oo / e’ aw,
0 0

As 6 is time-dependent, one can use the Yield Curve for calibration
Unfortunately, the HW model cannot ensure the positivity of X;

not suitable for interest rate (in normal periods) nor for volatility
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SP : Cox-Ingersoll-Ross (CIR) model

+ The CIR model is also designed to mimic the evolution of interest rates

with
— 6(p — X¢) the short term dynamics of X;

— o the volatility of X¢

— Interestingly, as long as 20 > o2, X; will never reach 0 (Feller condition)

+ This type of square-root SDE is hence useful to model volatility

= However, this SDE has no closed-form solution
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SP : Jump augmented models

+ Abrupt changes can occur in price dynamics

= such jumps in price cannot be modeled by Gaussian increments

=

r Simulated Stochastic Process with Jumps
W™
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+ Counting processes CM are good candidates
+ A counting process is a stochastic non-decreasing process N; € N, t > 0

= AsN; € N, fors < t, N — N is the number of events occurred in (s, t]
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SP : Poisson model

+ A Poisson point process N; € CM is defined as follows
— Np = 0and fors < t where increments Ny — N are independent

— the probability mass function of N¢ is

P(N: =¢) = exp(—At)

()
c!
with X the arrival intensity of events and [£(N;) = At
= N will represent the jumps occurrence irrespective of the jumps size
+ Consider (N — At); a compensated process satisfying E(N; — At) = 0

= Since it has centered and independent increments, N, = (Nt = At) e M

Poisson process Compensated Poisson process
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SP : Compound Poisson model

+ Let's define J; a compound Poisson process

Nt
]t - Z Yi:
i=1
where Y; is i.i.d, square-integrable and generally Gaussian
+ Defining Y,— := lim Yy, the jump size is hence
s—t

A]t = Y[ — Yt— = d]t

« AJ: will be used latter to obtain an integral representation of J;

Notice that E(J;) = At E(Y) and hence the compensated process

Je = (Je — At E(Y)),

has centered and independent increments = J, € M
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SP : lllustration of compound Poisson paths
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Stochastic integral representation of J;

* Letfy(.) € R be the jump size distribution function and observe that

v(dy) = Afy(dy)
is the density of J; in the jump size interval [y, y + dy|

* v(dy) is called Lévy or intensity measure but is not a probability measure since

/ vdy) =A#1
R
+ Now we call Poisson random measure, for B = [t1, ta],

M(B7A) = #{(]fz 7]f1) € A}
a measure that counts the jumps in B such that their sizes are in A

* Then, J: has a stochastic integral representation given by

=% AJS:/ v x u(ds x dy)
] J[0,t] xR

se[0,t]
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Lévy-1td decomposition

Model 7

Let (X:)e>o0 be a Lévy process and v(.) its Lévy measure verifying

/ |x|*v(dx) < oo and / v(dx) < co
<k

[x|>r

such that the intensity of jumps larger than x > € > 0 is finite and denote p(.) its Poisson random measure on
[0, 00) x RR. Then, there exists a drift c and a Brownian motion (W;) > 0 with variance (3 such that

X; = at + Wy + J} + lim J¢
e—0

where large jumps with finite activity are modeled by

]i:/ot/H> xu(ds x dx)

and small jumps with possibly infinite activity by

= [, s x a0~ viagan
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Lévy characteristic triplet

+ The Lévy-Itd decomposition entails that every Lévy process

1 is a sum of (Brownian) continuous and discontinuous paths

2 is characterized by the triplet X; = L(a, 8, V)

3 has large jumps J! that follow a finite activity compound Poisson

4 has small jumps J¢ that follow an infinite activity compound Poisson

+ As v < oo is imposed only for |x| > &, the Lévy process can diverge

= J¢ needs to be compensated = J¢

+ One can define a “pure-jump” Lévy process by setting X; = £(0, 0, v)

= generally unrealistic in finance as it rules out the diffusion
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SP : Jump diffusion model and Exponential Lévy

+ A jump-diffusion process combines a Brownian diffusion with jumps
ds; = pS,—dt 4+ oS,—dW, + §,— dJ;
= itis an Exponential Lévy if Sy = exp(X;) with X, ~ L(p, 0%, v/)
+ Applying an Itd formula for jump, the SDE solution is §¢ = A + M;
* The martingale part is

t
M =1 +/ S, odW; +/ S (e" — 1) x fi(ds x dy)
0 0,6 xR
and the continuous finite variation drift part is given by
t
te= [ s (n=c'/2+ [ (@ = 1= yiyc) x uldp))ds
0 R
+ S will be a martingale if E(S¢|So) = So and hence if

p—02/2+/(ey— 1—yljy<s) xv(dy) =0
R

Note S; could be defined directly as a Lévy but without positivity constraint
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SP + SV : Heston model

Previous models are unrealistic because o is constant over time

Heston (1993) suggests the following stochastic volatility model

dS; = pSidt + ScoedWi ¢
do? = —6(0f — n)dt + yo.dWa,

with Wy and Wy ; two Brownian motions and 6,7,y > 0

= The stochastic volatility is modeled as a CIR process

The Heston model is a particular case of two-factor stochastic volatility model

dSt = mrSrdf + UrSrdlet
do? = a(t,ol)dt + B(t, 0 )dWy,

where Cov(W1 ¢, W ¢) = pt is possibly non-null

In practice do; tends to be negatively correlated with dS; = p < 0
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SP + SV : Infinite activity jump diffusion stochastic volatility model

+ Let p; € SM be stated by the following general SV model

t t t
Pt = po + / msds + / Udes + / d]s
0 0 0

Continuous (1) Discontinuous
t t t
/ dJs = / / xp(ds x dx) +/ / x(p(ds x dx) — v(dx)ds)
0 0 J|x[>k 0 Je<|x|<k
Big jumps (2) Small jumps (3)

As seen before, p; will always generate a finite number of big jumps
. but it may give rise to either a finite or infinite number of small jumps
+ Each component of p; can be mapped into an economic source of risk
Part 1 capture the normal risk of the asset, which is hedgeable
Part 2 capture default risk, or more generally big news-related events

Part 3 represent price moves which are large on a time scale of a few seconds, but generally not significant
on a daily frequency
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SP + SV : Finite activity jump diffusion stochastic volatility model

* Let pr € SM be stated as previously butimpose x = 0
= all jumps are qualified as being big jumps
= hence p; has finite activity and jumps are summable

Z |Aps| < oo, where Aps = ps — p,—

s<t

* Insuch a case, on can rewrite p; as

t t
Pt = po + / ﬁlsds + / osdW; + Z Aps
0 0

s<t
N——

Discontinuous

Continuous

where m; = ms — [, yf(dy)

+ In practice, the jump activity is difficult to measure but index such as Blumenthal-Getoor (BG or )
index exist
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Finite versus Infinite activity : the Blumenthal-Getoor index

Finite Infinite
jump jump
activity activity
Finite Infinite
variation (p= 1) variation(p= 1)
Finite power
variations
of orders (p< B)
| | [? BG Index
L Ly ofjump
/"0 \ 1/2 1 2 activity
Compound Gamma
poisson process [B-stable
process process,
CGMY (Y+ B),
Variance Lévy model, Cauchy generalized [ Brownian
gamma inverse process, hyperbolic motion
process gaussian NIG process process
process

* Finite varition of order p means that for AXy = Xka — X—1)a:

R AX, P < coas A — 0
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SP + SV : Bates model

+ Bates (1996) extends the Heston model to Poisson jump-diffusion

dSt = ,U/St— dt +4 St— O'rdWl_’: +4 Sr— d]r
do? = —0(0f — n)dt + vo.dWa,

+ In this model, the QV of p, = log(S:) no-longer converges to IV
= For any sequence of partitionst — 1 =tp < t1 < ... < ty = t with

. supi{tj+1 — j} — 0 for M — oo, the Quadratic Variation (QV) is

M—-1
[P, ple = plim > (py = po) (s — o) = Ve + Ve

where

¢ Ne
W= [ atdsanai= Y &= Y |
t—1

i=N,_;+1 t—1<s<t

with & = log(1 + Y;) and Y; the jJump magnitude of the count i
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Quadratic variation of various processes

+ Overall, depending on the stochastic process we have :

[p,ple = Ve = ot

if p; is a standard Brownian motion,

t
[p.ple = V. = / o2ds
t—1

if p: is @ Brownian motion with stochastic volatility

"t
[p,p]t:WﬂL]vt:/ ords+ > |Ap?
t—1

t—1<s<t

if p¢ is a finite activity jump diffusion process

t t
[0, ple = Ve 4+ JVe = / des—&-/ /yz,u(ds x dy)
t—1 0o JR

if p: is a general Lévy process
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Why continuous time models?

+ Observations are quite often irregularly spaced
+ Observations quite often come in at a very high frequency

* Then a continuous time model may provide a better approximation to the discrete data than a
discrete model

At the same time
+ Continuous-time models are central to mathematical finance

+ Most theoretical results on derivative pricing rely on continuous-time processes, obtained as
solutions of diffusion equations

Aim: Construct continuous time models with features of GARCH (it is possible to establish connections
between the two approaches: discrete-time and continuous-time models)

Note: In continuous time it is natural to model the logarithm of the asset price itself, that is p;, rather than
its increments r¢ as in discrete time
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Continuous time GARCH approximations

+ A continuous time model may serve as an approximation to a GARCH process

* Main question: starting from the continuous model, how close would a process be to a GARCH
process when sampled at discrete times?

+ An optimal situation would be that the process itself is a GARCH process, whenever sampled at
equidistant times (kh)xen,, for eachh > 0

* Issue: GARCH processes are not closed under temporal aggregation (Drost and Nijman, 1993)

* A continuous time process (Y;):>o which happens to be a GARCH(1,1) process when sampled at
0, h, 2h, ... for some frequency h will not be GARCH when sampled at 0, 2h, 4h, . ..

146/215




The diffusion approximation of Nelson (1990)

Model 8
The GARCH(1,1) diffusion limit satisfies

dpt O'tth(’l) 5

do? = (w — Oo2)dt + Ao?dW?, t >0

+ Although the GARCH process is driven by a single noise sequence, the diffusion limit is driven by two

independent Brownian motions (Wt(l))tzo and (W15(2))t20

+ The behavior of this diffusion limit is therefore rather different from that of the GARCH process itself

since the volatility process (o2 ):>0 evolves independently of the driving process (Wfl))tzo in the first
of the equations above
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The diffusion limit of Nelson

Remarks:
+ The equation of do in the Theorem has a strictly stationary solution (o), if

20/X* > -1 and w > 0,

in which case the marginal stationary distribution of o3 is inverse Gamma distributed with
parameters 1+ 20/ and 2w/\?

« The stationary limiting process do? has Pareto like tails
+ The limit (p., 0?) is driven by two independent Brownian motions

« The processes p; and o? are continuous. But empirical volatility can exhibit jumps
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)

+ Option pricing for Nelson’s model (designed as limit of discrete time GARCH processes) may be
demanding since the model gives rise to incomplete markets

+ Kallsen and Taqqu (1998) developed a continuous time process which is a GARCH process when
sampled at integer times

* This process is driven by a single Brownian motion only
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)

Definition 16

Letw, X > 0, 8 > 0 and (B;)r>o be a standard Brownian motion. For some starting random variable 3, define
the volatility process (ot )e>0 by o7 = o fort € [0, 1) and
) Lt 5 .
o; :w+)\(/ 0,—dBs)" +doi—1, t > 1
Le]—1

The continuous-time GARCH process (p:):>o then models the log-price process, and is given by

t %
Pe = po+ / (n(os-) *05—/2)01”/ osdBs
Jo v
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)

+ the drift function p is assumed to have continuous derivatives

the volatility process (o¢):>0 is constant on intervals [n,n + 1) forn € Ng
* the process (p: — pe—1, 0t—1)e>1, When sampled at integer times, gives rise to a discrete time
GARCH(1,1)-M process
Pn— a1 = p(0n-1) — 07_1/2 + on-1(By — Ba—1), n €N,
2 w+)\0,21,1(anBn_1)2+50,2,,1, n GN

On

« This differs from a usual GARCH(1,1) process only by the term p(on_1) — o2_; /2, which vanishes if
the function y is chosen as ju(x) = x*/2

+ If we are not in the classical GARCH situation but rather have

lim sup p(x)/x < oo,

X—r 00

then Kallsen and Taqqu (1998) show that the continuous time model is arbitrage free and complete.
This is then used to derive pricing formulas for contingent claims such as European options.
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GARCH is Slow: A Thought Experiment

+ Suppose a sudden change in the true latent volatility

0.2 t<T
0.4 t>T

var(re| Fe—1) = {

* Witha+ 8 =1(e.g. « = 0.05 and § = 0.95), GARCH(1,1) implies

k—1

]EJTJrk 7aZﬁ’]ErT+kJ 7(12@’ (0.4) +aZﬁ’ 02

j=0 Jj=k

+ How quickly does o converge to the new level of var(r|F;_1)?
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GARCH is Slow
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Squared Return is a Noisy Signal of Volatility

« rZis a very noisy measure of variance
+ High-frequency data — Realized Measures — far more accurate signals

Realized Kernel

;' ,” ' " N\l n"!l " "'“M

&3 Squared Return
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Realized Variance

In practice IV is unobservable and one only observe asset prices

Moreover, log price data are only available in discrete time at frequency
AT =1t —ti_1
where sampling rates A7 can be seconds or minutes

= For a given sampling rate, r;, = p;, — py,_, are intradaily log-returns

We assume M intradaily observationst — 1=ty <t;1 < ... <tu =t

= the daily Realized Variance (RV) is given by

M
RV.=>"r
i=1

and one can show that in absence of jumps

M t t —1/2
ﬁ(Zri 7/ crfds) <2/ afds) LH\/(O, 1)
P t—1 t—1

———
0

with IQ the Integrated Quarticity (the limit behavior of the vol-of-vol)
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Realized Variance
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Realized Semi-Variance

* The behavior of r¢ in the lower tail of their distribution is of interest
. as it often differs from the behavior in the upper tail

= requires an asymmetric treatment of the downside and upside risks

Barndorff-Nielsen et al. (2010) suggest the Realized Semi-variance

M M
RSS = rily,>0andRS; = > rily, <o
i=1 i=1
+ As for RV; in presence of finite activity jumps, they no-longer converge to IV; as
+ P 1 ¢ 2 2
RS 2 = ofds+ > |Ap*l, >0
2 t—1 t—1<s<t ‘

and .
1
RS;i}f/ olds + Z |Aps[*1y, <0
t—1

2
t—1<s<t
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Realized Multipower Variation

+ In presence of jumps, RV; —2 QV, instead of the IV, as M — oo
* As jumps cannot be easily distinguished from the continuous part,
. if IV is of interest, robust realized measures are needed

= Barndorff-Nielsen et al. (2006) introduce the Multipower Variation

1>12’Yk/2 M m

MVf{yl,m,w,ﬂ} _ <7 ZH'rrj_i_H"Yi

M — -
Jj=m i=1
+ The simplest case is the Bipower Variation (BV) withy1 = v, =1
oM
1,1
BV =BV = 2 Irglirg |
j=2

+ Conversely to RV, this measure is jump robustas M — oo :

t
BV, % / olds
t—1
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Bipower Variation
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Microstructure noise

+ The most striking feature of the empirical prices is their discreteness

= price movement cannot be smaller than one tick

Time series plot of 12000 intraday prices Zoomed —in
39 38.1
38.05
38.5 38
37.95
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37.85
375 37.8
. _ Lrade 3775
37 bW ---- Ask 37.7
o 37.65
36.5

37.6
0 2000 4000 6000 8000 10000 12000 0 50 100 150 200 250 300 350 400 450 500

+ At the opposite, theoretical M-based models are continuous in time
= efficient log-price are unobservable due to microstructure noise, i.e.

— frictions in the trading process : tick limit, rounding error

— informational effects : gradual response of prices to a block trade

— recording errors : prices entered as zero or misplaced decimal points




Realized Kernel

* Let p{ = pt + & be the observed price

= ¢&¢ L pr acts as microstructure noise and is defined as a white noise

Barndorff-Nielsen et al. (2008) suggest the Realized Kernel (RK)

H
* h * * 14 t 2 2
= STKk( - 2 > |Aps
RK: 70(pt)+h:1/C(H)(vh(pf)+~/ w(pt)) /Hosds+ |Aps|

t—1<s<t
RV =

noise correction
with v (p7) = >30%, (05 — P, ) (PE_, — Pi;_,_,) and K(.) a kernel
* The recommended kernel [C(.) is Parzen's kernel
1—6x"+6x°, 0>x>1
Kx)=421-x)?° 2>x>1
0, x>1

+ The preferred choice for the bandwidth is H = 3.5134 x 54/5M3/5 with
q

é = q71 Z(:}?l) /RVsparse and ‘:)?1) = RV(gie)nse/(zM(i))

i=1

161/215




Jumps identification and Realized Jumps (R])

Itis hard to disentangle the continuous and jump parts of the QV
« Consider for instance RK; - IV, and BV, -~ QVias M — oo

= Hence, we have RJ; = RK; — BV, —» — Ji = =3, [Ap,[’
+ Based on that result, several test statistics can be defined ...

. e.g. the one of Barndorff-Nielsen and Shephard (2006) :

{1,1,1,1} \ —1/2
BViu 1 UsvMV}y; d
Tvu=1|1- : - — N (0,1
" ( RVt,M> <M BV2,, NOD

under the null Hp : no jump, with Jpy =~ 2.609 and as M — oo
= The rejection of the null at 5% is thus given by Ty, > 1.64

.. and allows to identify insignificant Realized Jumps
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Realized Jumps
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Nonparametric realized measure

* RV, RS:, BV, and RK; are ex-post realized measures (R.M) of volatility
. at the opposite GARCH-type models estimate ex-ante volatility
* Realized measures are nonparametric estimators of IV, or QV;

= without conditional models, parametric forecasts are infeasible

Autocorrelation function of Apple realized volatility

1 ;
|
08 H
|
o |
& 06\
< \\
04+ ~_
02+ I SN -
S - e N p—
0 L L L L -
0 20 40 60 80 100

Lags
* RM are highly persistent with hyperbolic decay of autocorrelations

= one could use this stylized fact to forecast volatility
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Modelling realized measures with ARFIMA

+ Autocorrelations of ARMA models decay at exponential rate
= only ARMA(cco) can mimic an hyperbolic decay
+ Such a slow decay reflects the presence of Long Memory (£LM)

= the simplest parametric model of LM is the ARFIMA(p, 4, q)

(1L ®L)(x —p) = O(L)ec = & = Zu.x“

ARMA(p,q)

with § € (—1/2,1) and x; € log(RM) or x; € (RM)/?

0=10

0 5=00 20 40 60 30 100
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Estimating and forecasting with ARFIMA models

+ Under Gaussian assumption (reasonable if x; € log(RM)), the exact log-likelihood is
n 1 1, 1
Lp(0;%x) = —3 log(27) — 3 log |X(9)| — PR 2(9)

withx = (X1, , %), ¢ = (8,1, , Pp, 01, ,0,) and
S(9) = w(r —s;9), forr,s =1,--- ,n

+ As the fractional polynomial (1 — L)% implies an infinite dependence

i T+ 6 U
r'G+1r

.. the MLEJ = arg glGi(I:)I Lg(9;x) is time consuming

+ The log-variance forecasts are then obtained by

&r+h ]Et Xt+h g SiXeph—i EhtiXe—i

where in practice the infinite sum is truncated at Iag r
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Normality and Realized Variance
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Modelling realized measures with HAR

« Corsi (2008) suggests an Heterogeneous AR model that mimics LM
Xt4+1 = C + det + ﬁWX:V + BmX;n +Et+17 Et i.i.d. s
N
day week month
wherex = £ 370 xjand X = 35 3 xejand x € (RM)Y/?
+ Alog-HAR version is possible if x; € log(RM)
+ The HAR is simple and flexible = can model additional stylized facts

08 Forx=RV
—+— Volatility :
—5— Leverage (-)
\ Leverage (+) : Con

Jumps : Corr(x,, ], )

Correlation

0 10 20 30 40 50
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Leverage in Realized Variance

CAC 40 Realized Volatility

3.0r

25F

169/215




Extensions of the HAR model : LHAR

+ Define aggregated negative and positive returns at given frequency s

(r)~ g rt_J]lzs ,t_j<0and r)t E rt_J]lzs I
j=1

+ We allow for the leverage effect to impact each market component
Xey1 = C+ BaXe + BuX + BmX{’
% () + 7 ()" +m (18)”
A ) ()T ()T e

= The Leverage HAR (LHAR) fits particularly well the asymmetric relationship between r; and x;11 with
€ (RM)V?
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Extensions of the HAR model : LHAR-CJ

Assume now that J; 1,, is the sequence of significant realized jumps

In the spirit of the HAR let's define at given frequency s

1 N
Jiry = 5 Z]t—j,TM
j=1
The Leverage HAR with Continuous volatility and Jumps (LHAR-CJ) is given by

Xey1 = €+ Baxe + BuX{ + Bmxt'
+ ey + @, + @™,
+9q (re)” + v (1) +9m (1)
7 )Tl ()T ()T + e

As the model is linear, one can use OLS to estimate all parameters

This general model offers good in-sample and out-of-sample performances
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GARCH-X with realized measures

+ Engle (2002) (and many others)

2 2 2
o =w+ari_y + Bo_1+yxe-1

X € RM is a realized measure of the QV (not IV)

* Leads to substantial empirical gains

= Typically
— 4~0.5
— & ~ 0 (ARCH parameter becomes insignificant)

+ However, GARCH-X models are partial (incomplete) models that have nothing to say about returns
and volatility beyond a single period into the future.
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GARCH with a Realized Measure is Fast
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Realized GARCH (Hansen, Huang, Shek, 2012)

+ The Realized GARCH is a complete model, contrary to GARCH-X

= It fully specifies the dynamic properties of both r; and x; :

Return Equation

—_——~
re = u+ U'tzzt
log ol = a+p log ol + vlogxt_l} GARCH Equation
logx: = &+4logo? + 7(2¢) + ue

Measurement Equation

X € RM is a realized measure of the QV (not IV)

7(2) = 11z 4+ 12 (2> — 1) models an asymmetric response in volatility to return shocks (leverage
effect)

z ~ i.i.d. (0,1), ue ~ i.i.d. (0,02)

* 7(2¢) + u, are the volatility shocks
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Realized GARCH estimation

+ Assume z; ~ i.i.d. N(0,1)and u; ~ i.i.d. N(0,02)

+ The quasi-log likelihood function is constructed based on

Joint density

—N—
Fre, xe| Fee1) = f(re| Fe—)f (%e|re, Fe—1),

tr0) = —2 37 (1oa(o?) + /7 = £ 57 (1oa(e) + i o2

+ Based on Straumann and Mikosch (2006) the authors conjecture that
V(b — 0) 5 N(0,9),

with €2 the usual QMLE covariance matrix
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Realized GARCH multi-period forecast

* Predicts both the conditional return variance and the realized measure

e.g. RGARCH(1,1) forecasts through the VARMA(1,1) structure

log o2 (B 0% logo? , n « n 0
logx. ) \¥B ) \logxe—1 Yo+ ¢ 7(2¢) + ue
+ h-step ahead forecasts are obtained from
Ty h 2
loga?,, ) _ ( B ) (log UH> n
log X B by log x¢—1
h—1

(0 2 () G o)

+ One would have to account for distributional aspects of log af+h in order to produce an unbiased
forecast of it since E(log x) # log(E(x))
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Chapter 3
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*+ There is growing theoretical and empirical interest in extending the results of the univariate
processes discussed previously to a multivariate framework

+ Multivariate volatility modelling is of particular importance in the areas of risk management, portfolio
management and asset pricing

+ We will discuss:
— Multivariate realized measures

— Modelling and forecasting multivariate realized measures
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Multivariate realized measures

1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)

+ Suppose that along day t the log-prices of financial assets follow a k-variate continuous time
diffusion process
Apeir = pesr + B2dWey,, 0<7<1,t=1,2,...,

where
— e+~ is the multivariate drift component

— Etlif_ is the instantaneous k x k co-volatility matrix

— W, - is the standard multivariate Brownian motion

. E:ﬁ is orthogonal to W, ,

+ A generic element of 3., is given by Et(ﬂs)
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Multivariate realized measures

1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)

Definition 17

The realized covariance over the arbitrary interval between 0 and 1 (representing day t) is computed using the
outer-product of high-frequency returns

M
ALL
RCov*™") = E ryr,
=1

where 1, is the j-th return on day t and it is a consistent estimator for the sum of the integrated covariance

matrix and the realized jump variability j;)l e dr + fol &:E-dN(T)

+ Barndorff-Nielsen and Shephard (2004) showed that when the price process is Brownian motion with
drift,asM — oo
1
M2 [vech(RCovEALL)) - vech(/ Et+7d7):| —25 Ni(0, TI,)
0
* In principle prices should be sampled as frequently as possible to maximize the precision of the
realized covariance estimator
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Multivariate realized measures

1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)
In practice:

* Prices, especially transaction prices (trades), are contaminated by noise (e.g. bid-ask spread,
non-trading, price discreteness, trades occurring on different markets or networks, rounding errors)

+ Bandi and Russell (2005) showed that in the presence of microstructure noise the realized
covariation estimator is not consistent

Solutions:

+ The standard method to address these concerns is to sample relatively infrequently, for example
every 5 minutes

« An improved method is to use modified realized covariance estimators (e.g. using subsampling)

« Difficult to avoid singular covariance matrices issue when k is large
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Multivariate realized measures

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

* Letr:;,; denote the return over the j-th intra-daily time on day t for asset i and r;; the vector returns
+ With I{.} is the indicator function and ® the Hadamard product, the vectors of k signed returns are

rl=ryolry >0}, rj=ry;oHr; <0},

Definition 18

Therefore, the standard realized covariance matrix can be decomposed in four realized semi-covariance
matrices:

M M
(M)_Z++’ (M>+_Z+—’
Pt = rtjrtj ’ t = rtthj )
j=1 j=1

M M
Z—+/ (M)_E:——’

LERLINID Nt = LERLENID
j=1 j=1

where P, N and Q correspond to “positive”, “negative” and “mixed” vector signs, such that the realized
covariance matrix is given by

(M)—
t

Reov}' = P + N + Q") + @)
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Multivariate realized measures

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

Since RCovY, PEM) and NfM) are all defined as sums of vector outerproducts, these matrices are all
positive semidefinite

(M)+
t

Since the diagonal elements of Q, and OSM)_ are identically zero by construction, these matrices

are necessarily indefinite

If the assets have a clear ordering, the two realized semicovariances may have different economic
interpretations

If the ordering is arbitrary, they may convey the same information, combined in a single

semi-covariance matrix QgM) = OEMH + QEM>7

E.g. In a bivariate case

(M)+ (M) (M)— (M)
P(M) _ Pl,r PlZ,r N(M) _ NL: le,r
t ° 7)§?f)4- ) t ° JNfgﬁf)_

o) _ (0 Qﬁﬂfl)
° 0
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Multivariate realized measures

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

PRPNIRS S S NS
[~rmmn e W NN A A W v/

\ \.
N \/

1 1 1 1 1 1 1 1 1 1 1
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

+ Daily realized semicovariances averaged across 500 randomly-selected pairs of S&P 500 stocks over
the 1993-2014 period (smoothed by a moving average of 50 obs)

184/215




Multivariate realized measures

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

Semivariances Semicovariances
8 —RV, :
....... P+
f
" 7\’5&,\
0.4 M
L L L L L L L L L L

0'20 10 20 30 40 50 0'20 10 20 30 40 50

+ Autocorrelations functions for the different realized semicovariance elements averaged across 1000
randomly-selected pairs of S&P 500 stocks over the 1993-2014 period (smoothed by a moving
average of 50 obs)
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Multivariate realized measures
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020) asymptotic theory (k = 2)

Definition 19

Assume that the bivariate log-price process evolves continuously through time according to the semimartingale
pP: = Po + fot myds + fot o dW;, 0 <t < 1, where Wi denotes a 2-dimensional Brownian motion, my is a
2-dimensional locally bounded predictable drift process, and o is a R**?-valued cadlag volatility process. Then
forrii = pjm,i — Pg—1)/m, M — oo, with aii and ps the spot variance and correlation respectively,

Usz,l/z
052,1/2
05272/2
0S$2/2

034,1032,2 ps arccos(—ps) + /1 — p?)/(27)

02,02, ( psarccos(—ps) + /1 — p? ) /(27)
crs2,10s2,z s QrcCos ps — m /(27)
O’s2,10'52,2 ps Arccos ps — \/1—7p3 /(2)
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Multivariate realized measures

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

Asymptotic theory (k = 2 and a unit time interval)

Definition 20 (CLT and feasible CLT)

Assume that the bivariate log-price process evolves continuously through time according to slide (186), with the
o volatility process determined by or = oo + fot vidW;, with v, an adapted cadlag process, and W a
2 x 2-dimensional Brownian motion independent of W;. Then for M — oo,

dst

1 1
VMM —y) = / osdW, + / BdW, = U,
0 JO

where dg: denotes stable convergence in distribution, as and 3s are 8 x 2-dimensional processes. With
1
II = Var(U) = / (ascxg + Bs/3;)ds,
0

o™ 2,1,
(I =12 /My ™ — v) -4 N, (0,1)
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Multivariate realized measures

3. Realized Bipower Covariation (Barndorff-Nielsen and Shephard, 2004b)

Definition 21

The realized bipower covariation over the arbitrary interval between 0 and 1 (representing day t) computed as

M
1
RBPCov; =2 (Z |r(v)7[j + 10 ‘ \r(v)ﬁH aF r(1)1571|

=
= Irmg —rasllre g, = "<1>,5~71|)

where r(,) «. is the v-th component of the return vector ry, is an estimator of the integrated covariance matrix
(robust to jumps)

1
RBPCov; -2 / Seirdr
A—0 0
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Multivariate realized measures: Asynchronous trading

+ Compared to the univariate case, the additional issue of synchronicity arises for multivariate
measures

« The asynchronous nature of intraday prices biases realized covariances toward 0, unless an
appropriate adjustment is made

+ The downward bias occurs because when trading is infrequent, news that affect a pair of assets will
be incorporated at different times simply as a result of asynchronous trading

Definition 22 (Epps effect, Epps, 1979)

Information arrives at different frequencies for different assets, therefore introducing additional microstructure
effects that are related to the nonsynchronicity in the process of price formation.

Even when there is no microstructure friction as previously discussed, nonsynchronous trading introduces a
downward bias in the realized covariance estimates when sampling returns in calendar time at high frequencies.
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Multivariate realized measures: Asynchronous trading

An approach to tackle the problem of asynchronous trading :
+ previous tick aggregation : forces prices to an equispaced grid by taking the last price realized
before each grid point or, alternatively, the interpolation of the 1st and last price in the interval

+ But, at least one quote should be available for both assets in the chosen time interval for this
algorithm to be applicable

+ Empirical work use heuristically chosen 5 or 30 minutes return interval to try to avoid the bias and
market microstructure effects

+ But this type of correction will increase the variance of the realized covariance estimator and no rule
to choose an optimal frequency exists
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Multivariate realized measures: Asynchronous trading

A better approach: Refresh-time sampling (Harris and Wood, 1995)

Asset] —o——e—o—+——— ¢+ ¢ o oo —>

T %) 73 T4 T5 T6 77 Time

 Each {7} withj = 1,..., M is the time it has taken for all the assets to (re)-trade.
* This procedure forces the time series to synchronize but not necessarily on equispaced time grid

+ Some realized measures are based on this time clock {7} while showing that stale pricing errors
have no impact on the asymptotic distribution of the measures
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Multivariate realized measures : Realized Kernel

4. Realized Kernel (Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2011)

Definition 23

The multivariate realized kernel over the arbitrary interval between 0 and 1 (representing day t) defined as

H
RK, =T'o + ZK(%)(H +Th),
h=1

M
Fh = E rqr57h7

j=h+1

with Ty, refresh-time returns, KC a kernel weighting function (e.g. Parzen), M is the refresh-time sample size after
jittering (averaging observations on the boundaries of the sample) and H is a parameter which controls the
bandwidth.

+ Simultaneously guarantees consistency, positive semi-definiteness and robustness to microstructure
noise

+ Accounts for nonsynchroneity of observations by using refresh-time returns
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Multivariate realized measures : Realized Kernel
Theorem 4 (Asymptotic theory)
HﬁZRKtL K" (0)], ifn < 1/2,
RK, = / S (s)ds + ¢y 2|K" (0)|Q + 0,(1), ifn = 1/2,

RKt—>/ s)dsif n > 1/2,

where H = coM", ¢o > 0,7 € (0, 1), and : average long run variance of the noise

1
MI/S(RKr— / z(s)ds) Loy M (e5 21K (0)]9, 4c0k30)1Q),
0

with K3° = fo )2ds and IQs the multivariate integrated quarticity

« The bandwidth H plays a crucial role, as it has to increase with M quite quickly to remove the
influence on the estimator of the noise

193/215




Multivariate realized measures : Realized Kernel

Bandwidth choice
« It must grow with M at rate M*/®

+ Solutions for estimating a good constant of proportionality in this multivariate case:

i) Apply the unlvarlate optimal mean square error bandwidth selection to each asset price individually,
ie Hy = cog( *M*/5, fori=1,2,...,k with co = 3.5134 for Parzen kernel

One then gets k bandwidths and constructs some ad hoc rules for choosing the global H, such as
Min(.), Max(.) or Average(.)

ii) Construct a sort of equally weighted “market portfolio”
Once prices are converted into Refresh Time, one computes the market return and then carries out a
univariate analysis on it, choosing an optimal H for the market
This single H is then applied to the multivariate problem
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Multivariate realized measures

2. Realized correlation and realized beta

+ Realized Correlation is the realized analogue of the usual correlation estimator, but defined in terms
of realized covariance (RC)

RCorr — _ RCi
~ VRCWRGy
* Suppose
RV, RC;
_ v fv
RC= (RCfv RCff)

is the realized covariance matrix of an asset with a set of observable factors. The realized beta is
defined as
—1
RB = RCff RCy,

+ Realized betas are similar to other realized measures in that they are model free and, as long as
prices can be sampled frequently and have little market microstructure noise, is an accurate
measure of the current exposure to changes in the market
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Multivariate realized measures

2. Realized correlation and realized beta

Stylized facts (AA <Alcoa Inc.> - SPY analysis)
+ Estimate the realised kernel beta and 5 min-based realized betas

* Model them as ARMA(1,1) processes
$=0.950 0=-0.821 adj-R24).145

B K’x} an ol KZXZ
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Modelling and forecasting multivariate realized measures

+ An alternative to multivariate GARCH models is based on realized covariance measures
+ Problem: the matrix constructed from the variance and correlation forecasts obtained from disjoint
(univariate) models is not guaranteed to be positive definite
+ Solutions:
— VARFIMA approach (Chiriac and Voev, 2010)

— Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)
— Multivariate Realized GARCH approach (Hansen et al. 2014)
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Modelling and forecasting multivariate realized measures

1. VARFIMA approach (Chiriac and Voev, 2010)
+ Letr; denote a k x 1 vector of asset returns
+ Let Y; denote the realized covariance matrix, i.e. a non-parametric estimator of QV; associated with r;
. and P; the upper triangular matrix of the Choleski decomposition of ¥; such that P;P, = Y,

* Let X; = vech(P;) be the g x 1 vector obtained by stacking the upper triangular components of P;,
whereg = k(k +1)/2

198/215




Modelling and forecasting multivariate realized measures

1. VARFIMA approach (Chiriac and Voev, 2010)

+ X; is modeled as a vector autoregressive fractionally integrated moving average (VARFIMA(p, 9, q))
process
®(L)D(L)[Xe — BZ] = O(L)er, e ~ N(0,9)
« where Z; isan x 1 vector of exogenous variables
* Bis ag x n matrix of coefficients

s O(L) =1 — DL — DyL? — ... — DpIP and O(L) = [, — ©1L — ©,L? — ... — O,L are matrices of lag
AR and MA polynomial, respectively

« D(L) = diag{(1 — L)%, ..., (1 —L)%} with di,...,d, the degrees of fractional integration of each of
the g elements of X;

+ We assume that the roots of ®(L) and ©O(L) lie outside the unit circle

*+ Z: could include exogenous variables (trading volume, corporate bond returns, short-term interest
rates, etc.)
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Modelling and forecasting multivariate realized measures

1. VARFIMA approach (Chiriac and Voev, 2010)
+ Advantages of Choleski factors VARFIMA

— No need to impose parameter restrictions on the model
— The out-of-sample covariance matrice is always positive definite by the ‘reverse’ Cholesky transformation

i(i—1)/2
Yijr = Z X1 Xigj—1)/2—i(i—1) /2,00 bLi = 1,... .k, j > 1,
1=1+i(i—1)/2

where X] ; is the I-th element of X;

+ Parsimonious VARFIMA (1,d,1) model for forecasting
(1 —@L)D(L)[Xe — c] = (1 — OL)e, e ~ N(0,Q),

where cis a g x 1 vectors of constants

+ Estimation under the assumption of normally distributed errors by the approximate ML approach in
the spirit of Beran (1995), which is also applicable for non-stationary processes (6 > 0.5)
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Modelling and forecasting multivariate realized measures

1. Forecasting with the VARFIMA model for the Cholesky factors

+ From the VAR(c0) representation of the model

®(L)D(L)O(L) X, = iaxt_i,

i=0
one obtains multi-step-ahead forecasts by truncation at r lags

oo r
Xt+s = Et(Xt+s) = Z EiXis—i = SipsXe—i

i=0 i=0
* The forecast is unbiased

* Having obtained Xt+s, we construct the forecast Y, by applying the ‘reverse’ Cholesky
transformation on the previous slide

+ Since ?U7t+s is a quadratic transformation of X, it is biased by
og = Z;gﬁ(ilm Os(Li4i(—1)/2—i(i—1)/2) Wherej > 1,i=1,... kand oy, is the (u, v)-element
of Qs = Zf’:oo U; QW] with ¥; the coefficients of the VMA(co) representation of the model
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Modelling and forecasting multivariate realized measures

2. Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)
+ Extensions of Corsi (2009) to a multivariate framework
+ Letr; denote a k x 1 vector of asset returns
+ Let Y; denote the realized covariance matrix, i.e. a non-parametric estimator of QV; associated with r;
. and P; the upper triangular matrix of the Choleski decomposition of Y; such that P;P, = Y,

* Let X; = vech(P;) be the g x 1 vector obtained by stacking the upper triangular components of P,
whereg = k(k+1)/2
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Modelling and forecasting multivariate realized measures

2. Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)

+ Chiriac and Voev (2011) use the HAR representation for the vector of Cholesky factors X;

XH.l =c+ ,BdX[ -+ /BWX,‘;V -+ /Bmxzn -+ Ety Et ™~ i.i.d. 5
where X = 1371 X, jand X' = X

— Estimation by OLS
— Assumes the same structure for all elements of the factors in X;

L
22

— Assumes homoscedasticity and no cross-correlation of the error term
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Modelling and forecasting multivariate realized measures

Example:
+ Data: tick-by-tick bid and ask NYSE quotes 01.01.2000-30.07.2008 (n = 2156 trading days)

+ Use six highly liquid stocks: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home
Depot Inc. (HD), International Business Machines (IBM) and JPMorgan Chase & Co. (JPM)

+ Through previous-tick interpolation obtain 78 intraday returns by sampling every 5 minutes (and
subsampling at 300 seconds) and construct daily realized covariance matrices

* In-sample from 01.01.2000 to 31.12.2005 and out-of-sample from 01.01.2006 to 30.07.2008
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Modelling and forecasting multivariate realized measures

RMSE based on the Frobenius norm of the forecasting error

Model 1 day Iterated Direct
5 days 10 day 5 days 10 days
VARFIMA-Cholesky 3.8972 3.388% 3.515% 3.540? 3.716*
VARFIMA-Log 3.9372 3.498 3.6107 3.525% 3.700%
HAR-Cholesky 3.940 3.4592 3.628 3.6522 3.919
HAR-Log 3.943 3.492 3.627 3.5852 3.871
Diagonal WAR 4.990 6.198 7.055 4.673 4.608
Diagonal WAR-HAR 4.598 4.995 5.752 4.489 4.659
DCC 5.195 4.727 4.851 5.252 4.945
FIDCC 5.613 4.613 4.767 5.435 5.224

@Model belongs to the 5% MCS of Hansen et al.(2009).

+ MCS : Model Confidence Set, i.e. the set of models with significantly better forecasting abilities
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Modelling and forecasting multivariate realized measures

Economic value of volatility forecasts : portfolio optimization
+ Suppose the return distribution is completely characterized by its first two moments

= Portfolio optimization reduces to finding asset weights which minimize the portfolio volatility for a
given expected return (Markowitz, 1952)

Denote by 1, the annualized expected return

The optimal portfolio is given by the solution to the following quadratic problem

. / 7 ’ ’ ’
11111 Wt+s\th!f+Swt+s\t7 s.t. Wt+s\tEt[rt!t+S] = Wt+s\t]lk = 17

Sty
Wegs|t 2507
with
® W the k x 1 vector of portfolio weights chosen at t and held until t + s,
° Hm+s a covariance matrix forecast

° SZ’% the target return scaled to the investment horizon s
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Modelling and forecasting multivariate realized measures

Mean-variance plots for the ex-post realized conditional mean against realized conditional standard deviation
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All plots are averages across the 648 out-of-sample periods (days)
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Modelling and forecasting multivariate realized measures

Annualized realized conditional standard deviations of the ex-post global minimum variance portfolio (%)

Model 1 day Iterated Direct

5 days 10 days 5 days 10 days
VARFIMA-Cholesky 12,6692 129312 13.0162 12,9242 13.001
HAR-Cholesky 12,676 12,9342 13.0232 12.934 13.018
Diagonal WAR 12.925 13.462 13.786 13.219 13.143
Diagonal WAR-HAR 12.814 13.186 13.398 13.178 13.150°
DCC 13.248 13.501 13.588 13.805 15.202
FIDCC 13.323 13.552 13.530 14.134 15.279

@Model belongs to the 5% MCS of Hansen et al. (2009).
All numbers are averages across the out-of-sample periods
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)

+ They propose a Hierarchical Realized GARCH Framework
. which ties all individual return series to the market return

— It models the the conditional distribution of a vector of returns as well as realized measures of volatility and
correlation

= parsimonious and simple to estimate model
= relates key variables in the model to dynamic market betas

+ Itincludes i) a marginal model for the market return and its realized measure of volatility

. and ii) conditional (on the market) models for individual asset returns, variance, and correlation (with
the market)
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)

+ Letr;; and x; denote the returns and a corresponding realized measure of variance, wherei = 0
corresponds to the marketandi = 1,..., k the assets

* Let gir in(—1, 1) denote a realized measure of correlation between asset i and the market
o Let hi¢|Zi—1, xi¢|Ze—1 and pi¢|Z:—1 denote the conditional equivalents

= Bit = pi,e\/hit/ho, fori > 1 denotes market beta whose dynamics is of interest
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)

Marginal model for the market return

roy = po+ Ug,tzo,r
log 03,[ = ao+ bolog U(Z),t_1 + cologxo,c—1
logxo: = &o+ volog Uczm + 70(20,c) + Uo,e

* 2o~ i.i.d. (0,1), uo ~ i.i.d. (0,0%,) for the estimation

+ A simple second-order polynomial is used for the leverage effect function
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)

Conditional model for an individual asset return and its realized measures (i > 0)

rie = pi +y/0?.zic Return Eq.
+ where the dependence on (ro, Xo,¢) operates through pic = cov(zo,c, Zi|I;—1)
= i.e. thereis a“factor” structure z;; = pi,:Zo,c + /1 — p? Wi, Where wi; has mean zero, unit variance
and is uncorrelated with zo ¢

log Uft = a; + bilog Jfr,l + cilogxi—1 + dilog O‘Syt,l GARCH Eq.
F (pie) = a0 + biol (pie—1) + ciof (0i,e—1)
log xi: = & + vilog Uiz,t + 7i(2it) + Ui

Measurement Eq.
F(oie) = &0+ YioF (pic) + Vi } ‘

Fisher transform, /, is a 1 to 1 mapping from (-1,1) to R
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
Conditional model for an individual asset return and its realized measures (i > 0)

+ The measurement errors will be assumed to be independent of the studentized innovations

* The measurement errors are allowed to be correlated

2
Uo,e Oug Oug,uy  Oug,v;
Viuwe | = ° Oy Ouy,v;
2
Vit ° ° O’Vi
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Modelling and forecasting multivariate realized measures

3. Multivariate Realized GARCH approach (Hansen et al. 2014)

Estimation

* The joint density of the observables conditional on the information set can be decomposed

-7'—13—1) :f(rO,t,XO,t|]'—t—l)f(ri,t7Xi,t7 Vit
= f(ro,e| Fe—1)f (xo0,c|ro,e, Fe—1) ¥
f(ri,t ro,t, Xo,t, ]:tfl)f(xt,h Vit

F(ro.e, Xo,e, Tie, Xie, Vie r0,t,X0,¢, Fr—1)

Tit, T0,t, X0,t, ]:rfl)
+ Aszoe ~ i.i.d. (0,1), uo, ~ i.i.d. (0,0%,), the four components of the likelihood function
corresponding to the four conditional densities above are easy to explicitate

+ The parameters of the model, generally denoted by 6 are hence estimated by

0 = arg maxlog L(ro., Xoc, e, Xie, Vi, |0)
0cO
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Thank you!
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