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Introduction

Reminders and Stylized Facts



Back to basicsPlaceholder

• Standard time series analysis rests on important concepts such as stationarity, spherical errors, and
on a central family of models, the autoregressive moving average (ARMA) models.

• But these concepts are insufficient for the analysis of financial time series
1 First recall standard time series properties
2 Then discuss the main stylized facts of financial series
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ObjectivePlaceholder

• Modeling financial time series is a complex problem (see Mandelbrot 1963)
— There is a variety of the series in use (stocks, exchange rates, interest rates, etc.)
— The availability of very large data sets at different frequencies
— Mainly because of statistical regularities (stylized facts) which are common to a large number of financialseries and are difficult to reproduce artificially using stochastic models
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DefinitionsPlaceholder

Definition 1
A stochastic process, {Yt(ω), ω ∈ Ω, t ∈ R}, is an ordered sequence or random variables defined on a
probability space (Ω,F ,P) with

• Ω the set of events

• F a σ-field representing the events

• P a probability mesure such that P(A) is the probability of event A

⇒ In the following {Yt(ω), ω ∈ Ω, t ∈ R} is denoted {Yt}t∈R or Yt
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DefinitionsPlaceholder

Definition 2
A time series denoted {yt}t∈T or yt is a set of realizations of a stochastic process {Yt}t∈Z with Z ⊇ T

Definition 3
An infinite time series denoted {Yt}∞t=−∞ is an infinite set of realizations of a stochastic process {Yt}t∈Z
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DefinitionsPlaceholder

Definition 4
The unconditional central moments of Yt may be written as the expected value of h(Yt), which is a continuous
function of Yt

E(h(Yt)) =

∫
h(Yt)f (Yt)dYt

with f (Yt) the unconditional density function of Yt

• To compute the expected value of Yt we choose h(Yt) = Yt

E(Yt) = µt

• To compute the variance of Yt we choose h(Yt) = (Yt − E(Yt))
2

V(Yt) = σ2
t
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DefinitionsPlaceholder

Definition 5
The autocovariance function of Yt is obtained from the joint density of (Yt, Yyt−1, . . . , Yt−h) and is denoted by

γ(h) = Cov(Yt, Yt−h)

= E
(

(Yt − µt)(Yt−h − µt−h)
)

=

∫
. . .

∫
(Yt − µt)(Yt−h − µt−h)f (Yt, . . . , Yt−h)dYt . . . dyt−h

with f (Yt, . . . , Yt − h) the unconditional density function of Yt
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White noisesPlaceholder

Definition 6
A Gaussian White Noise εt is a sequence of i. i. d. random
variable with εt ∼ N (0, σ2

ε)

Definition 7
A Strong White Noise εt is a sequence of i. i. d. random variable
with E(εt) = 0 and E(ε2

t ) = σ2
ε

Definition 8
A Weak White Noise ε̃t is a sequence of uncorrelated random
variable with E(ε̃t) = 0 and E(ε̃2

t ) = σ2
ε̃ . For instance

ε̃t = utut+1 · · · ut+k is a Weak White Noise.
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Second order stationarityPlaceholder

• Let {Yt}t∈Z, denoted Yt , be a sequence of random variables
Definition 9

Yt is second order stationary if

— ∀t ∈ Z, E(Yt) = µ <∞

— ∀t, h ∈ Z, Cov(Yt, Yt+h) = γ(h) <∞

⇒ ∀t ∈ Z, V(Yt) = σ2 <∞ as Cov(Yt, Yt+h) = V(Yt) for h = 0

• We summarize here the stability in distribution of the process Yt only through its first two moments
— Relevant in the Gaussian case but restrictive in general
— This weak form of stationarity is simple to test
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Strict StationarityPlaceholder

• Let Yt be a sequence of random variables
Definition 10

Yt is strictly stationary if the joint distribution of Yt and Yt+h, ∀t, h does not depend on t but only on h

(Yt, . . . , Yt−h)
d
= (Yτ , . . . , Yτ−h)

with t 6= τ

• The joint distribution of the process Yt should hence be shift-invariant in time

— Relevant in non-Gaussian and Gaussian cases
— This strong form of stationarity is difficult to test
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Theorem : Wold decompositionPlaceholder

Theorem 1
Let {Yt}n

t=0 be a second order stationary process. We can show that Yt can always be written as a weighted sum
of innovations of Yt and a deterministic component µt

Yt = µt +
∞∑

j=0

ajεt−j

with
∑∞

j=0 a2
j <∞ and εt ∼ i.i.d.(0, σ2

ε <∞)

• The mean-square convergence of aj is important as
E(Y2

t ) =

∞∑
j=0

a2
j σ

2
ε <∞

if for m > n, E(
∑m

j=0 aj −
∑n

j=0 aj)
2 < c⇒

∑∞
j=0 a2

j <∞
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Wold Theorem and autocovariancePlaceholder

• The rate of decrease of the coefficients aj determines also the shape of the autocovariance of yt as
γ(h) = E

(
(Yt − µt)(Yt−h − µt)

)
= E

( ∞∑
m=0

amεt−m

∞∑
s=0

as+hεt−s+h

)
=

∞∑
m,s=0

amas+hγε(m− s + h)

= σ2
ε

∞∑
m,s=0

amas+h
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Stochastic trend and unit rootPlaceholder

• Suppose an AR(1): Yt = ρYt−1 + εt, εt ∼ i.i.d. (0, σ2
ε <∞)

• If ρ = 1 we have Yt = Y0 +
∑t−1

j=0 εt−j and hence

Cov(Yt, Yt−j) = (t − j)σ2
ε et V(Yt) = V

(
t−1∑
j=0

εt−j

)
= tσ2

ε

⇒ The variance of Yt depends of t⇒ Yt is non-stationary
⇒ ρ = 1 places a solution of the lag polynomial on the unit circle, so Yt is a unit root process
⇒ Yt is a random walk of conditional expectation

E(Yt|Yt−1, Yt−2, · · · , Y0) = Yt−1 =

t−1∑
j=1

εt−j = stochastic trend

⇒ Yt is a discrete martingale of stochastic trend∑j εt−j
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Stochastic trend and differenciationPlaceholder

• Suppose an AR(1): Yt = µ+ ρYt−1 + εt, εt ∼ i.i.d. (0, σ2
ε <∞)

• If ρ = 1 and Y0 = 0, the MA(∞) representation gives

Yt = ρtY0 + µ

t∑
j=0

ρj +

t−1∑
j=0

ρjεt−j = µt +
t∑

j=0

εt−j

• We see that
E(Yt) = µt

• The variance and expected value are not independent of t

⇒ Yt is an explosive processus of random walk type and derivative µ
• Yt is first difference stationary as

∆Yt = (1− L)Yt = Yt − Yt−1 = µ+ εt
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Financial SeriesPlaceholder

Notations

St : asset (or portfolio) price at time t

pt : asset (or portfolio) log-price at time t

rt : the continuously compounded or log-return of a financial asset (or portfolio) at time t

rt = pt − pt−1

rt = log(1 + Rt) with Rt =
St−St−1

St−1

• Their properties have been amply commented upon in the financial literature
• These stylized facts are mainly concerned with daily stock prices
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• Nonstationarity of price series
— The stochastic process St is generally non-stationary in the sense of second-order stationarity

• Stationarity of return series
— The stochastic process rt is compatible with the second-order stationarity property
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AutocorrelationPlaceholder
• Absence of autocorrelation for the price variations : (a)

— The series of price variations generally displays small autocorrelations, making it close to a white noise
• Autocorrelations of the squared price returns : (b)

— Squared returns (r2
t ) or absolute returns (|rt|) are generally strongly autocorrelated
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Volatility clusteringPlaceholder
• Large absolute returns |rt| tend to appear in clusters
• Turbulent (high-volatility) sub-periods are followed by quiet (low-volatility) periods. These
sub-periods are recurrent but do not appear in a periodic way (which might contradict the
stationarity assumption)

• In other words, volatility clustering is not incompatible with a homoscedastic (i.e. with a constant
variance) marginal distribution for the returns
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Fat-tailed distributionsPlaceholder
• The empirical distribution of daily returns does not resemble a Gaussian one
• The densities have fat tails and are sharply peaked at zero: they are called leptokurtic
• When the time interval over which the returns are computed increases, leptokurticity tends to vanish
and the empirical distributions get closer to a Gaussian (Aggregational Gaussianity property)

Note : Below is represented the Kernel estimator of the CAC 40 returns density (solid line) and density of a
Gaussian with mean and variance equal to the sample mean and variance of the returns (dotted line).
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Conditional fat tailsPlaceholder

• Even after accounting for volatility clustering, (by using for example ARCH / GARCH models as we will
see in the next section), the distribution of the residuals is leptokurtic

• Its kurtosis is however smaller than in the case of a residuals of a simple ARMA model
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Leverage effectsPlaceholder
• Asymmetry in the response of volatility to positive and negative past returns, respectively
• A diminishing price generates an increase in volatility larger than a price increase of the same
amount

Example: In the table below, r+
t = max(rt, 0) and r−t = min(rt, 0)

Table: Various return autocorrelation

h ρ̂r(h) ρ̂|r|(h) ρ̂(r+
t−h′ , |rt|) ρ̂(−r−t−h′ , |rt|)

1 -0.012 0.175 0.038 0.160
2 -0.014 0.229 0.059 0.200
3 -0.047 0.235 0.051 0.215
4 0.025 0.200 0.055 0.173
5 -0.043 0.218 0.059 0.190
6 -0.023 0.212 0.109 0.136
7 -0.014 0.203 0.061 0.173
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SeasonalityPlaceholder

• Calendar effects: the day of the week, the proximity of holidays, among other seasonalities, may
have significant effects on returns

• Following a period of market closure, volatility tends to increase, reflecting the information
cumulated during this break

• The seasonal effect is also very present for intraday series (beyond the scope of this course)

Table: January effect

Average return (monthly %)
Period January Other months
1904-1928 1.3 0.44
1929-1940 6.63 -0.6
1940-1974 3.91 0.7
1904-1974 3.84 0.42
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SeasonalityPlaceholder

• Calendar effects: the day of the week, the proximity of holidays, among other seasonalities, may
have significant effects on returns

• Following a period of market closure, volatility tends to increase, reflecting the information
cumulated during this break

• The seasonal effect is also very present for intraday series (beyond the scope of this course)

Table:Week-end effect

Monday Tuesday Wednesday Thursday Friday
French (1980) 1953-1977 -0.17 0.02 0.1 0.04 0.09
Gibbons and Hess (1981) 1962-1978 -0.13 0 0.1 0.03 0.08
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SummaryPlaceholder

• Any satisfactory statistical model for daily returns must be able to capture these main stylized facts,
mainly leptokurticity, the unpredictability of returns, and the existence of positive autocorrelations in
the squared and absolute returns

• Classical models (such as ARMA models) centered on the second-order structure are inappropriate
• There is evidence of conditional heterokedasticity (time-varying volatility):

V(rt|rt−1, rt−2, ...) 6≡ const

• Conditional heteroscedasticity is perfectly compatible with stationarity, just as the existence of a
non-constant conditional mean is compatible with stationarity
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Chapter 1

GARCH Type Models



Modelling ApproachesPlaceholder

• Objective: account for the very specific nature of financial series
• Example: Stationary AR(1) provides a model specification for the conditional mean

rt = θrt−1 + εt

with εt i. i.d. N(0, σ2
ε)

• We hence have
E(rt+1) = 0

and
E(rt+1|rt, rt−1, ...) = θrt
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Modelling ApproachesPlaceholder

• Engle (1982)’s idea : account for other conditional moments of the return processus
• But, for an AR(1) process

E(r2
t+1) = σ2

ε/(1− θ2)

E(r2
t+1|rt, rt−1, ...) = σ2

ε

are constants
• Such models are unable to measure changes in forecast error variance although we want them to be
impacted by their past evolution
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Modelling ApproachesPlaceholder
Solution

• Models that capture time-varying volatility are written in the multiplicative form
rt = σtzt

• where (zt) and (σt) are real processes such that:
— σt is measurable with respect to a σ-field, denoted It−1;
— zt is a strong white noise process with unit variance, zt being independent of It−1 and σ(ru; u < t);
— σt > 0

• This formulation implies that the sign of the current price variation (that is, the sign of rt) is that of zt ,and is independent of past price variations
• Most importantly, if the first two conditional moments of rt exist, they are given by

E(rt|It−1) = 0, E(r2
t |It−1) = σ2

t

• The random variable σt is called the volatility of rt
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Modelling ApproachesPlaceholder

• As Cov(rt, rt−h) = E(zt)E(σtrt−h) = 0, r2
t , generally have nonzero autocovariances

⇒ rt is a weak white noise
• The kurtosis coefficient of rt , if it exists, is related to that of zt

E(r4
t )

E(r2
t )2

= kz[1 +
Var(σ2)

E(σ2)2
]

• Hence, the leptokurticity of financial time series can be taken into account in two different ways:
— either by using a leptokurtic distribution for the weak white noise sequence (zt ),
— or by specifying a process (σ2

t ) with a great variability
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Modelling ApproachesPlaceholder

Different classes of models can be distinguished depending on the specification adopted for σt

• Conditionally heteroscedastic (or GARCH-type) processes
— Here It−1 = σ(rs; s < t) is the σ-field generated by the past of rt

— The volatility is here a deterministic function of the past of rt

— Processes of this class differ by the choice of a specification for this function
— The GARCH model is characterized by a volatility specified as a linear function of the past values of r2

t

• Stochastic volatility processes
— Here It−1 is a σ-field generated by vt, vt−1, · · ·, where (vt ) is a strong white noise and is independent of (zt )
— volatility is a latent process
— a popular specification is the one where the process log σt follows an AR(1)
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Conditionally heteroscedastic processesPlaceholder

• In these models, the key concept is the conditional variance: the variance conditional on the past
• We can reproduce the autocorrelation empirically seen in conditional volatility by using the
information in the previous value(s) of r2

t

⇒ in an ARCH(q) specification, perturbations follow an AR process of order q

⇒ ARCH(q) are autoregressive conditionally heteroskedastic models

V(rt) = const

V(rt|It−1) = f (rt−1, rt−2, · · · ; θ)
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ARCH testPlaceholder

Usual (Ljung-Box) autocorrelation test on squared returns
• H0: ρ1 = ρ2 = . . . = ρK = 0

QLB(K) = T(T + 2)
K∑

k=1

ρ̂2
k

T − k
d−→

T→∞
χ2(p),

where ρ̂k is the empirical autocorrelation
ARCH-LM test

• Auxiliary regression
ε̂2

t = φ0 + φ1ε̂
2
t−1 + · · ·+ φpε̂

2
t−p + ηt

• H0’: φ1 = · · · = φp = 0

• Test-statistic: LM(p) = T × R2 d−→
T→∞

χ2(p)
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Family of ARCH-type modelsPlaceholder

• Linear models
⇒ ARCH(q), GARCH(p, q), IGARCH(p, q), etc.
• Non-linear models (i.e. asymmetric models)
⇒ EGARCH(p, q), GJRGARCH(p,q), TGARCH(p, q), etc.
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ARCH models Engle (1982)Placeholder

Model 1
rt follows an ARCH(1) if

rt = zt

√
(σ2

t ), σ2
t = α0 + α1r2

t−1

and zt is a strong white noise with σ2
t deterministic and positive process conditionally on the σ-field

• For the ARCH we have :
V(rt|It−1) = V(zt

√
(σ2

t )|It−1)

= σ2
t V(zt|It−1)

= σ2
t

• If V(zt|It−1) is normalized to 1 we can see that σ2
t is the conditional variance of rt
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Moments of ARCH(1) processPlaceholder
• Regarding the conditional mean :

E(rt|It−1) = E(ztσt|It−1)

= σtE(zt|It−1) = 0 if zt is weak white noise
• Regarding the unconditional mean :

E(rt) = E(E(rt)|It−1) = 0

• Regarding the conditional variance :
V(rt|It−1) = σ2

t V(zt|It−1) = σ2
t V(zt)

= σ2
t = α0 + α1r2

t−1.

• Regarding the unconditional variance :
V(rt) = E

(
(rt − E(rt))

2) = E(r2
t )

• Under stationarity assumption, we hence have E(r2
t ) = α0 + α1E(r2

t ) and
E(r2

t ) = V(rt) =
α0

1− α1
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ARCH(q)ModelsPlaceholder

Model 2
rt follows an ARCH(q) process if rt = ztσt with

σ2
t = α0 +

q∑
i=1

αir
2
t−i

and where zt is a strong white noise such that E(zt) = 0 et E(z2
t ) = σ2

z .

This model fulfills the martingale difference and time-varying conditional variance properties

E(rt|rt−1) = 0 and V(rt|rt−1) = α0 +

q∑
i=1

αir
2
t−i
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ARCH-errors modelPlaceholder

Model 3
Consider rt = E(rt|rt−1) + εt with εt a weak white noise satisfying the martingale difference hypothesis :

E(ε) = 0 and E(εtεs) = 0.

Then, rt follows an ARCH-errors model if εt = ztσt with

σ2
t = α0 +

q∑
i=1

αir
2
t−i

and where zt is a strong white noise
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Example of ARCH-errors modelPlaceholder

• AR(1) - ARCH(1)

Yt = µ+ ρYt−1 + εt , εt = ztσt

with σ2
t = α0 + α1ε

2
t−1 and |ρ| < 1

The model describes the evolution of both the conditional mean and the conditional variance of Ytthrough time
• εt : residuals
• zt : standardized residuals
Residuals εt satisfy the properties of an ARCH process:
martingale difference; time-varying conditional variance; zero conditional auto-covariances; leptokurtic
distribution
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IBM examplePlaceholder

Log-return models with ARCH errors 
	
IBM example 

 

Example I: Price of IBM Stock
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Example II: Danish Stock Market Index (KFX)
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Non-negativity constraints and Limits of ARCHPlaceholder

• Non negativity constraints
— For a ARCH(1) model , α0 ≥ 0; α1 ≥ 0

— For an ARCH(q) model, αi ≥ 0, ∀i = 0, 1, . . . , q

• Limitations of ARCH(q) models
— q, number of lags of the squared residuals, is potentially very large
— Non negativity constraints might be violated
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IBM example - ARCH(10)Placeholder
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Generalised ARCH(1,1) or GARCH(1,1) ModelsPlaceholder

• Bollerslev (1986): the conditional variance depends on its own past values and on past values of ε2
t

• GARCH(1,1) model containing 3 parameters is a very parsimonious infinite ARCH model
σ2

t = α0 + α1ε
2
t−1 + βσ2

t−1

with α0 > 0, α1 > 0 and β > 0
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The GARCH(p, q)modelPlaceholder

Model 4
A process εt satisfies a GARCH(p, q) representation if εt = ztσt and

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

where zt is a weak white noise and where α0 > 0, αi ≥ 0 , i = 1, ..., q and βi ≥ 0, i = 1, ..., p

• The conditional variance of the error term depends on own p past values and on q past values of the
squared residuals

• But in general a GARCH(1,1) model will be sufficient to capture the volatility clustering in the data
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Moments of GARCHPlaceholder

Conditional Moments

• E(εt|εt−1) = 0

• V(εt|εt−1) = σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
i=1 βiσ

2
t−i

Unconditional Variance

• V(rt) = E(rt − E(rt)
2) = E(r2

t )

• V(rt) = E(r2
t ) = α0 ×

(
1−

∑max(p,q)
i=1 (αi + βi

)−1
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The GARCH model meets financial stylized factsPlaceholder

• Under additional assumptions (second-order stationarity of ε2
t ), we can state that if εt is GARCH(p, q),

then ε2
t is an ARMA(p, q) process

ε2
t = α0 +

max(p,q)∑
i=1

(αi + βi)ε
2
t−i + vt −

p∑
i=1

βivt−i

where vt = ε2
t − σ2

t are the innovations of the process
• GARCH processes are hence able to capture one important characteristic of financial series: squared
returns are autocorrelated

• The sum α+ β is referred to as the persistence of the conditional variance process
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The GARCH model meets financial stylized factsPlaceholder

• Contrary to standard time series models (ARMA), the GARCH structure allows the magnitude of the
noise ε2

t to be a function of its past values.
• Thus, periods with high volatility level (corresponding to large values of ε2

t−i) will be followed byperiods where the fluctuations have a smaller amplitude.
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GARCH StationarityPlaceholder

Theorem 2
A process εt satisfies a GARCH(p, q) representation if εt = ztσt ,

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

where zt is a weak white noise and where α0 > 0, αi ≥ 0 ,i = 1, ..., q and βi ≥ 0, i = 1, ..., p.

Also, εt is asymptotically second-order stationary if and only if

q∑
i=1

αi +

p∑
j=1

βj ≤ 1
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GARCHPlaceholder

Drost & Nijman, 1993 define 3 types of GARCH
• The strong GARCH where zt is a Strong White Noise
• The semi-strong GARCH where zt is a Weak White Noise
• The weak GARCH where only projections of the conditional variance are considered
⇒ We focus on the simplest case : the strong GARCH
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Examples of GARCH(1,1)Placeholder

Table: Estimation results

S&P500 DAX
statistic std error statistic std error

Daily returns α0 0.0074 0.0012 0.0248 0.0031
None α1 0.0513 0.0039 0.0910 0.0065
None β1 0.9422 0.0042 0.8954 0.0069
weekly returns α0 0.0829 0.0292 0.2369 0.0634
None α1 0.1015 0.0165 0.1091 0.0165
None β1 0.8872 0.0174 0.8642 0.0195
Monthly returns α0 0.6531 0.4497 3.4344 1.8789
None α1 0.1297 0.0419 0.1276 0.0487
None β1 0.8444 0.0505 0.7837 0.0817

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 50 / 215



IGARCH(p,q)Placeholder

• When
q∑

i=1

αi +

p∑
j=1

βj = 1

the model is called an integrated GARCH(p, q) or IGARCH(p, q) model (see Engle and Bollerslev, 1986)
• There is a unit root in the autoregressive part of the ARMA representation of ε2

t representation
• Returns are strictly stationary with an infinite variance

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 51 / 215



Maximum Likelihood (ML)Placeholder

• Easy to implement once the density function of zt is specified
• Let us call θ the vector of the parameters to be estimated
• If zt are assumed to be normally distributed, then the log likelihood function for a sample of T
observations is:

`(ε1, ε2, ..., εT; θ) =
T∑

t=1

log f
(
εt|It−1

)
= −T

2
log(2π)− 1

2

T∑
t=1

log
(
σ2

t (θ)
)
− 1

2

T∑
t=1

ε2
t (θ)

σ2
t (θ)

,

where ε2
t (θ)

σ2
t (θ)

= z2
t
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Maximum Likelihood (ML)Placeholder

z2
t = z2

t (θ) =
rt − E(rt|It−1)

σ2
t

and
σ2

t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
i=1

βiσ
2
t−i

• Note that σ2
t is not observed for t = 0,−1, . . . ,−p + 1

• To initialize the process, the unobserved squared residuals are
1. set to their sample mean
2. set to the unconditional variance
3. obtained using a pre-sample
4. or considered as additional parameters to be estimated

• Under the regularity assumptions, this estimator
√

T(θ̂ − θ0)
d−→N (0,V−1

T (θ0))
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Maximum Likelihood (ML)Placeholder
• θ̂ does not have a closed-form formula and numerical optimization methods are used
• We need

1. Initial condition
2. Moving rule
3. Stopping rule
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Maximum Likelihood (ML) ExamplePlaceholder
Residuals GARCH(1,1)

Observation ui ui × ui variance, σ2
t −ln(σ2

t )− u2
t
σ2

t30/04/2004 -0.01195 0.00014 0.00014 7.85
31/05/2004 -0.01082 0.00012 0.00014 8.03
30/06/2004 -0.00015 0.00000 0.00014 8.91
31/07/2004 0.00719 0.00005 0.00010 8.70
31/08/2004 -0.00272 0.00001 0.00009 9.26
30/09/2004 0.01046 0.00011 0.00007 7.99
... ... ... ... ...
30/11/2013 -0.00038 0.00000 0.00004 10.18
31/12/2013 0.00254 0.00001 0.00003 10.11
31/01/2014 0.00594 0.00004 0.00003 9.25
28/02/2014 0.00367 0.00001 0.00004 9.79
31/03/2014 -0.00150 0.00000 0.00004 10.09

α0 α1 β

0.00 0.28 0.66

LLF =
m∑

i=1

[
−ln(σ2

t )− u2
t

σ2
t

]2
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Maximum Likelihood (ML) Example 2Placeholder

• Annualized GARCH(1,1) volatility fitted to daily US market returns
σ2

t = 0.0
(4.46)

+ 0.09
(8.59)

ε2
t−1 + 0.9

(80.19)
σ2

t−1

• Volatility is : time varying, persistent, mean-reverting
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GARCH ExtensionsPlaceholder

• GARCH models are doing better than ARCH models (e.g., persistence in volatility) but there are still
some issues (e.g., tails are not enough fat, etc)

• Improvements in various directions:
— Non-normality of the conditional distribution: e.g. GARCH-t model
— Asymmetric GARCH models : e.g. Exponential GARCH model (EGARCH), Threshold GARCH model (TGARCH),GJR model
— Trade-off mean vs variance : e.g. GARCH-in-mean model
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GARCH ExtensionsPlaceholder
In case of non-normality:

• Student distribution
• Skewed Student distribution
• Generalized error distribution (GED)
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GARCH ExtensionsPlaceholder

The GJR-GARCH(1,1) Model
• Due to Glosten, Jaganathan and Runkle

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1 + γε2
t−1It−1

where It−1 =

{
1 if εt−1 < 0

0 otherwise
• For a leverage effect, we would see γ > 0

• We require α1 + γ ≥ 0 and α1 ≥ 0 for non-negativity
• We require α1 + 0.5γ + β < 1 for stationarity
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GARCH ExtensionsPlaceholder

The GJR-GARCH(1,1) Model
• Using monthly S&P 500 returns, December 1979- June 1998
• Estimating a GJR model, we obtain the following results

rt = 0.172
(3.198)

σ2
t = 1.243

(16.372)
+ 0.015

(0.437)
ε2

t−1 + 0.498
(14.999)

σ2
t−1 + 0.604

(5.772)
ε2

t−1It−1
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News Impact CurvesPlaceholder
• The news impact curve plots the next period volatility (σt) that would arise from various positive and
negative values of εt−1, given an estimated model

• News Impact Curves for S&P 500 Returns using Coefficients from GARCH and GJR Model Estimates
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EGARCHPlaceholder

• Suggested by Nelson (1991)
• The variance equation is given by

log(σ2
t ) = α0 +

q∑
i=1

aizt−i +

q∑
i=1

bi(|zt−i| − E[|zt−i|]) +

p∑
i=1

βilog(σ2
t−i)

• Advantages of the model
— Since we model the log σ2

t , then even if the parameters are negative, σ2
t will be positive
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GARCH-in-mean or GARCH-MPlaceholder

• Asset pricing models suppose that higher risks should be rewarded by higher returns
• The GARCH-in-mean model lets the mean of an asset’s returns to be determined by its lagged
conditional volatility

rt = µ+ δG(σ2
t ) + εt, εt ∼ N (0, σ2

t )

with G(σ2
t ) a linear or square-root function and

σ2
t = α0 + α1ε

2
t + βσ2

t−1,

• The parameter δ can be interpreted as the price of risk and can thus be assumed to be positive
• Hence, if δ > 0, increases in risk (given by increases in conditional volatility) lead to higher mean
returns
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Portfolio: optimization problemPlaceholder
• Consider two assets and their log-returns rt = (r1,t, r2,t)

′, denoted r when stacked over time.
• If the market is efficient, returns are unpredictable with mean µ
• The conditional covariance matrix

Ht =

(
h11t h12t

h21t h22t

)
is however predictable if one can fit a stationary GARCH-type model for r1,t and r2,t

• Let define Στ , the forecast of Ht at date τ and the expected (targeted) return for the portfolio, µ̃
• What is of interest for the portfolio manager is to find a minimum risk portfolio (efficient) subjected
to provide the targeted return :

min
ω
σ2

p (ω) = ω′Στω

s.c. ω′µ = µ̃ and ω′ι = 1

with ι a unit vector and ω the allocation weights
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Portfolio: resolutionPlaceholder
• You should be able to derive the following results (based here on the Lagrangien).

L(ω, λ1, λ2) = ω′Στω + λ1(ω′µ− µ̃) + λ2(ω′ι− 1)

• The partial derivatives lead to the following system
2Στω + λ1µ+ λ2ι = 0⇒ ω =

1
2

Σ−1
τ (−λ1µ− λ2u) (1)

ω′µ− µ̃ = 0⇒ 1
2
λ1µ

′Σ−1
τ µ+

1
2
λ2ι
′Στ = µ̃ (2)

ω′ι− 1 = 0⇒ 1
2
λ1µ

′Σ−1
τ ι+

1
2
λ2ι
′Στ = 1 (3)

• Denoting A = ι′Σ−1
τ µ = µ′Σ−1

τ ι, B = µ′Σ−1
τ µ and C = ι′Σ−1ι we have
Aλ1 + Bλ2 = 2µ̃

Aλ1 + Cλ2 = 2

• Solving this system we obtain
λ1 = 2(Cµ̃− A)(BC − A2)−1 et λ2 = 2(B− Aµ̃)(BC − A2)−1
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Portfolio: resolutionPlaceholder
• Substituting in the weight equation we finally get

ω∗(µ̃) =
1
2

Σ−1
τ [λ1µ+ λ2ι]

=
1
2

Σ−1
τ

[
2
(

Cµ̃− A
D

)
µ+ 2

(
B− Aµ̃

D

)
ι

]
=

1
D

Σ−1
τ

[
(Cµ̃− A)µ+ (B− Aµ̃)ι

]
=

1
D

Σ−1
τ

[
(Bι− Aµ) + (Cµ− Aι)µ̃

]
=

1
D

Σ−1
τ (Bι− Aµ) +

1
D

Σ−1
τ (Cµ− Aι)µ̃

= Eµ̃+ F

• The minimal risk (efficient) portfolio is hence given by
σ2

p (µ̃) = ω∗(µ̃)′Σ−1
τ ω∗(µ̃)

• If we omit the investor preferences (µ̃) in the minimization problem the solution simplifies to
ω∗ =

Σ−1
τ ι

ι′Σ−1
τ ι

and we get the so-called minimum-variance portfolio
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Portfolio: implementationPlaceholder

• After estimating individual GARCH models,
collect conditional variance ht,ii, i = 1, 2

• Forecast ĥii,t at horizon k, k being the
investment date or next portfolio rebalancing

• As here we assume rt unpredictable, we justuse the unconditionnal mean as a predictor
• In a univariate framework, we need a constant
correlation assumption to go further because :

ρij,t =
hij,t√
hii,thjj,t

⇒ If ρij,t = ρij we can use the Pearson correlation
and hij,t =

√
hii,thjj,tρij to reconstruct Σ̂τ
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Multivariate GARCH modelsPlaceholder

• While the volatility of univariate series has been the focus of the previous chapters, modeling the
comovements of several series is of great practical importance

• The standard linear modeling of real time series has a natural multivariate extension through the
framework of the vector ARMA (VARMA) models

• Similarly, here we introduce the concept of multivariate GARCH model
• Essential for asset pricing and risk management crucially depend on the conditional covariance
structure of the assets of a portfolio
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Multivariate GARCH modelsPlaceholder
Let denote by rt a column vector of k asset returns and the vector of their conditional expectations by µt

• Returns’ equation implies a conditional covariancematrix Ht:
rt − µt = εt = H1/2

t zt, H1/2
t (H1/2

t )′ = Ht

— εt is a vector, not a scalar as previously
— where Ht is a matrix k× k with elements hijt

— and zt is i.i.d Gaussian such that E(zt) = 0 and E(ztz′t) = I with I a k× k identity matrix
• The conditional covariancematrix Ht takes the form

Ht = f (Ht−1,Ht−2, · · · , εt−1, εt−2, · · · )

• If H1/2
t exists, Ht is positive definite
⇒ the transformation f (.) ought to insure that Ht is symmetric and positive definite (strictly positiveeigen-values)

• But f (Ht−1,Ht−2, · · · , εt−1, εt−2, · · · ) is complex...
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Multivariate GARCH modelsPlaceholder

Choosing a specification for Ht is obviously more delicate than in the univariate framework because:
(i) Ht should be (almost surely) symmetric, and positive definite for all t

(ii) the specification should be simple enough to be amenable to probabilistic study (existence of
solutions, stationarity, ... ), while being of sufficient generality

(iii) the specification should be parsimonious enough to enable feasible estimation
(iv) but, the model should not be too simple to be able to capture the - possibly sophisticated - dynamics

in the covariance structure
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Multivariate GARCH modelsPlaceholder

• Moreover, it may be useful to have the so-called stability by aggregation property

• If εt = H1/2
t zt is satisfied, the process ε̃t = Pεt , where P is an invertible square matrix, is such that

E(ε̃t|ε̃u, u < t) = 0, V(ε̃t|ε̃u, u < t) = H̃t = PHtP

• The stability by aggregation of a class of specifications for Ht requires that the conditional variancematrices H̃t belong to the same class for any choice of P

• Relevance: if the components of the vector εt are asset returns, ε̃t is a vector of portfolios of thesame assets, each of its components consisting of amounts (coefficients of the corresponding row of
P) of the initial assets
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Distribution of multivariate GARCH modelsPlaceholder

• Generally zt is assumed to follow the multivariate Gaussian distribution, zt ∼ N(0, I), since it
provides the basis of QML estimation as in the univariate case

• Another choice of density for zt is the multivariate t

• Multivariate skewed distributions can also be used (e.g. the skewed-t of Bauwens and Laurent, 2005)
• As in the univariate case, distributions with fat-tails and skewness are usually better fitting data than
the Gaussian

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 72 / 215



Representation of multivariate GARCH modelsPlaceholder

• Unlike the ARMA models, however, the GARCH model specification does not suggest a natural
extension to the multivariate framework

• Indeed, the (conditional) expectation of a vector of size k is a vector of size k, but the (conditional)
variance is a k× k matrix

• Important milestones are
— the BEKK model of Engle and Kroner (1995)
— the constant conditional correlation (CCC) model of Bollerslev (1990)
— the dynamic correlation model (DCC) of Engle (2002a)
— the time-varying correlation (TVC) model of Tse and Tsui (2002)

• Earlier models had too many parameters to be useful for modeling more than two asset returns
jointly (e.g. VEC model)
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VEC modelsPlaceholder
• Take the case of a bivariate (k = 2) GARCH(p, q):

Ht =

(
h11t h12t

h21t h22t

)
⇒ ht = vec(Ht) =


h11t

h12t

h21t

h22t


Note : the operator vec(.) consists in vectorizing a matrix by stacking the columns of the matrix on top of

one another
• Using this operator, Engle et Kroner (1995) propose the VEC model:

ht = ω +

q∑
i=1

αivec(εt−iε
′
t−i) +

p∑
i=1

βiht−i

with ω a k× 1 vector, and αi and βi k× k matrices
• Problem:

— the model is big and some equations are redundant: h12t = h21t as Ht is a covariance matrix
— it will not in general produce positive definite covariance matrices Ht
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VECH modelsPlaceholder
• Apply a vech(.) operator now to the previous GARCH(p, q):

Ht =

(
h11t h12t

h21t h22t

)
⇒ ht = vech(Ht) =

h11t

h21t

h22t


Note : The operator vech(.) consists in vectorizing a matrix by stacking the columns of the lower triangular

part of its argument square matrix
• One obtains the VECH model where ht = vech(Ht)

Model 5
The process εt is said to admit a VEC-GARCH(p,q) representation (relative to the i.i.d sequence zt) if it satisfies

εt = H1/2
t zt, where Ht is positive definite such that

vech(Ht) = ω +

q∑
i=1

A(i)vech(εt−1ε
′
t−1) +

p∑
j=1

B(j)vech(Ht−j),

where ω is a vector of size {k(k + 1)/2} × 1, and the A(i) and B(j) are matrices of dimension
k(k + 1)/2× k(k + 1)/2.
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VEC modelsPlaceholder

• In particular, for a bivariate VECH-GARCH(1,1)
ht =

h11t
h21t
h22t

 =

c1
c2
c2

+

α11 α12 α13
α21 α22 α23
α31 α32 α33

 ε2
1,t−1

ε1,t−1ε2,t−1
ε2

2,t−1

+

β11 β12 β13
β21 β22 β23
β31 β32 β33

h11,t−1
h21,t−1
h22,t−1


• Every conditional covariance is a function of lagged conditional variances as well as lagged
cross-products of all components

• More parsimonious model than the VEC-GARCH
• But the VECH-GARCH still implies a big number of coefficients
• Problem: VEC and VECH are not able to generally insure that Ht is positive definite

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 76 / 215



Diagonal VECH-GARCH modelsPlaceholder

• To further simplify the model and its estimation, one may assume that volatilities and covariancesdepend only on their past values (Bollerslev, Engle, and Wooldridge, 1988)
⇒ Non-diagonal coefficients of Ai and Bi are null

• For instance, the diagonal VECH-GARCH(1,1) gives
ht =

h11t
h21t
h22t

 =

c1
c2
c2

+

α11 0 0
0 α22 0
0 0 α33

 ε2
1,t−1

ε1,t−1ε2,t−1
ε2

2,t−1

+

β11 0 0
0 β22 0
0 0 β33

h11,t−1
h21,t−1
h22,t−1


• More parsimonious than the VEC-GARCH
• The diagonal VEC-GARCH is stable by aggregation
• In this case it is possible to obtain conditions for positive definiteness of Ht for all t
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BEKK modelPlaceholder

• Developed by Baba, Engle, Kraft and Kroner, in a preliminary version of Engle and Kroner (1995)
Model 6

Let (zt) denote an i.i.d. sequence with common distribution. The process (εt) is called a BEKK-GARCH(p, q), with
respect to the sequence (zt), if it satisfies

εt = H1/2
t zt

Ht = C′C +

N∑
n=1

q∑
i=1

Ainεt−iε
′
t−iA

′
in +

N∑
n=1

p∑
i=1

B′inHt−iB
′
in

with Ain, Bin, n ∈ {1, . . . ,N}, and C matrices of dimension k× k

• Each BEKK model implies a unique VECH model, while the converse implication is not true
• The BEKK class contains the diagonal models by choosing diagonal matrices Aik and Bjk

Note: The sum over N introduces a complex generalization so we consider only the case N = 1 hereafter
ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 78 / 215



BEKK modelPlaceholder
Theorem 3

Ht is positive definite if matrices Ht−i, i = 1, . . . , p, are almost surely positive definite and

ker{C}
p
∩

j=1

N
∩

n=1
ker{Bjn} = {0}

• This is a weak condition, requiring only that C and Bjn are full rank (e.g. triangular C with positivediagonal elements)
• an identifiability restriction is needed, Hjj,t being invariant to a change of sign of the j-th row of any
matrix Ai

• BEKK-GARCH(1, 1) in the bivariate case (k = 2) with N = 1

Ht = C′C +

(
α11 α12
α21 α22

)′( ε2
1,t−1 ε1,t−1ε2,t−1

ε1,t−1ε2,t−1 ε2
2,t−1

)(
α11 α12
α21 α22

)

+

(
β11 β12
β21 β22

)′(h2
11,t−1 h12,t−1

h21,t−1 h2
22,t−1

)(
β11 β12
β21 β22

)
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Stationarity of the BEKK modelPlaceholder

Definition 11
Let C be an upper triangular n× n matrix and Ain, Bin be n× n parameter matrices. Let zt be an i.i.d. process
with mean zero and unit variance. Hence zt is independent of It−1, and cov(zt|It−1) = cov(zt) = I.

There exists a covariance stationary BEKK process εt , such that εt = H1/2
t zt , where Ht = cov(εt|It−1) and

It = σ(εt, εt−1, . . .) if and only if all the eigenvalues of

q∑
i=1

Ain ⊗ Ain +

N∑
n=1

p∑
i=1

Bin ⊗ Bin

are less than one in modulus.
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Estimation of the BEKK modelPlaceholder

• Under the assumption that zt are i.i.d. conditionally on initial values, the quasi log-likelihood functionof the BEKK model is given by
Ln(θ) = Ln(θ; ε1, . . . , εn) =

n∑
t=1

−n
2

log(2π)− 1
2

log |Ht| −
1
2
ε′tH
−1
t εt,

where
εt = H1/2

t zt

Ht = C′C +

N∑
n=1

q∑
i=1

Ainεt−iε
′
t−iA

′
in +

N∑
n=1

p∑
i=1

B′inHt−iB
′
in
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Estimation of the BEKK modelPlaceholder

• Comte and Lieberman (2003) provide conditions for strong consistency and asymptotic normality of
the quasi maximum likelihood estimator
— Strong consistency

θ̂n → θ0 almost surely when n→∞

— Asymptotic normality
√

n(θ̂n − θ0)
d−→N (0, J−1IJ−1),

where J is a positive definite matrix and I is a positive semi-definite matrix, defined by
I = E

(∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′
)
, J = E

(∂2lt(θ0)

∂θ∂θ′
)
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Conditional correlationsPlaceholder

• Multivariate GARCH models allow one to compute conditional variances and covariances
• Conditional correlations can hence be reconstructed

ρij,t =
hij,t√
hii,thjj,t

with {i, j} = 1, · · · , k and i 6= j
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Constant Conditional Correlations modelsPlaceholder
• Suppose that for a multivariate GARCH process of the form

εt = H1/2
t z̃t

all the past information on εit , involving all the variables εj,t−i, is summarized in the conditional
variance

• The standardized innovations zit = h−1/2
ii,t εit are sequences of i.i.d (0,1) variables generally correlated

• Denote the covariance matrix R = V(zt) = (ρi,j), with zt = (z1t, . . . , zkt)

• In CCC models the conditional covariances hij,t are obtained as hij,t = ρi,j

√
(hii,thjj,t) for i 6= j and

they are time varying although the correlations are constant
• In matrix notations,

Ht = DtRDt = ρi,j

√
(hii,thjj,t)

with Dt a k× k diagonal matrix with√h11,t, · · · ,
√

hkk,t on its main diagonal
⇒ Ht is positive-definite if hii,t is positive for all i and Rt is positive-definite

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 84 / 215



Constant Conditional Correlations modelsPlaceholder
Definition 12

Let z̃t be a sequence of i.i.d. variables. A process εt is called CCC-GARCH(p, q) if it satisfies

εt = H1/2
t z̃t

Ht = DtRDt

ht = ω +

q∑
s=1

Asεt−s +

p∑
v=1

Bvht−v,

where R = cov(ztz′t) is a correlation matrix, Dt = diag(
√

ht), ht is the vector of k conditional variances with
elements (hii,t), εt is the vector of k squared innovations (non-standardized), ω is a m× 1 vector with positive
coefficients, As and Bv are k× k matrices with nonnegative coefficients

• Note that εt = Dtzt , where zt = R1/2z̃t is a centered vector with covariance matrix R such that
εi,t = h1/2

ii,t zi,t

• Note that hii,t may depend on the past of all the components of εt
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Strict stationarity of the CCC modelPlaceholder

Definition 13
The CCC-GARCH(p,q) model admits a second-order stationary solution if the vector of parameters is such that
the roots of the polynomial det(I −

∑s
i=1(Ai + Bi)λ) with s = sup(p, q), are outside the unit cercle. This

solution is unique and ergodic.
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Estimation of CCC modelsPlaceholder
• By the quasi-maximum likelihood method
• Overall there are k + k2(p + q) + k(k− 1)/2 parameters to estimate θ = (ω′, α′, β′, ρ′)′

• Let (ε1, . . . , εn) be a sample of length n of the unique nonanticipative and strictly stationary variable
εt of the CCC model

• Conditionally on nonnegative initial values ε0, . . . , ε1−q, h0, . . . , h1−p, the Gaussian quasi-likelihood iswritten as
Ln(θ) = Ln(θ; ε1, . . . , εn) =

n∏
t=1

1
(2π)k/2|Ht|1/2

exp
(
− 1

2
ε′tH
−1
t εt

)
,

where Ht are recursively defined, for t ≥ 1, by
Ht = DtRDt, Dt = {diag(ht)}1/2 (4)
ht = ht(θ) = ω +

q∑
s=1

Asεt−s +

p∑
v=1

Bvht−v (5)
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Estimation of CCC modelsPlaceholder

• Under the assumption that each conditional variance is specified as a function of its own lags and the
ith element of εt (denoted by εit), for example, by a GARCH(1,1) equation, an important simplification
is obtained in QML estimation

• This assumption splits the log-likelihood function into two parts
ln(θ) = log Ln(θ) =− 1

2

n∑
t=1

(2 log |Dt|+ log |R|+ z′tRzt)

=− 1
2

n∑
t=1

(2 log |Dt|+ z′tzt)

− 1
2

n∑
t=1

(log |R|+ z′tRzt − z′tzt)

• The parameters of the conditional variances appear only in Dt (first term), while the parameters of
the conditional correlation matrix Rt appear only in the second term
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Estimation of CCC modelsPlaceholder

• So the estimation can be performed in two steps
— Estimate univariate GARCH models for each asset i = 1, . . . , k and construct standardized residuals

zt = D−1
t εt

— In a second step, estimate the correlation model (i.e. the constant conditional correlations) based on
E(ztz′t) = D−1

t HtD−1
t = R,

where R is symmetric and positive definite
Remark: The separate estimation of each conditional variance model and of the correlation model is the key

to enable estimation of MGARCH models of conditional correlations when k is large, where large
means more than, say, 5

Remark: The price to pay for this is the impossibility of including spillover terms in the conditional variance
equations, i.e. terms involving εt−1,j or ht−1,j for j 6= i
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Estimation of CCC modelsPlaceholder

• A QMLE of θ is defined as a measurable solution θ̂n = arg max
θ∈Θ

Ln(θ)

• Under several assumption the following asymptotic properties of the QMLE estimator can be
established (Francq and Zakoïan, 2010)
— Strong consistency

θ̂n → θ0 almost surely when n→∞

— Asymptotic normality
√

n(θ̂n − θ0)
d−→N (0, J−1IJ−1),

where J is a positive definite matrix and I is a positive semi-definite matrix, defined by
I = E

(∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

)
, J = E

(∂2lt(θ0)

∂θ∂θ′

)
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CCC modelsPlaceholder

• The hypothesis of CCCs is not tenable except for specific cases and short periods
• Several tests of the null hypothesis of constant correlations exist: see e.g. Silvennoinen and
Terasvirta (2005)

• Indeed, many empirical work show that the matrix R is time-varying
Ht = DtRtDt,

with Rt measurable with respect to the past variables {εu, u < t}

• Dynamic conditional correlations GARCH (DCC-GARCH) of Engle et Sheppard (2001) is the most well
known multivariate approach introducing dynamics for the conditional correlation

• For reasons of parsimony, it seems reasonable to choose diagonal matrices As and Bv as discussedon slide 88 regarding the definition of CCC models (on slide 85), corresponding to univariate GARCH
models for each component
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DCC modelsPlaceholder
• Dynamic conditional correlations GARCH models are an extension of CCC-GARCH, obtained by
introducing a dynamic for the conditional correlation (Engle 2002)

Definition 14
The DCC process is a martingale difference sequence εt relative to a given filtration It , whose conditional
covariance matrix Ht = cov(εt|It−1) satisfies

Ht = DtRtDt

where Dt = diag(h1/2
11,t . . . h1/2

kk,t) and Rt is a k× k time varying correlation matrix of zt.
Besides, hii,t is defined as univariate GARCH(p, q) model where the usual restrictions for non-negativity and
stationarity are imposed.

• The univariate GARCH models can have different orders
• The number of parameters to be estimated is quite large when k is large (e.g. equal to

(k + 1)(k + 4)/2 in bivariate case for a DCC(1,1))
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DCC modelsPlaceholder

Different DCC(1,1) models are obtained depending on the specification of Rt

• Simple GARCH-like formulation
Rt = θ0R + θ1Ψt−1 + θ2Rt−1,

with R a constant correlation matrix, and Ψt−1 the empirical correlation matrix of zt−1, . . . , zt−M and
Rt = diag(Qt)

−1/2Qt diag(Qt)
−1/2,

where
Qt = θ0Q̄ + θ1zt−1z′t−1 + θ2Qt−1

with θ1 > 0, θ2 > 0, θ1 + θ2 < 1, θ0 = 1− θ1 − θ2, and Q̄ = cov(ztz′t)

• One can test the assumption of constant conditional covariance matrix through the restriction
θ2 = θ3 = 0

• Both ensure that Ht is positive definite if Rt is positive definite with elements in the unit cercle. For
this, Qt and its initial value have to be positive definite.
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Estimation of the DCC modelPlaceholder

Suppose that the process zt is multivariate Gaussian distributed such that E(zt) = 0 and E(ztz′t) = I.
• The DCC model can be estimated by a two-step procedure as the conditional variance Ht = DtRtDtcan be divided into volatility part and correlation part (Engle 2002)
• The method is thought to produce consistent but not efficient estimators
• The log-likelihood takes the form of

ln(θ) = −1
2

n∑
t=1

(
log(|Ht|) + ε

′
t H−1

t εt
)

= −1
2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + ε

′
t D−1

t R−1
t D−1

t εt
)
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Estimation of the DCC modelPlaceholder
• In the first step the likelihood involves replacing Rt with the identity matrix I

l1,n(θa) = −1
2

n∑
t=1

(
2 log(|Dt|) + log(|I|) + ε

′
t D−1

t I−1D−1
t εt

)
= −1

2

k∑
i=1

n∑
t=1

(
log(hii,t) +

ε2
ii,t

hii,t

)
,

where θa corresponds to the vector of parameters of the univariate GARCH model for all series
• Once θa is estimated, hii,t is estimated such that zt and Q̄ can be estimated as well
• In the second step, θb = (θ1, θ2) is estimated, given the estimated parameters from step one

l2,n(θb|θ̂a) = −1
2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + ε

′
t D−1

t R−1
t D−1

t εt
)

= −1
2

n∑
t=1

(
2 log(|Dt|) + log(|Rt|) + z′tR

−1
t zt

)
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Estimation of the DCC modelPlaceholder

• Asymptotic properties of the two-step estimation procedure have been studied in Engle and
Sheppard (2001)

• However, Aielli (2009) showed that the estimation of Q by R̂ is inconsistent since
E(ztzt) = E(E(ztz

′
t|It−1)) = E(Rt) 6= E(Qt)

• The consistent DCC (cDCC) relies on a consistent specification of Qt

Qt = (1− θ1 − θ2)Q̄ + θ1 diag(Q1/2
t−1)zt−1z′t−1 diag(Q1/2

t−1) + θ2Qt−1,

such that Q̄ is the unconditional covariance matrix of diag(Q1/2
t−1)zt
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Multivariate GARCH models: examplePlaceholder

• Returns on 4 stock market indices: AEX, DAX, PX and DJIA from January 2007 to December 2012
             Unconditional Correlation coefficients of the returns series

AEX DAX PX DJIA

AEX  1
DAX 0.8568444 1
P 0.5330840 0.4924072 1
DJIA 0.5630591 0.6086716 0.3260289 1
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Multivariate GARCH models: BEKK modelPlaceholder
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Multivariate GARCH models: DCC model (smoother volatilities)Placeholder
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Multivariate GARCH models: examplePlaceholder
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Multivariate GARCH models: examplePlaceholder
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Multivariate GARCH models: examplePlaceholder

• Residuals for AEX (similar for the other three series)ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 102 / 215



Multivariate GARCH models: Residual QQ plotsPlaceholder
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Chapter 2

Finance Theory and High Frequency
Modelling



Efficiant Market Hypothesis (EMH)Placeholder

• The EMH applies rational expectations to asset pricing
— Let St be an asset price and It the information available up to t

— EMH : if investors use all available information in forming expectations
E(St+1|It) = St

⇒ future prices are impossible to forecast
• As we also assume that

E(|St|) <∞ and E(St+1 − St|It) = 0,

St is defined as a martingale
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Brownian motion (or Wiener process)Placeholder

• The martingale property is crucial in finance
⇒ it is the cornerstone of most of asset pricing

theories
• A particular type of martingale is the Wienerprocess Wt ∈M

— W0 = 0

— Wt+u −Wt , ∀u ≥ 0 is independent of Ws, s ≤ t

— Wt+u −Wt ∼ N (0, u)

— Wt is continuous in t

⇒ Asset prices are often defined as Brownian
martingales
St = µt+σWt , with µ a drift and σ a finite constant volatility

0 1 2 3 4 5

− 1

0

1

Simulated Wiener Process

Figure: AI generated picture
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SemimartingalePlaceholder
• A stochastic process Mt can satisfy locally the martingale property
⇒ Mt is a local martingale (LM) : Mt ∈ LM

• Mt enters a more general class of processes : the semimartingale (SM)
• If a stochastic process St ∈ SM, then it can be decomposed as

St = At + Mt

where At is a càdlàg adapted process with locally bounded variation
⇒ “càdlàg” means “continue à droit et limite à gauche”
⇒ “adapted” means “that cannot see into the future”
⇒ “bounded variation” means “a function whose total variation is finite”
• Mt often describes the continuous part of the asset price dynamics
• At often describes a drift term or predictable path
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σ-martingalePlaceholder
• Many asset prices are represented by semimartingales
⇒ e.g. Brownian martingales are semimartingales
⇒ e.g. stochastic volatility models can be semimartingales
⇒ e.g. stochastic processes with jumps can be semimartingales
⇒ if St has an integral representation it is a σ-martingale (more general)

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1 Simulated Stochastic Process with Jumps
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Fundamental Theorem of Asset Pricing (FTAP)Placeholder

• Asset pricing requires market equilibrium to exist
• Under the EMH the market exists but risk free profit is impossible
⇒ FTAP ensures that for an Rd-valued semimartingale S = (St)0≤t≤T :

⇒ if there exists a risk-neutral probability measure Q equivalent to the
... original probability measure P under which S is a σ-martingale, then
... S does not permit free lunch with vanishing risk

⇒ any arbitrage is mathematically prohibited
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A trivial modelPlaceholder
• Let’s define P, Q and explain that theorem with a trivial model

a. (Bt)t=0,1 = 1 ∀ t, the price of a risk free bond with null interest rate
b. (St)t=0,1, the price of a risky asset with S0 = 1

• S1 being uncertain, it is a random variable defined on a probability space
(Ω, (Ft)t=0,1,P)

⇒ Ω is the set of all possible outcomes
⇒ Ft is the set of events
⇒ P is a probability function assigning a probability to each event

• To simplify, let Ω consist of only two elements g and b

⇒ any random element ω ∈ Ω has outcomes g or b

⇒ g and b stand for “good” and “bad”’ and occur with probability
P(g) = P(b) = 1/2

⇒ At time t = 1, we finally define that
S1(ω) =

{
2 for ω = g

1/2 for ω = b
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Option pricingPlaceholder
• An interesting strategy to prevent b or g is to buy an Option
⇒ the investor buys the right but not the obligation to buy St

... at time t = 1 at the pre-defined strike price K = 1

• At Option expiration (i.e. at time t = 1), the payoff is simply
C1(ω) = (S1(ω)− K)+ =

{
1 for ω = g
0 for ω = b

• Knowing C1(ω), the Option pricing puzzle is to determine C0

⇒ What is the price at which the investor will buy the Option today ?
— In M1 we have studied: for risky assets, “expectation” is a bad criterion

C0 := EP(C1) = 1/2 < EP(B1) = 1 < EP(S1) = 1.25

Reminder : expectation operator is valid only for risk neutral investors
⇒ The binomial model (Cox, Ross et Rubinstein) provides a solution
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Reminder : binomial modelPlaceholder

• The investor going long in the Option can try to cover its position
⇒ invests in a portfolio that replicates the Option profit (S1(ω)− K)+

P1 = αS1 + βB1 = C1

where α and β are the quantities invested in the stock and the bond
• Solving that system (composed by each state of the nature) gives

α∗ = 2/3 and β∗ = −1/3

• Indeed, the system is
C1 = 1 = 2α+ β for ω = g

C1 = 0 = α/2 + β for ω = b
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Reminder : binomial modelPlaceholder

• P0 equals the Option price C0 by “no arbitrage argument”
P0 = 2/3S0 − 1/3B0 = 1/3 = C0

• Proof by contradiction : suppose that C0 = EP(C1) = 1/2 6= P0

⇒ As the portfolio replicates the Option
... free lunch would be possible by going long in P0 and going short in C0

... and getting back arbitrage profit C0 − P0 = 1/6

⇒ Arbitrage opportunities vanish only for C0 → P0
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Risk-neutral measure (or equivalent martingale measure)Placeholder
• Suppose that the world is governed by a new probability measure Q
⇒ Q assigns new weights to g and b such that EQ(S1) = EP(B1)

• As the bond is free of risk, Q is called risk-neutral probability measure
⇒ recall that EP(B1) = 1 and the unique solution ensuring EQ(S1) = 1 is

Q(g) = 1/3 and Q(b) = 2/3

as EQ(S1) = 2× 1/3 + 1/2× 2/3 = 1

• Strictly speaking, Q is a martingale measure for S

... or equivalently, S is a martingale under Q
• The now valid expectation criterion can be applied to determine C0

C0 = EQ(C1) = 1× 1/3 + 0× 2/3 = 1/3

⇒ C0 is compatible with the “arbitrage-free” value obtained under P
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Risk-neutral measure in continuous time modelsPlaceholder

• This trivial example can be extended to more general processes
⇒ let (St)0≤t≤T be a continuous-time Brownian martingale

St = σWt

modeled on a filtered probability space (Ω, (Ft)0≤t≤T,P)

• For CT any contingent claim, i.e. a FT-measurable random variable
⇒ C0 := EQ(CT) yields the arbitrage-free prices for CT when Q runs
... through the probability measures on FT which are equivalent to P

... under which the stochastic process S is a martingale
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No free lunch with vanishing riskPlaceholder

• When the risk-neutral measure is unique, one may replicate CT as
CT = C0 +

∫ T

0
PtdSt

where Pt is a predictable trading strategy (e.g. replication portfolio)
⇒ Pt models the holding in S during the infinitesimal interval [t, t + dt]

• Many models like the one of Black & Scholes use that result to find C0

• We now get more intuition on the importance of the FTAP
⇒ roughly speaking, the absence of arbitrage possibilities for a stochastic process S is equivalent to the

existence of an equivalent martingale measure for S
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Stochastic differential equation (SDE)Placeholder

• Financial observations are often sampled at high frequency
⇒ to the limit, infinitesimal differences can be considered :

dt = (t + h)− t, h→ 0

• Applied to St , infinitesimal calculus comes down to the differential dSt

• Assume the following Itô drift-diffusion for the returns of St

dSt

St
= µdt + σdWt ⇒ dSt = St(µdt + σdWt)

• As St is stochastic, solving the SDE dSt is not immediate
⇒ Itô’s lemma is a powerful alternative to chain rule derivatives and states

d
(

f (St, t)
)

=
∂f
∂t

(St, t)dt +
∂f
∂St

(St, t)dSt +
1
2
∂2f
∂S2

t
(St, t)σ2dt
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Solution of Itô drift-diffusionPlaceholder
• Define f (St, t) = log(St) and apply Itô’s lemma

d
(

log(St)
)

= 0dt +
1
St

dSt +
1
2

(
− 1

S2
t

)
σ2S2

t dt

=
1
St

(µStdt + σStdWt)−
1
2
σ2dt

=
(
µ− 1

2
σ2
)

dt + σdWt

• Now, we can integrate and obtain the solution of the SDE
log(St) = log(S0) +

∫ t

0
µds− 1

2

∫ t

0
σ2ds +

∫ t

0
σdWs

= log(S0) + µt − σ2

2
t + σWt

St = S0 exp
(
µt − σ2

2
t + σWt

)
⇒ Modeling log-price ensures the stochastic path to be positive
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Martingale property of the Wiener integral under PPlaceholder
• Any integrable process Xt

— whose increments are independent
— and centered under probability measure P : E(Xt − Xs) = 0

... is a martingale with respect to the filtration Ft as for 0 ≤ s ≤ t we have
E(Xt|Fs) = E(Xt − Xs + Xs|Fs)

= E(Xt − Xs|Fs) + E(Xs|Fs)

= E(Xt − Xs) + Xs

= Xs

• The Wiener process Wt , whose stochastic integral representation is
Wt =

∫ t

0
dWs,

has centered and independent increments and hence Wt ∈M
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Martingale property of the Itô integral under PPlaceholder

• The Wiener integral is a particular type of Itô integral
... which is a stochastic generalization of the Riemann–Stieltjes integral (limit of Riemann sums) where

the integrands and the integrators are stochastic∫ t

0
uτdXτ = lim

M→∞

M∑
i=1

uti (Xti − Xti−1 )

with t − 1 = t0 < t1 < . . . < tM = t and Xτ a semi-martingale
• This more general representation, where Xτ is not necessarily a Wiener process, can help to generate
more realistic price dynamics

• If Xt = Wt , the Itô integral of any square integrable adapted process ut is a martingale as
E
(∫ t

0
uτdWτ |Fs

)
=

∫ s

0
uτdWτ
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No arbitrage in continuous timePlaceholder
• Under a risk-neutral probability measure Q, the return of the risky asset
... equals the return of the risk-less asset if it is discounted by r

S̃t = e−rtSt =
St

Bt/B0

with r the risk-free rate of a zero-coupon bond Bt

⇒ The discounted process S̃t satisfies
dS̃t = d(e−rtSt)

= Std(e−rt) + e−rtdSt + (de−rt)dSt

= −re−rtStdt + e−rtdSt + (−re−rtdt) • dSt

Itô rules : dt • dt = 0 | dt • dWt = 0 | dWt • dWt = dt

= −re−rtStdt + µe−rtStdt + σe−rtStdWt

= (µ− r)S̃tdt + σS̃tdWt

and S̃t ∈M under Q when µ = r⇒ no arbitrage by FTAP theorem
• When µ 6= r, one can define a martingale under Q but Girsanov Theorem is necessary
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Time-varying instantaneous variancePlaceholder

• In previous model, St as well as S̃t have constant volatility σ but
... Itô’s lemma remains valid if volatility changes in time
• At this stage assume σt is càdlàg, a.s. positive and consider pt = log(St)

dpt = mtdt + σtdWt, mt = µt − σ2
t /2, t ≥ 0

• It turns out that log returns are
rt = pt − pt−1 =

∫ t

t−1
msds +

∫ t

t−1
σsdWs

... and distributed as follows
rt ∼ N

(∫ t

t−1
msds,

∫ t

t−1
σ2

s dWs

)
⇒ σ2

t (resp. σt) is called instantaneous or spot variance (volatility)
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Integrated Variance (IV)Placeholder
• Over an interval of time [t − 1, t] the log-return variance is hence

IVt =

∫ t

t−1
σ2

s ds

also called Integrated Variance
• Assuming that the time length of one day is t − (t − 1) = 1

... √IV represents the daily log-return volatility
• For any sequence of partitions t − 1 = t0 < t1 < . . . < tM = t with
... supj{tj+1 − tj} → 0 for M →∞, the Quadratic Variation (QV) can be defined as

[p, p]t = plim
M→∞

M−1∑
j=0

(ptj+1 − ptj )(ptj+1 − ptj ) = IVt

Note In the particular constant volatility case, IVt = σ2t
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Integrated Variance and semi-martingalePlaceholder

• Now, consider a more general representation with pt ∈ SM

pt = At + Mt

where At has finite variation and Mt is a local martingale
• If At is continous, it can be show that the QV

[p, p]t = Mt

even if Mt is contaminated by discontinuities (jumps)
• However, one cannot ensure that QV converges to IV
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Simple continuous-time modelsPlaceholder

• Under the assumption that St ∈ SM, many models can be considered
• The simplest one is

St = S0 +

∫ t

0
σsdWs

for which we have IVt =
∫ t

0 σsds over interval [0, t]

• It appears as the solution of the SDE
dSt = σtdWt

• However,
⇒ more general integrators (LI) can be considered in place of Wt

⇒ many models exist for the stochastic dynamics of price (SP )
⇒ many models exist for the stochastic dynamics of volatility (SV )
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LI : Lévy processesPlaceholder

Definition 15
A càdlàg process (Xt)t≥0 defined on (Ω,F ,P) is a Lévy process if X0 = 0 and

• For any increasing sequence t0, · · · , tn, the random variables Xt0 , Xt1 − Xt0 , · · · , Xtn − Xtn−1 are
independent

• The law of Xt+h − Xt does not depend on t such that increments are stationary

• Xt is stochastically continuous, i.e. lim
h→0

P(|Xt+h − Xt| ≥ ε) = 0

Note The last point just rules out nonrandom occurrence of discontinuities
⇒ Xt ∼ L(.) can be discontinuous as we will see in a few slides
• Lévy processes are more general than Brownian motions and possibly have non-Gaussian
increments
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LI : Infinite divisibility of Lévy processesPlaceholder
• Let Xt ∼ L(.) be sampled at regular time intervals 0,∆, 2∆, · · · , n∆

⇒ the resulting process is still a random walk as
Xn∆ =

n−1∑
k=0

(X(k+1)∆ − Xk∆) =

n−1∑
k=0

∆nXk

has i.i.d. increments ∆nXk

• Moreover, their distribution is the same as the one of X∆ whatever the sampling frequency
• For n∆ = t > 0 and n ≥ 1, Xt and X∆=t/n have the same distribution
⇒ Xt can be divided into n i.i.d. parts : it is infinitely divisible
• A random walk can have arbitrary distribution whereas the distribution of increments of Xt ∼ L(.)
has to be infinitely divisible

⇒ the most common eligible distributions are the Gaussian, the α-stable and the Poisson distributions
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SP : Ornstein-Uhlenbeck (OU) modelPlaceholder

• The OU model appears as the counterpart of an AR(1) process
dXt = α(θ − Xt)dt + σdWt

with θ > 0 and σ > 0

• The solution of the Ornstein-Uhlenbeck SDE is
Xt = X0e−αt + θ (1− e−αt) + σ

∫ t

0
e−α(t−s) dWs (6)

• In the financial literature, the OU coefficients can be interpreted as
— θ represents the asset equilibrium value
— σ the volatility of shocks coming from the diffusion
— α the rate at which these shocks vanish & Xt reverts towards the mean
— when (6) is used to model interest rates, it is also known as Vasicek model
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SP : Hull-White (HW) modelPlaceholder

• The HW model extends the Vasicek model
dXt = α(θ(t)− Xt)dt + σ(t)dWt

with θ(t) a time-dependent coefficient
• The solution of the SDE is

Xt = X0e−αt + α

∫ t

0
eα(s−t)θsds + σe−θt

∫ t

0
eθs dWs (7)

• As θ is time-dependent, one can use the Yield Curve for calibration
• Unfortunately, the HW model cannot ensure the positivity of Xt

⇒ not suitable for interest rate (in normal periods) nor for volatility

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 129 / 215



SP : Cox-Ingersoll-Ross (CIR) modelPlaceholder

• The CIR model is also designed to mimic the evolution of interest rates
dXt = θ(µ− Xt)dt + σ

√
Xt dWt

with
— θ(µ− Xt) the short term dynamics of Xt

— σ the volatility of Xt

— Interestingly, as long as 2θµ ≥ σ2, Xt will never reach 0 (Feller condition)
• This type of square-root SDE is hence useful to model volatility
⇒ However, this SDE has no closed-form solution
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SP : Jump augmented modelsPlaceholder
• Abrupt changes can occur in price dynamics
⇒ such jumps in price cannot be modeled by Gaussian increments

0 0.2 0.4 0.6 0.8 1−1.5

−1

−0.5

0

0.5

1 Simulated Stochastic Process with Jumps

• Counting processes CM are good candidates
• A counting process is a stochastic non-decreasing process Nt ∈ N, t ≥ 0

⇒ As Nt ∈ N, for s ≤ t, Nt − Ns is the number of events occurred in (s, t]
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SP : Poisson modelPlaceholder
• A Poisson point process Nt ∈ CM is defined as follows

— N0 = 0 and for s ≤ t where increments Nt − Ns are independent
— the probability mass function of Nt is

P(Nt = c) =
(λt)c

c!
exp(−λt)

with λ the arrival intensity of events and E(Nt) = λt

⇒ Nt will represent the jumps occurrence irrespective of the jumps size
• Consider (Nt − λt)t a compensated process satisfying E(Nt − λt) = 0

⇒ Since it has centered and independent increments, Ñt = (Nt − λt)t ∈M
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SP : Compound Poisson modelPlaceholder

• Let’s define Jt a compound Poisson process

Jt =

Nt∑
i=1

Yi,

where Yi is i.i.d, square-integrable and generally Gaussian
• Defining Yt− := lim

s→t
Ys, the jump size is hence

∆Jt = Yt − Yt− = dJt

• ∆Jt will be used latter to obtain an integral representation of Jt

• Notice that E(Jt) = λt E(Y) and hence the compensated process
J̃t =

(
Jt − λt E(Y)

)
t

has centered and independent increments⇒ J̃t ∈M

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 133 / 215



SP : Illustration of compound Poisson pathsPlaceholder
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Stochastic integral representation of JtPlaceholder
• Let fY(.) ∈ R be the jump size distribution function and observe that

ν(dy) = λfY(dy)

is the density of Jt in the jump size interval [y, y + dy]

• ν(dy) is called Lévy or intensity measure but is not a probability measure since∫
R
ν(dy) = λ 6= 1

• Now we call Poisson random measure, for B = [t1, t2],
µ(B,A) = #{(Jt2 − Jt1 ) ∈ A}

a measure that counts the jumps in B such that their sizes are in A

• Then, Jt has a stochastic integral representation given by
Jt =

∑
s∈[0,t]

∆Js =

∫
[0,t]×R

y× µ(ds× dy)
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Lévy-Itô decompositionPlaceholder
Model 7

Let (Xt)t≥0 be a Lévy process and ν(.) its Lévy measure verifying∫
|x|≤κ

|x|2ν(dx) <∞ and
∫
|x|≥κ

ν(dx) <∞

such that the intensity of jumps larger than κ > ε > 0 is finite and denote µ(.) its Poisson random measure on
[0,∞)× R. Then, there exists a drift α and a Brownian motion (Wt) ≥ 0 with variance β such that

Xt = αt + Wt + J l
t + lim

ε→0
J̃εt

where large jumps with finite activity are modeled by

J l
t =

∫ t

0

∫
|x|≥κ

xµ(ds× dx)

and small jumps with possibly infinite activity by

J̃εt =

∫ t

0

∫
ε≤|x|<κ

x(µ(ds× dx)− ν(dx)ds)
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Lévy characteristic tripletPlaceholder

• The Lévy-Itô decomposition entails that every Lévy process
1 is a sum of (Brownian) continuous and discontinuous paths
2 is characterized by the triplet Xt = L(α, β, ν)

3 has large jumps J l
t that follow a finite activity compound Poisson

4 has small jumps Jεt that follow an infinite activity compound Poisson
• As ν <∞ is imposed only for |x| ≥ κ, the Lévy process can diverge
⇒ Jεt needs to be compensated⇒ J̃εt

• One can define a “pure-jump” Lévy process by setting Xt = L(0, 0, ν)

⇒ generally unrealistic in finance as it rules out the diffusion
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SP : Jump diffusion model and Exponential LévyPlaceholder
• A jump-diffusion process combines a Brownian diffusion with jumps

dSt = µSt−dt + σSt−dWt + St−dJt

⇒ it is an Exponential Lévy if St = exp(Xt) with Xt ∼ L(µ, σ2, ν)

• Applying an Itô formula for jump, the SDE solution is St = At + Mt

• The martingale part is
Mt = 1 +

∫ t

0
St−σdWs +

∫
[0,t]×R

St−(ey − 1)× µ̃(ds× dy)

and the continuous finite variation drift part is given by
At =

∫ t

0
St−

(
µ− σ2/2 +

∫
R
(ey − 1− y1|y|≤κ)× ν(dy)

)
ds

• St will be a martingale if E(St|S0) = S0 and hence if
µ− σ2/2 +

∫
R
(ey − 1− y1|y|≤κ)× ν(dy) = 0

Note St could be defined directly as a Lévy but without positivity constraint
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SP + SV : Heston modelPlaceholder
• Previous models are unrealistic because σ is constant over time
• Heston (1993) suggests the following stochastic volatility model

dSt = µStdt + StσtdW1,t

dσ2
t = −θ(σ2

t − η)dt + γσtdW2,t

with W1,t and W2,t two Brownian motions and θ, η, γ > 0

⇒ The stochastic volatility is modeled as a CIR process
• The Heston model is a particular case of two-factor stochastic volatility model

dSt = mtStdt + σtStdW1,t

dσ2
t = α(t, σ2

t )dt + β(t, σ2
t )dW2,t

where Cov(W1,t,W2,t) = ρt is possibly non-null
• In practice dσt tends to be negatively correlated with dSt ⇒ ρ < 0
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SP + SV : Infinite activity jump diffusion stochastic volatility modelPlaceholder
• Let pt ∈ SM be stated by the following general SV model

pt = p0 +

∫ t

0
msds +

∫ t

0
σsdWs︸ ︷︷ ︸

Continuous (1)

+

∫ t

0
dJs︸ ︷︷ ︸

Discontinuous∫ t

0
dJs =

∫ t

0

∫
|x|≥κ

xµ(ds× dx)︸ ︷︷ ︸
Big jumps (2)

+

∫ t

0

∫
ε≤|x|<κ

x(µ(ds× dx)− ν(dx)ds)︸ ︷︷ ︸
Small jumps (3)

• As seen before, pt will always generate a finite number of big jumps
... but it may give rise to either a finite or infinite number of small jumps
• Each component of pt can be mapped into an economic source of risk

Part 1 capture the normal risk of the asset, which is hedgeable
Part 2 capture default risk, or more generally big news-related events
Part 3 represent price moves which are large on a time scale of a few seconds, but generally not significant

on a daily frequency
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SP + SV : Finite activity jump diffusion stochastic volatility modelPlaceholder
• Let pt ∈ SM be stated as previously but impose κ = 0

⇒ all jumps are qualified as being big jumps
⇒ hence pt has finite activity and jumps are summable∑

s≤t

|∆ps| <∞, where ∆ps = ps − ps−

• In such a case, on can rewrite pt as
pt = p0 +

∫ t

0
m̃sds +

∫ t

0
σsdWs︸ ︷︷ ︸

Continuous

+
∑
s≤t

∆ps︸ ︷︷ ︸
Discontinuous

where m̃s = ms −
∫
R yf (dy)

• In practice, the jump activity is difficult to measure but index such as Blumenthal-Getoor (BG or β)
index exist
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Finite versus Infinite activity : the Blumenthal-Getoor indexPlaceholder

0
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jump
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 2 1
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poisson
process

Cauchy
process,
NIG process
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  1/ 2
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gaussian
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gamma
process

jump
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Finite power
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of orders  (p < β)

BG Index
of jump
activity

β-stable
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CGMY (Y + β),
generalized
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process

β

Infinite 

Infinite 

• Finite varition of order p means that for ∆Xk = Xk∆ − X(k−1)∆: ∑[t/∆]
k=1 |∆Xk|p <∞ as ∆→ 0
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SP + SV : Bates modelPlaceholder
• Bates (1996) extends the Heston model to Poisson jump-diffusion

dSt = µSt−dt + St−σtdW1,t + St−dJt

dσ2
t = −θ(σ2

t − η)dt + γσtdW2,t

• In this model, the QV of pt = log(St) no-longer converges to IV
⇒ For any sequence of partitions t − 1 = t0 < t1 < . . . < tM = t with
... supj{tj+1 − tj} → 0 for M →∞, the Quadratic Variation (QV) is

[p, p]t = plim
M→∞

M−1∑
j=0

(ptj+1 − ptj )(ptj+1 − ptj ) = IVt + JVt

where
IVt =

∫ t

t−1
σ2

s ds and JVt =

Nt∑
i=Nt−1+1

ξ2
i =

∑
t−1≤s≤t

|∆ps|2

with ξi = log(1 + Yi) and Yi the jump magnitude of the count i
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Quadratic variation of various processesPlaceholder
• Overall, depending on the stochastic process we have :

[p, p]t = IVt = σ2t

if pt is a standard Brownian motion,
[p, p]t = IVt =

∫ t

t−1
σ2

s ds

if pt is a Brownian motion with stochastic volatility
[p, p]t = IVt + JVt =

∫ t

t−1
σ2

s ds +
∑

t−1≤s≤t

|∆ps|2

if pt is a finite activity jump diffusion process
[p, p]t = IVt + JVt =

∫ t

t−1
σ2

s ds +

∫ t

0

∫
R

y2µ(ds× dy)

if pt is a general Lévy process
ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 144 / 215



Why continuous time models?Placeholder

• Observations are quite often irregularly spaced
• Observations quite often come in at a very high frequency
• Then a continuous time model may provide a better approximation to the discrete data than a
discrete model

At the same time
• Continuous-time models are central to mathematical finance
• Most theoretical results on derivative pricing rely on continuous-time processes, obtained as
solutions of diffusion equations

Aim: Construct continuous time models with features of GARCH (it is possible to establish connections
between the two approaches: discrete-time and continuous-time models)
Note: In continuous time it is natural to model the logarithm of the asset price itself, that is pt , rather thanits increments rt as in discrete time
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Continuous time GARCH approximationsPlaceholder

• A continuous time model may serve as an approximation to a GARCH process
• Main question: starting from the continuous model, how close would a process be to a GARCH
process when sampled at discrete times?

• An optimal situation would be that the process itself is a GARCH process, whenever sampled at
equidistant times (kh)k∈N0 , for each h > 0

• Issue: GARCH processes are not closed under temporal aggregation (Drost and Nijman, 1993)
• A continuous time process (Yt)t≥0 which happens to be a GARCH(1,1) process when sampled at

0, h, 2h, . . . for some frequency h will not be GARCH when sampled at 0, 2h, 4h, . . .
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The diffusion approximation of Nelson (1990)Placeholder

Model 8
The GARCH(1,1) diffusion limit satisfies

dpt = σtdW(1)
t ,

dσ2
t = (ω − θσ2

t )dt + λσ2
t dW(2)

t , t ≥ 0

• Although the GARCH process is driven by a single noise sequence, the diffusion limit is driven by two
independent Brownian motions (W(1)

t )t≥0 and (W(2)
t )t≥0

• The behavior of this diffusion limit is therefore rather different from that of the GARCH process itself
since the volatility process (σ2

t )t≥0 evolves independently of the driving process (W(1)
t )t≥0 in the firstof the equations above
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The diffusion limit of NelsonPlaceholder

Remarks:

• The equation of dσ2
t in the Theorem has a strictly stationary solution (σ2

t )t≥0 if
2θ/λ2 > −1 and ω > 0,

in which case the marginal stationary distribution of σ2
0 is inverse Gamma distributed with

parameters 1 + 2θ/λ2 and 2ω/λ2

• The stationary limiting process dσ2
t has Pareto like tails

• The limit (pt, σ
2
t ) is driven by two independent Brownian motions

• The processes pt and σ2
t are continuous. But empirical volatility can exhibit jumps
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)Placeholder

• Option pricing for Nelson’s model (designed as limit of discrete time GARCH processes) may be
demanding since the model gives rise to incomplete markets

• Kallsen and Taqqu (1998) developed a continuous time process which is a GARCH process when
sampled at integer times

• This process is driven by a single Brownian motion only
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)Placeholder

Definition 16
Let ω, λ > 0, δ ≥ 0 and (Bt)t≥0 be a standard Brownian motion. For some starting random variable σ2

0 , define
the volatility process (σt)t≥0 by σ2

t = σ2
0 for t ∈ [0, 1) and

σ2
t = ω + λ

( ∫ btc
btc−1

σs−dBs
)2

+ δσ2
btc−1, t ≥ 1

The continuous-time GARCH process (pt)t≥0 then models the log-price process, and is given by

pt = p0 +

∫ t

0
(µ(σs−)− σ2

s−/2)ds +

∫ t

0
σsdBs
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A continuous time GARCH model designed for option pricing
(Kallsen and Taqqu, 1998)Placeholder

• the drift function µ is assumed to have continuous derivatives
• the volatility process (σt)t≥0 is constant on intervals [n, n + 1) for n ∈ N0

• the process (pt − pt−1, σt−1)t≥1, when sampled at integer times, gives rise to a discrete time
GARCH(1,1)-M process

pn − pn−1 = µ(σn−1)− σ2
n−1/2 + σn−1(Bn − Bn−1), n ∈ N,

σ2
n = ω + λσ2

n−1(Bn − Bn−1)2 + δσ2
n−1, n ∈ N

• This differs from a usual GARCH(1,1) process only by the term µ(σn−1)− σ2
n−1/2, which vanishes if

the function µ is chosen as µ(x) = x2/2

• If we are not in the classical GARCH situation but rather have
lim sup

x→∞
µ(x)/x <∞,

then Kallsen and Taqqu (1998) show that the continuous time model is arbitrage free and complete.
This is then used to derive pricing formulas for contingent claims such as European options.
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GARCH is Slow: A Thought ExperimentPlaceholder

• Suppose a sudden change in the true latent volatility
√

var(rt|Ft−1) =

{
0.2 t ≤ T

0.4 t > T

• With α+ β = 1 (e.g. α = 0.05 and β = 0.95), GARCH(1,1) implies

E(σ2
T+k) = α

∞∑
j=0

βjE(r2
T+k−j) = α

k−1∑
j=0

βj(0.4)2 + α

∞∑
j=k

βj(0.2)2

• How quickly does σ2
t converge to the new level of var(rt|Ft−1)?
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GARCH is SlowPlaceholder
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Squared Return is a Noisy Signal of VolatilityPlaceholder
• r2

t is a very noisy measure of variance
• High-frequency data→ Realized Measures→ far more accurate signalsSquared Return is a Noisy Signal of Volatility

Peter Reinhard Hansen (EUI) Univariate Realized GARCH Spring 2013 20 / 65
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Realized VariancePlaceholder
• In practice IV is unobservable and one only observe asset prices
• Moreover, log price data are only available in discrete time at frequency

∆τ = ti − ti−1

where sampling rates ∆τ can be seconds or minutes
⇒ For a given sampling rate, rti = pti − pti−1 are intradaily log-returns
• We assume M intradaily observations t − 1 = t0 < t1 < . . . < tM = t

⇒ the daily Realized Variance (RV) is given by
RVt =

M∑
i=1

r2
ti

and one can show that in absence of jumps
√

n

(
M∑

i=1

r2
ti −

∫ t

t−1
σ2

s ds

)(
2
∫ t

t−1
σ4

s ds︸ ︷︷ ︸
IQ

)−1/2
d−→N (0, 1)

with IQ the Integrated Quarticity (the limit behavior of the vol-of-vol)
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Realized VariancePlaceholder
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Realized Semi-VariancePlaceholder
• The behavior of rt in the lower tail of their distribution is of interest
... as it often differs from the behavior in the upper tail
⇒ requires an asymmetric treatment of the downside and upside risks
• Barndorff-Nielsen et al. (2010) suggest the Realized Semi-variance

RS+
t =

M∑
i=1

r2
ti1rti≥0 and RS−t =

M∑
i=1

r2
ti1rti≤0

• As for RVt in presence of finite activity jumps, they no-longer converge to IVt as
RS+

t
p−→ 1

2

∫ t

t−1
σ2

s ds +
∑

t−1<s≤t

|∆ps|21rti
≥ 0

and
RS−t

p−→ 1
2

∫ t

t−1
σ2

s ds +
∑

t−1<s≤t

|∆ps|21rti
≤ 0
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Realized Multipower VariationPlaceholder
• In presence of jumps, RVt

p−→QVt instead of the IVt as M →∞

• As jumps cannot be easily distinguished from the continuous part,
... if IVt is of interest, robust realized measures are needed
⇒ Barndorff-Nielsen et al. (2006) introduce the Multipower Variation

MV{γ1,...,γm}
t =

(
1
M

)1−
∑
γk/2 M∑

j=m

m∏
i=1

|rtj−i+1 |
γi

• The simplest case is the Bipower Variation (BV) with γ1 = γ2 = 1

BV{1,1}
t = BVt =

π

2

M∑
j=2

|rtj ||rtj−1 |

• Conversely to RVt , this measure is jump robust as M →∞ :
BVt

p−→
∫ t

t−1
σ2

s ds
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Bipower VariationPlaceholder
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Microstructure noisePlaceholder
• The most striking feature of the empirical prices is their discreteness
⇒ price movement cannot be smaller than one tick
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Time series plot of 12000 intraday prices
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Zoomed − in

Trade
Bid
Ask

• At the opposite, theoreticalM-based models are continuous in time
⇒ efficient log-price are unobservable due to microstructure noise, i.e.

— frictions in the trading process : tick limit, rounding error
— informational effects : gradual response of prices to a block trade
— recording errors : prices entered as zero or misplaced decimal points
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Realized KernelPlaceholder
• Let p∗t = pt + εt be the observed price
⇒ εt ⊥ pt acts as microstructure noise and is defined as a white noise
• Barndorff-Nielsen et al. (2008) suggest the Realized Kernel (RK)

RKt = γ0(p∗t )︸ ︷︷ ︸
RV

+
H∑

h=1

K
( h

H

)
(γh(p∗t ) + γ−h(p∗t ))︸ ︷︷ ︸

noise correction

p−→
∫ t

t−1
σ2

s ds +
∑

t−1<s≤t

|∆ps|2

with γh(p∗t ) =
∑M

j=1(p∗tj − p∗tj−1
)(p∗tj−h

− p∗tj−1−h
) andK(.) a kernel

• The recommended kernelK(.) is Parzen’s kernel

K(x) =


1− 6x2 + 6x3, 0 > x ≥ 1

2

2(1− x)3, 1
2 > x ≥ 1

0, x > 1

• The preferred choice for the bandwidth is H = 3.5134× ξ̂4/5M3/5 with
ξ̂ = q−1

q∑
i=1

ω̂2
(i)/RVsparse and ω̂2

(i) = RV(i)dense/(2M(i))

where RVsparse (RV(i)dense) are based on 20 min (2 min independent) rti
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Jumps identification and Realized Jumps (RJ)Placeholder

• It is hard to disentangle the continuous and jump parts of the QV

• Consider for instance RKt
p−→ IVt and BVt

p−→QVt as M →∞

⇒ Hence, we have RJt = RKt − BVt
p−→ − Jt = −

∑
t−1<s≤t |∆ps|2

• Based on that result, several test statistics can be defined ...
... e.g. the one of Barndorff-Nielsen and Shephard (2006) :

TM =

(
1− BVt,M

RVt,M

)(
1
M

ϑBV MV{1,1,1,1}
t,M

BV2
t,M

)−1/2
d−→N (0, 1)

under the null H0 : no jump, with ϑBV ≈ 2.609 and as M →∞

⇒ The rejection of the null at 5% is thus given by TM > 1.64

... and allows to identify insignificant Realized Jumps
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Realized JumpsPlaceholder
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Nonparametric realized measurePlaceholder
• RVt , RSt , BVt and RKt are ex-post realized measures (RM) of volatility
... at the opposite GARCH-type models estimate ex-ante volatility
• Realized measures are nonparametric estimators of IVt or QVt

⇒ without conditional models, parametric forecasts are infeasible
Autocorrelation function of Apple realized volatility
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Lags
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1

• RM are highly persistent with hyperbolic decay of autocorrelations
⇒ one could use this stylized fact to forecast volatility
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Modelling realized measures with ARFIMAPlaceholder
• Autocorrelations of ARMA models decay at exponential rate
⇒ only ARMA(∞) can mimic an hyperbolic decay
• Such a slow decay reflects the presence of Long Memory (LM)
⇒ the simplest parametric model of LM is the ARFIMA(p, δ, q)

(1− L)δ Φ(L)(xt − µ) = Θ(L)︸ ︷︷ ︸
ARMA(p,q)

εt ⇒ εt =
∞∑

i=0

Ξixt−i

with δ ∈ (−1/2, 1) and xt ∈ log(RM) or xt ∈ (RM)1/2
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Estimating and forecasting with ARFIMA modelsPlaceholder
• Under Gaussian assumption (reasonable if xt ∈ log(RM)), the exact log-likelihood is

LE(ϑ; x) = −n
2

log(2π)− 1
2

log |Σ(ϑ)| − 1
2

x′Σ(ϑ)−1x

with x = (x1, · · · , xn)′, ϑ = (δ, φ1, · · · , φp, θ1, · · · , θp) and
Σ(ϑ) = γx(r− s;ϑ), for r, s = 1, · · · , n

• As the fractional polynomial (1− L)δ implies an infinite dependence
(1− L)δ =

∞∑
j=0

Γ(j + δ)

Γ(j + 1)Γ(δ)
Lj

... the MLE ϑ̂ = arg min
ϑ∈Θ
LE(ϑ; x) is time consuming

• The log-variance forecasts are then obtained by
x̂t+h ≡ Et(xt+h) =

∞∑
i=0

Ξixt+h−i ≈
r∑

i=0

Ξh+ixt−i

where in practice the infinite sum is truncated at lag r
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Normality and Realized VariancePlaceholder

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
−2

−1

0

1

2

3

4

ln(RV) 

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

0.1

0.2

0.3

0.4

0.5
Skewness: 0.62

Kurtosis: 4.25

N(s=0.865) ln(RV) 

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 167 / 215



Modelling realized measures with HARPlaceholder
• Corsi (2008) suggests an Heterogeneous AR model that mimics LM

xt+1 = c + βdxt︸︷︷︸
day

+βwxw
t︸ ︷︷ ︸

week
+βmxm

t︸ ︷︷ ︸
month

+εt+1, εt ∼ i. i. d. ,

where xw
t = 1

5

∑4
j=1 xt−j and xm

t = 1
22

∑21
j=1 xt−j and xt ∈ (RM)1/2

• A log-HAR version is possible if xt ∈ log(RM)

• The HAR is simple and flexible⇒ can model additional stylized facts
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Leverage in Realized VariancePlaceholder
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Extensions of the HAR model : LHARPlaceholder

• Define aggregated negative and positive returns at given frequency s

(rs
t)
− =

1
s

s∑
j=1

rt−j1
∑s

j=1 rt−j<0 and (rs
t)

+ =
1
s

s∑
j=1

rt−j1
∑s

j=1 rt−j≥0

• We allow for the leverage effect to impact each market component
xt+1 = c + βdxt + βwxw

t + βmxm
t

+ γ−d (rt)
− + γ−w (rw

t )− + γ−m (rm
t )−

+ γ+
d (rt)

+ + γ+
w (rw

t )+ + γ+
m (rm

t )+ + εt+1

⇒ The Leverage HAR (LHAR) fits particularly well the asymmetric relationship between rt and xt+1 with
xt ∈ (RM)1/2
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Extensions of the HAR model : LHAR-CJPlaceholder

• Assume now that Jt,TM is the sequence of significant realized jumps
• In the spirit of the HAR let’s define at given frequency s

Js
t,TM =

1
s

s∑
j=1

Jt−j,TM

• The Leverage HAR with Continuous volatility and Jumps (LHAR-CJ) is given by
xt+1 = c + βdxt + βwxw

t + βmxm
t

+ αdJt,TM + αwJw
t,TM + αmJm

t,TM

+ γ−d (rt)
− + γ−w (rw

t )− + γ−m (rm
t )−

+ γ+
d (rt)

+ + γ+
w (rw

t )+ + γ+
m (rm

t )+ + εt+1

• As the model is linear, one can use OLS to estimate all parameters
• This general model offers good in-sample and out-of-sample performances
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GARCH-X with realized measuresPlaceholder

• Engle (2002) (and many others)
σ2

t = ω + αr2
t−1 + βσ2

t−1+γxt−1

xt ∈ RM is a realized measure of the QV (not IV)
• Leads to substantial empirical gains
⇒ Typically

— γ̂ ' 0.5

— α̂ ' 0 (ARCH parameter becomes insignificant)
• However, GARCH-X models are partial (incomplete) models that have nothing to say about returns
and volatility beyond a single period into the future.
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GARCH with a Realized Measure is FastPlaceholder
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Realized GARCH (Hansen, Huang, Shek, 2012)Placeholder
• The Realized GARCH is a complete model, contrary to GARCH-X
⇒ It fully specifies the dynamic properties of both rt and xt :

rt =

Return Equation︷ ︸︸ ︷
µ+

√
σ2

t zt

log σ2
t = α+ β log σ2

t−1 + γ log xt−1

} GARCH Equation
log xt = ξ + ψ log σ2

t + τ(zt) + ut︸ ︷︷ ︸
Measurement Equation

• xt ∈ RM is a realized measure of the QV (not IV)
• τ(z) = τ1z + τ2(z2 − 1) models an asymmetric response in volatility to return shocks (leverage
effect)

• zt ∼ i. i. d. (0, 1), ut ∼ i. i. d. (0, σ2
u)

• τ(zt) + ut are the volatility shocks
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Realized GARCH estimationPlaceholder

• Assume zt ∼ i. i. d. N (0, 1) and ut ∼ i. i.d. N (0, σ2
u)

• The quasi-log likelihood function is constructed based on
Joint density︷ ︸︸ ︷

f (rt, xt|Ft−1) = f (rt|Ft−1)f (xt|rt,Ft−1),

l(r, x; θ) = −1
2

n∑
t=1

(
log(σ2

t ) + r2
t /σ

2
t

)
− 1

2

n∑
t=1

(
log(σ2

u) + u2
t /σ

2
u

)
• Based on Straumann and Mikosch (2006) the authors conjecture that

√
n(θ̂n − θ)

d−→N (0,Ω),

with Ω the usual QMLE covariance matrix
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Realized GARCH multi-period forecastPlaceholder
• Predicts both the conditional return variance and the realized measure

e.g. RGARCH(1,1) forecasts through the VARMA(1,1) structure
(

log σ2
t

log xt

)
=

(
β γ
ψβ ψγ

)(
log σ2

t−1

log xt−1

)
+

(
α

ψα+ ξ

)
+

(
0

τ(zt) + ut

)
• h-step ahead forecasts are obtained from

(
̂log σ2

t+h
̂log xt+h

)
=

(
β γ
ψβ ψγ

)h(
log σ2

t−1

log xt−1

)
+

h−1∑
j=0

(
β γ
ψβ ψγ

)j
((

α
ψα+ ξ

)
+

(
0

τ(zt+h−j) + ut+h−j

))

• One would have to account for distributional aspects of log σ2
t+h in order to produce an unbiasedforecast of it since E(log x) 6= log(E(x))
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Chapter 3

Multivariate Realized Mesures



• There is growing theoretical and empirical interest in extending the results of the univariate
processes discussed previously to a multivariate framework

• Multivariate volatility modelling is of particular importance in the areas of risk management, portfolio
management and asset pricing

• We will discuss:
— Multivariate realized measures
— Modelling and forecasting multivariate realized measures
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Multivariate realized measuresPlaceholder

1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)
• Suppose that along day t the log-prices of financial assets follow a k-variate continuous time
diffusion process

dpt+τ = µt+τ + Σ
1/2
t+τdWt+τ , 0 ≤ τ ≤ 1, t = 1, 2, . . . ,

where
— µt+τ is the multivariate drift component
— Σ

1/2
t+τ is the instantaneous k× k co-volatility matrix

— Wt+τ is the standard multivariate Brownian motion
• Σ

1/2
t+τ is orthogonal to Wt+τ

• A generic element of Σt+τ is given by Σ
(u)(s)
t+τ
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Multivariate realized measuresPlaceholder
1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)

Definition 17
The realized covariance over the arbitrary interval between 0 and 1 (representing day t) is computed using the
outer-product of high-frequency returns

RCov(ALL)
t =

M∑
j=1

rtj r
′
tj ,

where rtj is the j-th return on day t and it is a consistent estimator for the sum of the integrated covariance
matrix and the realized jump variability

∫ 1
0 Σt+τdτ +

∫ 1
0 ξτξ

′
τdN(τ)

• Barndorff-Nielsen and Shephard (2004) showed that when the price process is Brownian motion with
drift, as M →∞

M1/2
[

vech(RCov(ALL)
t )− vech(

∫ 1

0
Σt+τdτ)

]
d−→Nk(0,Πt)

• In principle prices should be sampled as frequently as possible to maximize the precision of the
realized covariance estimator
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Multivariate realized measuresPlaceholder

1. Realized Covariance (Barndorff-Nielsen and Shephard, 2004)
In practice:

• Prices, especially transaction prices (trades), are contaminated by noise (e.g. bid-ask spread,
non-trading, price discreteness, trades occurring on different markets or networks, rounding errors)

• Bandi and Russell (2005) showed that in the presence of microstructure noise the realized
covariation estimator is not consistent

Solutions:
• The standard method to address these concerns is to sample relatively infrequently, for example
every 5 minutes

• An improved method is to use modified realized covariance estimators (e.g. using subsampling)
• Difficult to avoid singular covariance matrices issue when k is large
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Multivariate realized measuresPlaceholder
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

• Let rt,j,i denote the return over the j-th intra-daily time on day t for asset i and rt,j the vector returns
• With I{.} is the indicator function and� the Hadamard product, the vectors of k signed returns are

r+
t,j = rt,j � I{rt,j > 0}, r−t,j = rt,j � I{rt,j ≤ 0},

Definition 18
Therefore, the standard realized covariance matrix can be decomposed in four realized semi-covariance
matrices:

P(M)
t ≡

M∑
j=1

r+
t,jr

+′

t,j , Q(M)+
t ≡

M∑
j=1

r+
t,jr
−′
t,j ,

Q(M)−
t ≡

M∑
j=1

r−t,jr
+′

t,j , N(M)
t ≡

M∑
j=1

r−t,jr
−′
t,j ,

where P, N and Q correspond to “positive”, “negative” and “mixed” vector signs, such that the realized
covariance matrix is given by

RCovM
t = P(M)

t + N(M)
t + Q(M+)

t + Q(M−)
t
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Multivariate realized measuresPlaceholder
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

• Since RCovM
t , P(M)

t and N(M)
t are all defined as sums of vector outerproducts, these matrices are all

positive semidefinite
• Since the diagonal elements of Q(M)+

t and Q(M)−
t are identically zero by construction, these matrices

are necessarily indefinite
• If the assets have a clear ordering, the two realized semicovariances may have different economic
interpretations

• If the ordering is arbitrary, they may convey the same information, combined in a single
semi-covariance matrix Q(M)

t = Q(M)+
t + Q(M)−

t

• E.g. In a bivariate case
P(M)

t =

(
P(M)+

1,t P(M)
12,t

• P(M)+
2,t

)
, N(M)

t =

(
N (M)−

1,t N (M)
12,t

• N (M)−
2,t

)
Q(M)

t =

(
0 Q(M)

12,t

• 0

)
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Multivariate realized measuresPlaceholder
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)

RCOV 
P+N 
M 

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

0

5

10

15
RCov  
P+N 
Q  

• Daily realized semicovariances averaged across 500 randomly-selected pairs of S&P 500 stocks over
the 1993-2014 period (smoothed by a moving average of 50 obs)
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Multivariate realized measuresPlaceholder

2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)
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• Autocorrelations functions for the different realized semicovariance elements averaged across 1000
randomly-selected pairs of S&P 500 stocks over the 1993-2014 period (smoothed by a moving
average of 50 obs)
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Multivariate realized measuresPlaceholder
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020) asymptotic theory (k = 2)

Definition 19
Assume that the bivariate log-price process evolves continuously through time according to the semimartingale
pt = p0 +

∫ t
0 msds +

∫ t
0 σsdWs, 0 ≤ t ≤ 1, where Ws denotes a 2-dimensional Brownian motion, ms is a

2-dimensional locally bounded predictable drift process, and σ is a R2×2-valued càdlàg volatility process. Then
for rj,i ≡ pj/M,i − p(j−1)/M,i, M →∞, with σ2

s,i and ρs the spot variance and correlation respectively,

V(M) =



P(M)+
1

P(M)+
2

N (M)−
1

N (M)−
2

P(M)
12

N (M)
12

Q(M)+
12

Q(M)−
12


p−→
∫ 1

0



σ2
s,1/2
σ2

s,1/2
σ2

s,2/2
σ2

s,2/2

σ2
s,1σ

2
s,2

(
ρs arccos(−ρs) +

√
1− ρ2

s

)
/(2π)

σ2
s,1σ

2
s,2

(
ρs arccos(−ρs) +

√
1− ρ2

s

)
/(2π)

σ2
s,1σ

2
s,2

(
ρs arccos ρs −

√
1− ρ2

s

)
/(2π)

σ2
s,1σ

2
s,2

(
ρs arccos ρs −

√
1− ρ2

s

)
/(2π)


ds ≡ V
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Multivariate realized measuresPlaceholder
2. Realized Semi-Covariance (Bollerslev, Patton, Quaedvlieg, 2020)
Asymptotic theory (k = 2 and a unit time interval)

Definition 20 (CLT and feasible CLT)
Assume that the bivariate log-price process evolves continuously through time according to slide (186), with the
σt volatility process determined by σt = σ0 +

∫ t
0 ν
′
s dW∗s , with ν′s an adapted càdlàg process, and W∗s a

2× 2-dimensional Brownian motion independent of Ws. Then for M →∞,

√
M(V(M) − V)

dst−→
∫ 1

0
αsdWs +

∫ 1

0
βsdW̃s ≡ U,

where dst denotes stable convergence in distribution,αs and βs are 8× 2-dimensional processes. With

Π ≡ Var(U) =

∫ 1

0
(αsα

′
s + βsβ

′
s)ds,

Π(M) p−→Π,

{Π(M)}−1/2
√

M(V(M) − V)
d−→N2(0, I)
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Multivariate realized measuresPlaceholder

3. Realized Bipower Covariation (Barndorff-Nielsen and Shephard, 2004b)
Definition 21

The realized bipower covariation over the arbitrary interval between 0 and 1 (representing day t) computed as

RBPCovt =
1
4

( M∑
j=2

|r(v),tj + r(l),tj ||r(v),tj−1 + r(l),tj−1 |

− |r(v),tj − r(l),tj ||r(v),tj−1 − r(l),tj−1 |
)

where r(v),tj is the v-th component of the return vector rtj , is an estimator of the integrated covariance matrix
(robust to jumps)

RBPCovt
p−→

∆→0

∫ 1

0
Σt+τdτ
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Multivariate realized measures: Asynchronous tradingPlaceholder

• Compared to the univariate case, the additional issue of synchronicity arises for multivariate
measures

• The asynchronous nature of intraday prices biases realized covariances toward 0, unless an
appropriate adjustment is made

• The downward bias occurs because when trading is infrequent, news that affect a pair of assets will
be incorporated at different times simply as a result of asynchronous trading

Definition 22 (Epps effect, Epps, 1979)
Information arrives at different frequencies for different assets, therefore introducing additional microstructure
effects that are related to the nonsynchronicity in the process of price formation.
Even when there is no microstructure friction as previously discussed, nonsynchronous trading introduces a
downward bias in the realized covariance estimates when sampling returns in calendar time at high frequencies.
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Multivariate realized measures: Asynchronous tradingPlaceholder

An approach to tackle the problem of asynchronous trading :
• previous tick aggregation : forces prices to an equispaced grid by taking the last price realized
before each grid point or, alternatively, the interpolation of the 1st and last price in the interval

• But, at least one quote should be available for both assets in the chosen time interval for this
algorithm to be applicable

• Empirical work use heuristically chosen 5 or 30 minutes return interval to try to avoid the bias and
market microstructure effects

• But this type of correction will increase the variance of the realized covariance estimator and no rule
to choose an optimal frequency exists
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Multivariate realized measures: Asynchronous tradingPlaceholder
A better approach: Refresh-time sampling (Harris and Wood, 1995)

• Each {τj} with j = 1, . . . ,M is the time it has taken for all the assets to (re)-trade.
• This procedure forces the time series to synchronize but not necessarily on equispaced time grid
• Some realized measures are based on this time clock {τj} while showing that stale pricing errorshave no impact on the asymptotic distribution of the measures
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Multivariate realized measures : Realized KernelPlaceholder
4. Realized Kernel (Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2011)

Definition 23
The multivariate realized kernel over the arbitrary interval between 0 and 1 (representing day t) defined as

RKt =Γ0 +

H∑
h=1

K
( h

H

)
(Γh + Γ′h),

Γh =

M̃∑
j=h+1

r̃tj r̃tj−h ,

with r̃tj refresh-time returns,K a kernel weighting function (e.g. Parzen), M̃ is the refresh-time sample size after
jittering (averaging observations on the boundaries of the sample) and H is a parameter which controls the
bandwidth.

• Simultaneously guarantees consistency, positive semi-definiteness and robustness to microstructure
noise

• Accounts for nonsynchroneity of observations by using refresh-time returns
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Multivariate realized measures : Realized KernelPlaceholder
Theorem 4 (Asymptotic theory)

H2

M̃
RKt

p−→|K′′(0)|Ω, if η < 1/2,

RKt =

∫ 1

0
Σ(s)ds + c−2

0 |K
′′(0)|Ω + Op(1), if η = 1/2,

RKt
p−→
∫ 1

0
Σ(s)ds if η > 1/2,

where H = c0M̃η , c0 > 0, η ∈ (0, 1), and Ω: average long run variance of the noise

M̃1/5
(

RKt −
∫ 1

0
Σ(s)ds

)
dst−→MN (c−2

0 |K
′′(0)|Ω, 4c0K0,0

• )IQ),

withK0,0
• =

∫∞
0 K(s)2ds and IQs the multivariate integrated quarticity

• The bandwidth H plays a crucial role, as it has to increase with M̃ quite quickly to remove the
influence on the estimator of the noise
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Multivariate realized measures : Realized KernelPlaceholder

Bandwidth choice
• It must grow with M̃ at rate M̃3/5

• Solutions for estimating a good constant of proportionality in this multivariate case:
i) Apply the univariate optimal mean square error bandwidth selection to each asset price individually,
i.e. Ĥ(i) = c0ξ̂

4/5
(i) M̃3/5, for i = 1, 2, . . . , k, with c0 = 3.5134 for Parzen kernel

One then gets k bandwidths and constructs some ad hoc rules for choosing the global Ĥ, such as
Min(.), Max(.) or Average(.)

ii) Construct a sort of equally weighted “market portfolio”
Once prices are converted into Refresh Time, one computes the market return and then carries out a
univariate analysis on it, choosing an optimal Ĥ for the market
This single Ĥ is then applied to the multivariate problem
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Multivariate realized measuresPlaceholder

2. Realized correlation and realized beta
• Realized Correlation is the realized analogue of the usual correlation estimator, but defined in terms
of realized covariance (RC)

RCorr =
RCvl√

RCvvRCll

• Suppose
RC =

(
RVv RC′fv
RCfv RCff

)
is the realized covariance matrix of an asset with a set of observable factors. The realized beta is
defined as

Rβ = RC−1
ff RCfv

• Realized betas are similar to other realized measures in that they are model free and, as long as
prices can be sampled frequently and have little market microstructure noise, is an accurate
measure of the current exposure to changes in the market
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Multivariate realized measuresPlaceholder
2. Realized correlation and realized beta
Stylized facts (AA <Alcoa Inc.> - SPY analysis)

• Estimate the realised kernel beta and 5 min-based realized betas
• Model them as ARMA(1,1) processes

= -0.821  ϕ = 0.950
       (0.024)       (0.039) 

θ

  ϕ = 0.923
       (0.027)       (0.048) 

= -0.726θ

adj-R2 =0.145

adj-R2 =0.213
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Modelling and forecasting multivariate realized measuresPlaceholder

• An alternative to multivariate GARCH models is based on realized covariance measures

• Problem: the matrix constructed from the variance and correlation forecasts obtained from disjoint
(univariate) models is not guaranteed to be positive definite

• Solutions:
— VARFIMA approach (Chiriac and Voev, 2010)
— Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)
— Multivariate Realized GARCH approach (Hansen et al. 2014)
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Modelling and forecasting multivariate realized measuresPlaceholder

1. VARFIMA approach (Chiriac and Voev, 2010)
• Let rt denote a k× 1 vector of asset returns
• Let Yt denote the realized covariance matrix, i.e. a non-parametric estimator of QVt associated with rt

... and Pt the upper triangular matrix of the Choleski decomposition of Yt such that P′tPt = Yt

• Let Xt = vech(Pt) be the g× 1 vector obtained by stacking the upper triangular components of Pt ,where g = k(k + 1)/2
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Modelling and forecasting multivariate realized measuresPlaceholder

1. VARFIMA approach (Chiriac and Voev, 2010)
• Xt is modeled as a vector autoregressive fractionally integrated moving average (VARFIMA(p, δ, q))
process

Φ(L)D(L)[Xt − BZt] = Θ(L)εt, εt ∼ N (0,Ω)

• where Zt is a n× 1 vector of exogenous variables
• B is a g× n matrix of coefficients
• Φ(L) = Ig −Φ1L−Φ2L2 − . . .−ΦpLp and Θ(L) = Ig −Θ1L−Θ2L2 − . . .−ΘqLq are matrices of lag
AR and MA polynomial, respectively

• D(L) = diag{(1− L)δ1 , . . . , (1− L)δg} with d1, . . . , δg the degrees of fractional integration of each ofthe g elements of Xt

• We assume that the roots of Φ(L) and Θ(L) lie outside the unit circle
• Zt could include exogenous variables (trading volume, corporate bond returns, short-term interest
rates, etc.)
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Modelling and forecasting multivariate realized measuresPlaceholder

1. VARFIMA approach (Chiriac and Voev, 2010)
• Advantages of Choleski factors VARFIMA

— No need to impose parameter restrictions on the model
— The out-of-sample covariance matrice is always positive definite by the ‘reverse’ Cholesky transformation

Yij,t =

i(i−1)/2∑
l=1+i(i−1)/2

Xl,tXl+j(j−1)/2−i(i−1)/2,t, i, j = 1, . . . , k, j ≥ i,

where Xl,t is the l-th element of Xt

• Parsimonious VARFIMA (1,d,1) model for forecasting
(1− φL)D(L)[Xt − c] = (1− θL)εt, εt ∼ N (0,Ω),

where c is a g× 1 vectors of constants
• Estimation under the assumption of normally distributed errors by the approximate ML approach in
the spirit of Beran (1995), which is also applicable for non-stationary processes (δ > 0.5)
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Modelling and forecasting multivariate realized measuresPlaceholder
1. Forecasting with the VARFIMA model for the Cholesky factors

• From the VAR(∞) representation of the model
Φ(L)D(L)Θ(L)−1Xt =

∞∑
i=0

ΞiXt−i,

one obtains multi-step-ahead forecasts by truncation at r lags
X̂t+s = Et(Xt+s) =

∞∑
i=0

ΞiXt+s−i ≈
r∑

i=0

Ξi+sXt−i

• The forecast is unbiased
• Having obtained X̂t+s, we construct the forecast Ŷt+s by applying the ‘reverse’ Choleskytransformation on the previous slide
• Since Ŷij,t+s is a quadratic transformation of X̂t+s, it is biased by
σ∗s,ij =

∑i(i+1)/2
l=1+i(i−1)/2 σs(l,l+j(j−1)/2−i(i−1)/2) where j ≥ i, i = 1, . . . , k and σs(u,v) is the (u, v)-element

of Ωs =
∑∞

i=0 ΨiΩΨ′i with Ψi the coefficients of the VMA(∞) representation of the model
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Modelling and forecasting multivariate realized measuresPlaceholder

2. Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)
• Extensions of Corsi (2009) to a multivariate framework
• Let rt denote a k× 1 vector of asset returns
• Let Yt denote the realized covariance matrix, i.e. a non-parametric estimator of QVt associated with rt

... and Pt the upper triangular matrix of the Choleski decomposition of Yt such that P′tPt = Yt

• Let Xt = vech(Pt) be the g× 1 vector obtained by stacking the upper triangular components of Pt ,where g = k(k + 1)/2
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Modelling and forecasting multivariate realized measuresPlaceholder

2. Heterogeneous Autoregressive approach (Chiriac and Voev, 2011; Cech and Barunik, 2016)
• Chiriac and Voev (2011) use the HAR representation for the vector of Cholesky factors Xt

Xt+1 = c + βdXt + βwXw
t + βmXm

t + εt, εt ∼ i. i. d. ,

where Xw
t = 1

5

∑4
j=1 Xt−j and Xm

t = 1
22

∑21
j=1 Xt−j

— Estimation by OLS
— Assumes the same structure for all elements of the factors in Xt

— Assumes homoscedasticity and no cross-correlation of the error term
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Modelling and forecasting multivariate realized measuresPlaceholder

Example:

• Data: tick-by-tick bid and ask NYSE quotes 01.01.2000–30.07.2008 (n = 2156 trading days)
• Use six highly liquid stocks: American Express Inc. (AXP), Citigroup (C), General Electric (GE), Home
Depot Inc. (HD), International Business Machines (IBM) and JPMorgan Chase & Co. (JPM)

• Through previous-tick interpolation obtain 78 intraday returns by sampling every 5 minutes (and
subsampling at 300 seconds) and construct daily realized covariance matrices

• In-sample from 01.01.2000 to 31.12.2005 and out-of-sample from 01.01.2006 to 30.07.2008
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Modelling and forecasting multivariate realized measuresPlaceholder

                                RMSE based on the Frobenius norm of the forecasting error

tceriDdetaretIyad1ledoM

5 days 10 day  

VARFIMA-Cholesky  3.897a 3.388a 3.515a 3.540a 3.716a

VARFIMA-Log   3.937a 3.498 3.610a 3.525a 3.700a

HAR-Cholesky   3.940 3.459a 3.628 3.652a 3.919
HAR-Log    3.943 3.492 3.627 3.585a 3.871
Diagonal WAR   4.990 6.198 7.055 4.673 4.608
Diagonal WAR-HAR  4.598 4.995 5.752 4.489 4.659

549.4252.5158.4727.4591.5CCD
422.5534.5767.4316.4316.5CCDIF

a Model belongs to the 5% MCS of Hansen  et al.(2009).

5 days 10 days

• MCS : Model Confidence Set, i.e. the set of models with significantly better forecasting abilities

ESA Reminders Stylized Facts GARCH Portfolio Multivariate GARCH HEM IV CT-modèles CT-GARCH RV RCov 205 / 215



Modelling and forecasting multivariate realized measuresPlaceholder

Economic value of volatility forecasts : portfolio optimization
• Suppose the return distribution is completely characterized by its first two moments
⇒ Portfolio optimization reduces to finding asset weights which minimize the portfolio volatility for a

given expected return (Markowitz, 1952)
• Denote by µp the annualized expected return
• The optimal portfolio is given by the solution to the following quadratic problem

min
wt+s|t

w′t+s|tĤt:t+sw
′
t+s|t, s.t. w′t+s|tEt[rt:t+s] =

sµp

250
, w′t+s|t1k = 1,

with
• wt+s|t the k× 1 vector of portfolio weights chosen at t and held until t + s,
• Ĥt:t+s a covariance matrix forecast
• sµp

250 the target return scaled to the investment horizon s
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Modelling and forecasting multivariate realized measuresPlaceholder

 

  All plots are averages across the 648 out-of-sample periods (days) 

 

Mean-variance plots for the ex-post realized conditional mean against realized conditional standard deviation
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Modelling and forecasting multivariate realized measuresPlaceholder

a

All numbers are averages across the out-of-sample periods

Annualized realized conditional standard deviations of the ex-post global minimum variance portfolio (%)

tceriDdetaretIyad1ledoM

5 days 10 days 5 days 10 days

VARFIMA-Cholesky a 12.931a 13.016a 12.924a 13.001
HAR-Cholesky a 13.023a 12.934 13.018
Diagonal WAR
Diagonal WAR-HAR

202.51508.31885.31105.31842.31CCD
972.51431.41035.31255.31323.31CCDIF

aModel belongs to the 5% MCS of Hansen et al. (2009).

12.669

13.15012.814 13.186 13.398 13.178
12.925 13.462 13.786 13.219 13.143
12.676 12.934
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
• They propose a Hierarchical Realized GARCH Framework

. . . which ties all individual return series to the market return
— It models the the conditional distribution of a vector of returns as well as realized measures of volatility andcorrelation
⇒ parsimonious and simple to estimate model
⇒ relates key variables in the model to dynamic market betas

• It includes i) a marginal model for the market return and its realized measure of volatility
. . . and ii) conditional (on the market) models for individual asset returns, variance, and correlation (with

the market)
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
• Let ri,t and xi,t denote the returns and a corresponding realized measure of variance, where i = 0
corresponds to the market and i = 1, . . . , k the assets

• Let %i,t in(−1, 1) denote a realized measure of correlation between asset i and the market
• Let hi,t|It−1, xi,t|It−1 and ρi,t|It−1 denote the conditional equivalents
⇒ βi,t = ρi,t

√
hi,t/h0,t for i ≥ 1 denotes market beta whose dynamics is of interest
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
Marginal model for the market return

r0,t = µ0 +
√
σ2

0,tz0,t

log σ2
0,t = a0 + b0 log σ2

0,t−1 + c0 log x0,t−1

log x0,t = ξ0 + ψ0 log σ2
0,t + τ0(z0,t) + u0,t

• z0,t ∼ i. i. d. (0, 1), u0,t ∼ i. i. d. (0, σ2
u0

) for the estimation
• A simple second-order polynomial is used for the leverage effect function
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
Conditional model for an individual asset return and its realized measures (i > 0)

ri,t = µi +
√
σ2

i,tzi,t Return Eq.
• where the dependence on (r0,t, x0,t) operates through ρi,t = cov(z0,t, zi,t|It−1)

⇒ i.e. there is a “factor” structure zi,t = ρi,tz0,t +
√

1− ρ2
i,twi,t, where wi,t has mean zero, unit variance

and is uncorrelated with z0,t

log σ2
i,t = ai + bi log σ2

i,t−1 + ci log xi,t−1 + di log σ2
0,t−1

z(ρi,t) = ai,0 + bi,0z(ρi,t−1) + ci,0z(%i,t−1)

}
GARCH Eq.

log xi,t = ξi + ψi log σ2
i,t + τi(zi,t) + ui,t

z(%i,t) = ξi,0 + ψi,0z(ρi,t) + vi,t

}
Measurement Eq.

Fisher transform, z, is a 1 to 1 mapping from (-1,1) to R
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
Conditional model for an individual asset return and its realized measures (i > 0)

• The measurement errors will be assumed to be independent of the studentized innovations
• The measurement errors are allowed to be correlated

V

u0,t

ui,t

vi,t

 =

σ2
u0

σu0,ui σu0,vi

• σ2
ui σu1,vi

• • σ2
vi
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Modelling and forecasting multivariate realized measuresPlaceholder

3. Multivariate Realized GARCH approach (Hansen et al. 2014)
Estimation

• The joint density of the observables conditional on the information set can be decomposed
f (r0,t, x0,t, ri,t, xi,t, yi,t|Ft−1) = f (r0,t, x0,t|Ft−1)f (ri,t, xi,t, yi,t|r0,t, x0,t,Ft−1)

= f (r0,t|Ft−1)f (x0,t|r0,t,Ft−1)×
f (ri,t|r0,t, x0,t,Ft−1)f (xi,t, yi,t|ri,t, r0,t, x0,t,Ft−1)

• As z0,t ∼ i. i. d. (0, 1), u0,t ∼ i. i. d. (0, σ2
u0

), the four components of the likelihood function
corresponding to the four conditional densities above are easy to explicitate

• The parameters of the model, generally denoted by θ are hence estimated by
θ̂ = arg max

θ∈Θ
log L(r0,t, x0,t, ri,t, xi,t, yi,t|θ)
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Thank you!


	Reminders
	Stylized Facts
	GARCH models
	GARCH-based Portfolio Optimization
	Multivariate GARCH models
	Market Efficiency
	Spot and Integrated Volatility
	Continuous-time models
	Continuous-time GARCH
	Realized volatility measures
	Multivariate realized models

