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Clustered survival times

Until now, we have considered data with a single cause of failure

Also, we have assumed that survival times were independent

⇒ How to deal with events that are dependent across individuals ?

Covid-19 propagation is an example of what we call clustered data

⇒ contamination are more likely to occur for people in a same unit

e.g. children in the same school, employees in the same office, etc.

In such a case, survival times within a cluster are more similar to each
other than to those from other clusters

⇒ the independence assumption no longer holds

⇒ How to deal with an event that can occur repeatedly ?

The seizure (crise d’épilespsie) is another example of clustered data

⇒ the event may repeat indefinitely per person
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Washington Ashkenazi study : dependent data

This study examined the mutations of a particular gene (the BRCA)

⇒ Is there an effect of mutations on risk of breast cancer ?

The study was confined to volunteers from the Ashkenazi population

Each volunteer was controlled for BRCA mutations

A subset of 1960 families is available (at most two relatives per family)

For each volunteer, information of two female relatives are collected

age of onset of breast cancer (current age for women without cancer)

The BRCA mutation status of the volunteer is also collected
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Washington Ashkenazi study
Here is a subsample of 3 families

for each volunteers there are 2 rows

e.g. F#1 consists of 2 first degree female relatives (ages 73 and 40)

... neither of them has ever had breast cancer

... nor the volunteer attached to F#1 have a BRCA mutation

Note 1 The survival variable is age of onset

Note 2 The censoring variable is “brcancer” and “mutant” is the covariate

Note 3 As family members share genetic characteristics, they are not inde-
pendent

Table – Clustered survival data

famID brcancer age mutant
1 1 0 73 0
2 1 0 40 0
7 9 0 89 0
8 9 1 60 0

87 94 1 44 1
88 94 0 45 1
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Marginal Survival Models (MSM)
This approach ignores clustered data when estimating the model

⇒ Clusters are accounted for when computing standard errors of β̂

MSM relies on standard Cox model estimation

Assume there is one covariate with parameter estimate β̂ and σ2
β̂

= V(β̂)

σ2
β̂
can be misleading as it assumes that all subjects are independent

⇒ It has to be corrected for the clustering impact

The correction requires to first define the following score residuals

sij = δij
(
xij − x̄(tij)

)
−
∑
tu≤tij

(
xi − x̄(tij)

)
exiβ

(
Ĥ0(tu)− Ĥ0(tu−1)

)
where we can notice that the first part is the Schoenfeld residuals

The variance correction is then given by

C =

G∑
i=1

ni∑
j=1

ni∑
m=1

sijsim, G and ni are defined in the next slide

where the cluster-adjusted standard error for β̂ is σ∗
β̂

= (V(β̂)× C)1/2
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Cluster-adjusted standard errors
When there are q covariates in the Cox model, β is a vector

We hence have to apply the correction to the whole estimated covariance
matrix of β

The score residuals are now 1× q matrices and C is a q × q matrix as

C =

G∑
i=1

ni∑
j=1

ni∑
m=1

s′ijsim

where G is the number of clusters (assumed to be known here) and ni
is the number of failure in the ith cluster

Then, the cluster-adjusted covariance matrix is given by

V ∗ = V(β̂)CV(β̂)

the traditional sandwich estimator

⇒ Adjusted standard errors are then derived as follows

se(β̂) = diag(V ∗)1/2
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Frailty survival models : recall

Another approach is to generalize to clustered data the likelihood

Recall Under the independence assumption, we may write (see Chapter 1)

L(β;xi) =
n∏
i=1

f(ti, β)δiS(ti, β)1−δi =
n∏
i=1

h(ti, β)δiS(ti, β)

Recall Under proportional hazards assumption (Cox) it becomes

L(β;xi) =

n∏
i=1

(
h0(ti)e

xiβ
)δi

e−H0(ti) exp(xiβ)

where

H0(ti) = −
∫ ti

0

h0(v)dv

is the baseline cumulative hazard
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Frailty survival models : principle
The idea is to assign each individual in a cluster a common factor

⇒ this common factor is known as frailty or random effect and denoted

ωi

for the ith cluster

Then, for the jth subject in the ith cluster, the hazard function is

hij(tij) = h0(tij)ωie
xijβ

We allow for ωi to vary from one cluster to another

⇒ a common model that governs this variability is a gamma distribution

g(ω, θ) =
ω1/θ−1e−ω/θ

Γ(1/θ)θ1/θ

An alternative is to use a standard normal distribution

hij(tij) = h0(tij)ωie
xijβ = h0(tij)e

xijβ+uiσ, as ωi = euiσ

such that the random and fixed effects are put on the same level
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Frailty survival models : unfeasible estimation

Assuming that the frailties ωi are observed, the joint likelihood is

Lij(β, θ;ωi, tij , δij , xij) = g(ωi, θ)
(
h0(tij)ωie

xijβ
)δij

e−H0(tij)ωi exp(xijβ)

and the full likelihood is

Lij(β, θ) =

G∑
i=1

ni∑
j=1

Lij(β, θ;ωi, tij , δij , xij)

MLE of β and θ is feasible under assumption that

ωi, tij , δij , xij

are observed

Although we can have an idea of the number of clusters, the frailties

ωi

are in general not observed directly
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Frailty survival models : EM algorithm

In the more realistic case where ωi are unknown

... one can use the Expectation-Maximization (EM) algorithm

⇒ It alternates between finding expected values for ωi based on current
estimates of

β and θ

and using these expected values to find updated estimates for

β and θ

until convergence

If we use a parametric distribution for

f(t, β)

setting up the EM algorithm is fairly direct

Generalizing this to the semi-parametric Cox model is more complex
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Example : standard Cox model

Consider the whole Ashkenazi data set

First Fit the standard Cox model to explain the age of onset of breast cancer

coef exp(coef) se(coef) z p
mutant (BRCA) 1.1907 3.2895 0.1984 6.002 1.95e-09

The likelihoods of the null versus mutant BRCA models are

−3579.707 and − 3566.745

respectively and leads to the following LR test statistics

LR = 2(−3566.745 + 3579.707) = 25.924

that we compare to a χ2
1 and results in p < 0.0001

⇒ this confirms the need of including the BRCA status of the volunteer
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Example : MSM

We now implement the MSM to account for the clustering

The clusters are defined through the family ID in the database

We expect here the coefficient to be the same but the adjusted standard
error to be different if the cluster are impacting

coef exp(coef) se(coef) robust se z p
mutant (BRCA) 1.1907 3.2895 0.1984 0.2023 6.002 1.95e-09

The robust standard error is only slightly higher than the unadjusted
one

⇒ the effect of clustering within first-degree relatives is small

⇒ the estimation of the MSM reveals that having a first-degree relative
with a BRCA mutation increases the hazard of developing breast cancer
by a factor of 3.30
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Example : frailty

Finally we implement the frailty model with a gamma distribution

We expect here the standard error to be different if the clusters matter

⇒ the coefficient is also likely to vary as the likelihood is modified

coef se(coef) se2 Chisq df p
mutant 1.272 0.2317 0.2004 30.13 1.0 4.0e-08
frailty(famID) 221.50 211.6 3.1e-01

Softwares often returns 2 different standard errors

the first is directly derived from the Hessian and is generally preferable

the second is an alternative estimate based on a variation of the sandwich
estimator

The results are close to those obtained with the MSM and Cox models

⇒ having a first-degree relative with a BRCAmutation increases the hazard
of developing breast cancer by a factor of exp(1.272) = 3.56
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Example : frailty

The likelihoods of the fixed (no cluster) vs random effects models are

−3566.745 and − 3564.622

respectively and leads to the following LR test statistics

LR = 2(−3564.622 + 3566.745) = 4.246

that we compare to a χ2
1 and results in p = 0.03934

When comparing the null model with the random effects model we have

−3579.707 and − 3564.622

respectively which leads to the following LR test statistics

LR = 2(−3579.707 + 3566.745) = 30.17

and that we compare to a χ2
1 and results in p < 0.00001
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Cause-specific hazards

Until now we have considered a single, well-defined outcome

In some study we may face multiple causes of failure

e.g. an employee can quit the job for different reasons : fired, retirement, ...

A naive solution is to focus on a particular type of failure

... and treat the others as a type of censoring

This is questionable as censoring relies on an independence assumption

⇒ What we face here are competing risks, and we have to examine them

Note 1 Interpretation of survival analyses in the presence of competing risks will
always be subject to at least some ambiguity due to uncertainty about
the degree of dependence among the competing outcomes

Note 2 For a particular subject, we observe only one cause of failure
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Kaplan-Meier estimation with competing risks
Consider first the naive solution : for each type of failure

... while considering others as a type of censoring

As presumably, the independence assumption is violated, we can ques-
tion the consequences on Kaplan-Meier estimation

Note Conversely to Cox, KM estimator considers that censoring occurs first

We illustrate this issue with the prostate cancer data (see Chapter 1)

⇒ focus on patients ages 80+, stage T2, poorly differentiated

Note old patients, with grade 3 advanced cancer

Table – Cancer prostate data for patients ages 80+

grade stage ageGroup survTime δ (status) ∆ (other) 1−∆ (prost)
13 poor T2 80+ 21 0 0 0
38 poor T2 80+ 105 0 0 0
41 poor T2 80+ 2 1 0 1
47 poor T2 80+ 67 2 1 0
78 poor T2 80+ 2 0 0 0
93 poor T2 80+ 60 2 1 0
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Example : Kaplan-Meier and competing risks
In Table 2, when δ = 2 we create a new censoring variable ∆

⇒ we apply twice 2 the KME : δ = 2 as censored and δ = 1 as censored

Years from prostate cancer diagnosis
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Note 1 At 10 years, e.g., the P(of dying of prostate cancer) is 0.46 versus 0.88

Note 2 If one assume those 2 probabilities to be independent there is no issue

Note 3 If there are not, as they sums to 1.34 > 1, this reveals a severe bias

Note 4 Unfortunately, this hypothesis cannot be tested from the data
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The cumulative incidence functions

How to formally address this issue in a non-parametric framework ?

To develop a formal model to accommodate competing risks,

... assume that there are K <∞ distinct causes of failure

Also assume that the subject can experience at most one of the K causes

Then, for each cause of interest, we defined as sub-distribution function

Fj(t) = P(T ≤ t, C = j) =

∫ t

0

hj(u)S(u)du

also known as cumulative risk (or incidence) function for the jth cause

It is increasing as any cumulative distribution function

... but goes, in the limit, to the probability of failure from the jth cause
rather than to 1

Fj(∞) = P(C = j)
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The cause-specific hazard
The cause-specific hazard is hence defined conditionally to C = j

hj = lim
δ→0

(P(t < T < t+ δ, C = j|T > t)

δ

)
One can obtain the whole hazards function as follows

h(t) =
K∑
j=1

hj(t)

⇒ The risk of failure at a particular time is simply the sum of the risks of
all specific causes at that time

Now assume that we have D distinct ordered failure times t1, t2, . . . , tD

We may estimate the hazard at the ith time ti using

ĥ(ti) = di/ni

and the cause-specific hazard for the kth type cause as

ĥk(ti) = dik/ni

i.e. the # of events of type k at ti divided by the # of subjects at risk
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Estimating cause-specific hazards

The sum over all cause-specific hazards is estimated as

ĥ(ti) = n−1
i

K∑
j=1

dik

The probability of failure from any cause at ti is

Ŝ(ti−1)× ĥ(ti)

and hence, for a particular cause k we have

Ŝ(ti−1)× ĥk(ti)

from which we obtain an estimate of the cumulative incidence function

F̂k(t) =
∑
ti≤t

Ŝ(ti−1)× ĥk(ti)
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Example : estimation of the cumulative incidence function
Consider the following artificial data and compute F̂k(t) given that

Ŝ(0, 2, 3, 5, 7) = (1, 0.833, 0.667, 0.444, 0.000)′

Squares are for k =1 
Triangles for k=2
Circles for censored
 observations

Survival time
0 1 2 3 4 5 6 7 8

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

ti ni di1 di2 di Ŝ(ti−1) ĥ1(ti) ĥ2(ti) F̂1(ti) F̂2(ti)

0 6 0 0 0 1 / / 0.000 0.000
2 6 1 0 1 0.833 1/6 0 0.167 0.000
3 5 0 1 1 0.667 0 1/5 0.167 0.167
5 3 1 0 1 0.444 1/3 0 0.389 0.167
7 1 0 1 1 0.000 0 1 0.389 0.611

G. de Truchis ESA ST1 23/71



Competing Risks Parametric Models Lasso Survival Analysis with R

Example : estimation of the cumulative incidence function
Consider the following artificial data and compute F̂k(t) given that
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Example : cumulative incidence function for the prostate cancer data
An estimate of F̂k(t) for the prostate cancer data gives

ti Ŝ(ti−1) F̂1(ti) F̂2(ti)
1 0 1.000 0.00000
2 1 0.994 0.00000
3 2 0.988 0.00602
4 3 0.984 0.00848
5 4 0.983 0.00973
6 5 0.978 0.01477

When comparing with KME, we see that F̂1(ti) and F̂2(ti) never cross

Years from prostate cancer diagnosis

0.0

0.2

0.4

0.6

0.8

1.0

1

0.8

0.6

0.4

0.2

0

Death from
prostate cancer

Death from
other causes

Pr
ob

ab
ili

ty
 o

f d
ea

th
 fr

om
 p

ro
st

at
e 

ca
nc

er

Probability of death from
 other causes

0 2 4 6 8 10
Years from prostate cancer diagnosis

Pr
ob

ab
ili

ty
 p

at
ie

nt
 h

as
 d

ie
d

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Death from
prostate cancer

Death from
other causes

Kaplan-Meier estimates

Stacked Plot

G. de Truchis ESA ST1 24/71



Competing Risks Parametric Models Lasso Survival Analysis with R

Regression methods for cause-specific hazards

Capturing the influence of covariates is challenging in the semi-parametric
model of Cox

⇒ How to define the hk(ti) on which the covariates should operate ?

In the spirit of the naive method for the KME, one can consider other
causes as censoring and vice versa

When fitting the Cox model for prostate cancer death we obtain

coef exp(coef) se(coef) z p
gradepoor 1.2199 3.3867 0.1004 12.154 2e-16
ageGroup70-74 -0.2860 0.7513 0.2595 -1.102 0.2704
ageGroup75-79 0.4027 1.4958 0.2257 1.784 0.0744
ageGroup80+ 0.9728 2.6454 0.2148 4.529 5.92e-06

Note 1 Patients having poorly differentiated disease have much worse prognosis
than do patients with moderately differentiated disease

Note 2 The hazard of dying from prostate cancer increases with increasing age
of diagnosis (the reference is the youngest age group, 65-69)
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Regression methods for cause-specific hazards

When fitting the Cox model for death from other causes we obtain

coef exp(coef) se(coef) z p
gradepoor 0.28104 1.32451 0.05875 4.784 1.72e-06
ageGroup70-74 0.09462 1.09924 0.12492 0.757 0.44879
ageGroup75-79 0.31330 1.36793 0.11709 2.676 0.00746
ageGroup80+ 0.79012 2.20367 0.11204 7.052 1.76e-12

Note 1 Patients with poorly differentiated cancer have a higher risk of death
from non-prostate-cancer related disease than do those with moderately
differentiated disease

Note 2 The log hazard ratio is much smaller than with prostate cancer death as
the outcome (0.28104)

⇒ This suggests that cancer grade wouldn’t have any effect on death from
non-prostate-cancer causes

Note 3 These results are highly suspect as they rely on the independence as-
sumption
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The Fine-Gray method for cause-specific hazards

A solution that can overcome this issue is to set

hk(t) = lim
δ→0

(P(t < Tk < t+ δ|E)

δ

)
i.e. to define the effects of covariates on the cause specific hazards where

E =
(

(Tk > t or (Tk′ ≤ t and k′ 6= k)
)

denotes the conditional event

The effects of the covariates enter the sub-distribution hazard as follows

⇒ the conditioning set specifies not only Tk > t but also allows other events

... in which case we must have Tk′ ≤ t

⇒ the risk set includes not only those currently alive and at risk for the
kth event type but also those who failed earlier of causes of type k′
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The Fine-Gray method and the model of Cox

The Fine-Gray framework meets the proportional hazard models by set-
ting

hk(t) = −δ log(1− Fk(t))

δt

A proportional Cox-type equation is then apply to sub-distribution ha-
zard

hk(t, x, β) = h0,k(t)exβ

⇒ the sub-distribution hazard for a subject with covariate x is proportional
to a baseline sub-distribution function h0,k(t)

To apply this approach to the prostate cancer dataset we need to reshape
the covariates as

(Intercept) gradepoor ageGroup70-74 ageGroup75-79 ageGroup80+
1 1 0 1 0 0
2 1 1 0 1 0
3 1 1 0 1 0
4 1 1 0 0 1
5 1 0 0 1 0
6 1 0 0 1 0
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Example : the Fine-Gray method
We first fit the Fine-Gray model with the prostate cancer as death cause

coef exp(coef) se(coef) z p
gradepoor 1.132 3.102 0.101 11.20 0.00000
ageGroup70-74 -0.272 0.762 0.253 -1.08 0.28000
ageGroup75-79 0.367 1.443 0.219 1.67 0.09400
ageGroup80+ 0.799 2.224 0.208 3.85 0.00012

Second, we estimate the model for death from other causes

coef exp(coef) se(coef) z p
gradepoor 0.126 1.13 0.0584 2.154 3.1e-02
ageGroup70-74 0.103 1.11 0.1252 0.824 4.1e-01
ageGroup75-79 0.273 1.31 0.1176 2.323 2.0e-02
ageGroup80+ 0.667 1.95 0.1128 5.917 3.3e-09

Note 1 Again we see that poorly differentiated patients have higher risk for
death from other causes

Note 2 The risk ratio being 0.126 the effect size is smaller than we obtained
with the naive method (0.281)

Note 3 The estimated effect on death from prostate cancer of having poorly
differentiated disease is similar for both methods
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Comparing the effects of covariates on different causes of death
One could be interested in comparing the effect of the grade and the age
on both causes of death

e.g. the risk of death increases with age but can differ from one cause to
another

To answer this question we have to transform the data

⇒ we create for each patient several rows, one for each cause of death

id from to trans Tstart Tstop time censored grade ageGroup
1 1 1 2 1 0 27 27 0 mode 70-74
2 1 1 3 2 0 27 27 0 mode 70-74
3 2 1 2 1 0 38 38 0 poor 75-79
4 2 1 3 2 0 38 38 1 poor 75-79
5 3 1 2 1 0 13 13 0 poor 75-79
6 3 1 3 2 0 13 13 0 poor 75-79

We can ignore the first columns until the one labeled “trans”

⇒ “trans” indicates the death cause : 1 (prostate cancer), 2 (otherwise)

The next important column is “time” as it display the survival times
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Example : comparing the effects of covariates on different causes of death

Here is a summary of the numbers of events of each type for the dataset

from/to event-free prostate other no event total entering
event-free 0 410 1345 4165 5920

Now we can stratify on cause of death using “trans” and get estimates
of

... the effect of “grade” on cause of death under the assumption that they
affect

1 both causes equally

coef exp(coef) se(coef) z p
gradepoor 0.515 1.673 0.050 10.372 2.0e-16
ageGroup70-74 0.027 1.027 0.112 0.238 0.81210
ageGroup75-79 0.332 1.394 0.104 3.198 0.00139
ageGroup80+ 0.833 2.301 0.099 8.396 2.0e-16

Note This first model is not really useful as we expect that cancer grade affects
prostate cancer death differently than it does death from other causes

G. de Truchis ESA ST1 31/71



Competing Risks Parametric Models Lasso Survival Analysis with R

Example : comparing the effects of covariates on different causes of death

2 or the “grade” status affects both causes differently

coef exp(coef) se(coef) z p
gradepoor 1.239 3.451 0.100 12.391 2.0e-16
factor(trans)2 NA NA 0.000 NA NA
ageGroup70-74 0.026 1.027 0.112 0.235 0.81431
ageGroup75-79 0.333 1.395 0.104 3.201 0.00137
ageGroup80+ 0.833 2.301 0.099 8.394 2.0e-16
gradepoor :
factor(trans)2 -0.963 0.382 0.116 -8.327 2.0e-16

The estimate for “grade” (1.239) is the effect of grade on prostate cancer
death, and is similar to what we got earlier (see S25)

However, the last row is an estimate for the difference between the effect
on prostate cancer death and death from other causes

⇒ -0.963, represents the additional effect of poor grade on risk of death
from other causes relative to its effect on prostate cancer death

Note 1 Specifically, the hazard of death from other causes is exp(−0.963) =
0.381(< 1) times the hazard of death from prostate cancer
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Example : comparing the effects of covariates on different causes of death

Regarding the age, here are the results we obtain

coef exp(coef) se(coef) z p
gradepoor 1.220 3.387 0.100 12.154 2.0e-16
ageGroup70-74 -0.286 0.751 0.260 -1.102 0.2704
ageGroup75-79 0.403 1.496 0.226 1.784 0.0744
ageGroup80+ 0.973 2.645 0.215 4.529 5.92e-06
trans2 NA NA 0.000 NA NA
gradepoor :trans2 -0.939 0.391 0.116 -8.072 6.66e-16
ageGroup70-74 :trans2 0.380 1.463 0.288 1.322 0.1863
ageGroup75-79 :trans2 -0.089 0.914 0.254 -0.351 0.7252
ageGroup80+ :trans2 -0.183 0.833 0.242 -0.754 0.4508

Note None of these differences are statistically significant

⇒ we conclude that there is no difference in the effect of age on the two
death causes, after adjusting for grade
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The parametric approach

In what follows, we develop further the MLE section of Chapter 1

Non-parametric (e.g. KME) and semi-parametric (e.g. Cox model) ap-
proaches are powerful

but they accommodate complex censoring and truncation less directly

⇒ In the parametric framework, the standard likelihood theory applies

but its validity depends on the appropriateness of the selected model

Here we essentially review

the exponential distribution

the Weibull distribution

the log-normal distribution

the log-logistic distribution
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The exponential distribution

In Ch. 1, we saw that the simple distribution to work with is the expo-
nential one

It has constant hazard function h(t) = λ (⇒ memory-less property)

⇒ The risk of facing the event of interest is the same at any point in time

i.e. neither declines nor increases in time

Recall The p.d.f and survival functions are

f(t;λ) = λeλt and S(t;λ) = e−λt

In general, it is not flexible enough but it can help in some specific
applications

⇒ power and size calculations

⇒ The Weibull distribution, of which the exponential distribution is a spe-
cial case, offers more flexibility
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The Weibull distribution

Recall The hazard and survival functions are

h(t) = αλtα−1 and S(t) = e−(λt)α

In view of introducing covariates in the parametric model, let define

µ = −logλ and σ = 1/α

a location and scale parameter for the distribution

⇒ One can hence rewrite the hazard and survival functions as

h(t) =
1

σ
e−µ/σt1/σ−1 and S(t) = e−e

−µ/σt1/σ

Note Obviously, when σ = 1, this reduces to the exponential distribution
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Diagnostic tool for the Weibull distribution

Consider now the g(u) = log(− log(u)) transformation function for S(t)

g(S(ti)) = α log(λ) + α log(ti) = −µ
σ

+
1

σ
log(ti)

This will allow for assessing how well a set of survival data follow a
Weibull distribution

1 First compute the KME Ŝ(ti) and define

yi = g(Ŝ(ti))

2 Then, plot yi versus log(ti) and fit the linear equation

y = b+m log t

where m = 1/σ and b = −µ/σ

⇒ If the plotted points fall along this fitted line, a Weibull distribution
should approximate well the distribution of the data
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Example : diagnostic tool for the Weibull distribution
Consider the some databases introduced in Chapter 1
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For the second data set, the Weibull distribution seems plausible

The fitted straight line parameters are : b = −2.0032 and m = 0.4385

⇒ Weibull scale and location parameter estimates are :

µ̂ = −b/m = 2.0032/0.4385 = 4.568 and σ̂ = 1/m = 1/0.4385 = 2.280
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MLE of Weibull parameters for a single group of survival data
The linear approach is limited but provides good entries for the MLE

The log-likelihood function is (see Ch. 1)

`(λ, α) =

n∑
i=1

(
δi log h(ti) + logS(ti)

)
Substituting the expressions for h(ti) and S(ti) we get

`(λ, α) = d logα+ dα log λ+ (α− 1)
n∑
i=1

δi log ti − λα
n∑
i=1

tαi

with d =
∑n
i=1 δi

The expression can of course be expressed in terms of µ and σ

Once implemented and applied to the smokers data, we obtain

µ̂MLE = 4.656329 and σ̂MLE = 2.041061

⇒ The results are not so far from the linear approach

Note In general, the standard errors are computed for µ̂MLE and log σ̂MLE

σ̂µ = 0.2170 and σ̂log σ = 0.0919
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Profile Weibull likelihood
Suppose that a survival random variable T , follows aWeibull distribution

T ∼Weib(α)

For a given value of α one can define a new random variable

T ∗ = Tα ∼ exp(λα)

In such a case (see Ch. 1), the analytic solution of the MLE is known

λ̂(α) = (d/V )1/α

with V =
∑
tαi and d the total number of deaths

Since the MLE λ̂(α) can easily be obtained, we can define as

`∗(α) = `(λ̂(α), α)

the Weibull profile likelihood

Maximizing `∗(α) yield the MLE of α and the MLE for λ(α) is

λ̂(α̂) = (d/V )1/α̂
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Example : the profile Weibull likelihood
When applied to the smokers data, we obtained

σ̂ = 1/α̂ = 2.041063

which is almost identical to σ̂MLE

Then, α̂ is used to obtain λ̂ and finally

µ̂ = 4.656329

which is indistinguishable from µ̂MLE

⇒ As the MLE only relies on 1 parameter we can plot the profile likelihood
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The Accelerated Failure Time model

When comparing patients of two groups (e.g. treatment and control)

eβ ,

i.e. the hazard ratio, was the quantity we used

It was assumed to be time-invariant (proportional hazards hypothesis)

⇒ If the treatment group is effective in increasing survival

β < 0,

i.e. the log-hazard ratio, such that the hazard ratio is less than 1

An alternative way of comparing two groups is called AFT

We assume here that the survival time of the first group is a multiple

θ = eγ

of what the survival time would have been had if the patient was in the
second group
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More intuition on AFT models

The AFT approach assumes that the effect of a covariate is to accelerate
or decelerate the life course of a disease by some constant

e.g. If θ = 2 everything in the life history of patient happens twice as fast

⇒ If the model concerns the development of a tumor, this implies that

1 all of the stages progress twice as fast as for the unexposed individual

2 the expected time until the failure event is 0.5 of the baseline time

⇒ Formally, the survival distributions for the AFT models are given by

S1 = S0(e−γt)

and the hazards are given by

h1(t) = e−γh0(e−γt)
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The AFT model with Weibull distribution

In the case of the Weibull distribution we have (see S37)

h1(t) = e−γh0(e−γt) = e−γ
1

σ
e−µ/σ(e−γt)1/σ−1

Rearranging, we have

h1(t) = e−γ/σ
1

σ
e−µ/σt1/σ−1 = e−γ/σh0(t) = eβh0(t)

that is, the AFT model is equivalent to the Cox model with β = −γ/σ

Note This equivalence only exists for the Weibull distribution
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Comparison of two groups with the parametric Weibull model
Consider again the smokers data and the comparison of the triple the-
rapy treatment group to the patch therapy group

When estimating the AFP model we obtain the following results

coeffs se z p
(Intercept) 5.286 0.3320 15.92 4.59e-57
grppatchOnly -1.251 0.4348 -2.88 4.00e-03
Log(scale) 0.689 0.0911 7.56 3.97e-14

⇒ γ̂ = −1.251 indicates that by a factor of

θ̂ = eγ̂ = 0.286

the patch therapy group has shorter times to relapse (life course to re-
lapse decelerates for the triple therapy group)

⇒ The scale parameter estimate is σ̂ = exp(0.689) = 1.992, leading to

β̂ = −γ̂/σ̂ = 0.629

for the log proportional hazard in the Cox model

Note In comparison, a Cox-model-based estimation of β gives β̂ = 0.6050

G. de Truchis ESA ST1 46/71



Competing Risks Parametric Models Lasso Survival Analysis with R

Interpreting the intercept in the AFT model

The Cox-model fit provides only 1 estimate, β̂

The AFT Weibull model provides 3 estimates, 2 of them being linked to
the baseline Weibull distribution

In particular, the intercept µ, cannot be estimated in the Cox approach

⇒ it would cancel out of the partial likelihood (as the baseline hazard does)

The AFT model allows for direct estimation of the baseline hazard as

µ̂ = 5.286 and σ̂ = 1.992

lead to α̂ = 1/1.992 = 0.502 and λ̂ = exp(−5.286) = 0.00506 and finally

Ŝ0(t) = e−(λ̂t)α̂
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Comparison of two groups based on survival functions
The survival function for the combination group is

S1(t) =
(
S0(t)

)e−γ/σ
and can be estimated by replacing all quantities by their estimates

We can compare Ŝ0(t) and Ŝ1(t) with those obtained from the Cox model

Notice that the parametric nature of the AFT produces smooth curves
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AFT-Weibull-based regression

An alternative way of looking at Weibull AFT model is to define

log(T ) = µ+ γx+ σε∗

i.e. to model the log-survival time as a location-scale model where

ε∗ = log ε

with ε, a unit exponential distribution and x a vector of covariates

Then, the survival function is given by

S(t) = P(T > t) = P(ε∗ >
log(t)− µ− γx

σ
)

= S0(te−γx)

This formulation is quite general as different choices for

ε ∼ L(θ)

can lead to other parametric survival models
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Example : AFT-Weibull-based regression
Consider again the smokers data but with the covariates (see Ch. 2)

Recall For the Cox model we obtained the results below

Recall In this model, β̂patch = 0.608 means that the hazard is higher for this
treatment group by a constant factor of exp(0.608) = 1.83654

coef exp(coef) se(coef) z p
grppatchOnly 0.60788 1.83654 0.21837 2.784 0.00537
age -0.03529 0.96533 0.01075 -3.282 0.00103
employmentother 0.70348 2.02077 0.26929 2.612 0.00899
employmentpt 0.65369 1.92262 0.32732 1.997 0.04581

For the AFT Weibull model we obtain

Note γ̂patch = −1.1902 means that patients with the patch only have shorter
times to relapse by a deceleration factor of exp(−1.1902) = 0.304

coeffs se z p
(Intercept) 2.4024 0.9653 2.490 1.28e-02
grppatchOnly -1.1902 0.4133 -2.880 3.98e-03
age 0.0697 0.0203 3.430 6.02e-04
employmentother -1.3890 0.5029 -2.760 5.74e-03
employmentpt -1.3143 0.6132 -2.140 3.21e-02
Log(scale) 0.6313 0.0900 7.020 2.26e-12
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Exercise : AFT-Weibull-based regression

Express the results of the AFT Weibull model in terms of proportional
hazards coefficients

Then, compare these coefficients we those obtained from the Cox model

For each regression coefficient γj , we have βj = −γj/σ

weib.coef.ph coxph.coef
grppatchOnly 0.63301278 0.60788405
age -0.03708786 -0.03528934
employmentother 0.73878031 0.70347664
employmentpt 0.69903157 0.65369019
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Exercise : AFT-Weibull-based regression
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Model selection and residual analysis
Many of the facilities for model selection and residual analysis of Ch. 2
remain valid

e.g. We plot below the deviance residuals from the previous Weibull model
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The residual distributions of both “grp” and “employ” are reasonably
comparable, indicating that these variables are modeled successfully

For “age”, the distribution may be consistent with a linear model, when
one considers the width of the 95% confidence intervals
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Jackknife residuals
Recall These residuals are computed as the difference in the value of γ̂ when

all data are used and when an individual is deleted from the data
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At most, changes are less than 10% of the coefficient value.
Still subject 46 and 68 should be checked to 

ensure that there is no errors 
in recording the data.
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AFT log-normal model

Various distribution can be considered in the AFT framework

For instance, when
ε ∼ N (0, 1)

ε∗ follows a log-normal distribution and we obtain the following results

coeffs se z p
(Intercept) 1.6579 1.0084 1.64 1.00e-01
grppatchOnly -1.2623 0.4523 -2.79 5.25e-03
age 0.0648 0.0203 3.20 1.39e-03
employmentother -1.1711 0.5316 -2.20 2.76e-02
employmentpt -0.9543 0.7198 -1.33 1.85e-01
Log(scale) 0.8754 0.0796 10.99 4.15e-28
Scale 2.4

All estimates are quite different from what we obtain with the Weibull
model albeit with similar signs
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AFT log-logistic model

If ε has a logistic distribution, with survival distribution given by

S(u) =
1

1 + eu

then, T has a log-logistic distribution and the results are now

coeffs se z p
(Intercept) 1.9150 0.9708 1.97 4.85e-02
grppatchOnly -1.3260 0.4588 -2.89 3.85e-03
age 0.0617 0.0196 3.15 1.66e-03
employmentother -1.2605 0.5392 -2.34 1.94e-02
employmentpt -1.0991 0.7050 -1.56 1.19e-01
Log(scale) 0.3565 0.0884 4.03 5.47e-05
Scale 1.43

Again, the estimates are different from what we obtain with the two
other models
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Large set of covariates

One of the purpose analysis is to understand how covariates contributes
to survival times

Sometimes we focus on specific covariates such as age, employment, etc.

By contrast, we can focus on the predictive ability of a set of covariates

⇒ In many cases, dozens or thousands or predictors may be available

In such a study, many of them are unrelated with survival

and those that are relevant may be strongly correlated amongst themselves

⇒ this multicollinearity is likely to complicate estimation and inference

⇒ Penalized methods such as the Lasso method are useful in such situation
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The Lasso method for survival models
This approach maximizes the partial likelihood function but now with

... the additional stipulation that the L1 norm of βj satisfies

p∑
j=1

|βj | ≤ t

for a constant t and with p the number of parameters

⇒ This may be shown to be equivalent to maximizing the penalized likeli-
hood

`p(β) = `(β)− λ
p∑
j=1

|βj |

for λ a pre-specified value of λ

Note 1 Adding this constraint on coefficients shrinks them toward zero (as com-
pared to non-penalized MLE)

Note 2 A too large λ will result in no covariates at all in the model

Note 3 A too small λ will result in a large number of covariates in the model
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Optimization issues with the Lasso method
A complication is that `p(β) may not be strictly concave (weakly concave
or flat)

⇒ this causes convergence problems

A crucial issue is hence to select λ

⇒ As in other econometric fields, cross validation procedures are helpful

1 we randomly divide the data set into 5 subsets of equal size

2 we select 1 subset to be the so-called “validation” set

3 we combine the remaining subsets in the so-called “training” set

4 we use the training set (≈ 80% of the data) to build the Lasso model

5 we use this model to predict the survival times in the validation set

6 we use a partial-likelihood-based measure of goodness-of-fit to this set

7 we repeat steps 1-6 with each of the remaining 4 subsets in turn playing
the role of the validation set

8 we derive an average partial-likelihood goodness-of-fit

9 we repeat the whole process for a wide range of values of λ

10 we select the value of λ that produces the optimum goodness-of-fit : λ∗
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Example : biomarkers data
Consider 227 patients with hepatocellular carcinoma (cancer du foie)

For each patients, a wide range of clinical and biomarker covariates is
collected

The dataset is composed of 48 clinical and biomarker measurements

Of the 227 patients, 117 have levels of a variety of chemokines markers

⇒ some represent the levels in the tumor itself

Note In medical study, building a predictive model is a complex process that
involves interplay between the known medical science and the optimal
predictive model

⇒ as we are economists we omit this dimension and consider 26 biomarkers

5 chemokines markers for 3 patients as an example

OS Death CD4T CD4N CD8T CD8N CD20T
1 83 0 2.600000 0.000000 190.6000 126.80 20.950000

76 20 1 14.450000 2.758621 2.1500 38.95 26.100000
131 35 1 2.821133 8.294828 8.0064 62.64 2.821133
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Example : Lasso method for selecting biomarkers

First, we select the 117 patients for which all biomarkers are available

Before implement the Lasso, we standardize the covariates

⇒ as the biomarker ranges vary widely

Then, we set λ = 10 and fit the Lasso model using 26 biomarkers

⇒ we see that 7 are retained and here are there coefficient estimates

CD8N CD68T CD4TR CD8TR CD68TR Ki67 CD34
0.104 0.258 -0.035 -0.096 0.111 0.285 -0.013

As λ = 10 has been specified arbitrarily, we can question the results

⇒ To investigate this we implement the cross validation procedure
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Example : Cross validation procedure for the Lasso method

The cross-validated partial log-likelihood can be plotted to visualize λ∗

⇒ we see that the global maximum is obtained for λ∗ = 8.24
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The results where obtained for λ ∈ [2, 12]

CD8N CD68T CD4NR CD4TR CD8TR CD68TR Ki67 CD34
0.133 0.269 -0.009 -0.076 -0.149 0.102 0.328 -0.044
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Example : Cross validation procedure for the Lasso method
One can also be interested in the impact of λ on the estimates

⇒ we can plot the selected markers estimated coefficients for λ ∈ [20, λ∗]
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Interpretation of Lasso-based estimates
All β̂j obtained with λ∗ are not interpretable in terms of hazard ratio

1 the lasso procedure has shrunken them

2 they are standardized to have standard deviation one

⇒ However, they can be use to predict the survival profile of patients

Note These patients are those who were in the sample Table of S60
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Survival Analysis with R
We will review the implementation of most of the examples, in R

All packages we use are listed below (databases are packed in “asaur”)

Note This package is attached to the book of Dirk F. Moore (Springer, 2016)
that I mainly use for this course

“asaur” package

“bshazard” package

“cmprsk” package

“coxme” package

“forestplot” package

“muhaz” package

“numDeriv” package

“Hmisc” package

“kmconfband,” package

“stats” package

“penalize” package

“survival” package
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Loading packages and visualizing data

One of the first dataset we introduce is the aid to smokers to quit

To visualize the data we need the “asaur” package

Then we display for the 6 first subjects some columns (2 to 8)

1 > l i b r a r y ( asaur )
2 > pharmacoSmoking [ 1 : 6 , 2 : 8 ]

In the same package we also have, e.g., the pancreatic cancer data

To quickly visualize the first observations of the database we use

1 > head ( panc r ea t i c )
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Manipulating and visualizing parametric survival distributions

In the second section we introduce some parametric distributions

For example, we can plot the Weibull survival function as follows

1 weibSurv <− func t i on ( t , shape , s c a l e ) pwe ibu l l ( t , shape=shape ,
2 s c a l e=sca l e , lower . t a i l=F)
3
4 curve ( weibSurv (x , shape =1.5 , s c a l e=1/ 0 . 03 ) , from=0, to=80,
5 ylim=c (0 , 1 ) , ylab=’ Surv iva l p r obab i l i t y ’ , xlab=’Time ’ )

We can also plot the Weibull hazard function as follows

1 weibHaz <− func t i on (x , shape , s c a l e ) dwe ibu l l (x , shape=shape ,
2 s c a l e=s c a l e ) / pwe ibu l l (x , shape=shape , s c a l e=sca l e ,
3 lower . t a i l=F)
4
5 curve (weibHaz (x , shape =1.5 , s c a l e=1/ 0 . 03 ) , from=0, to=80,
6 ylab=’ Hazard ’ , xlab=’Time ’ , c o l=’ ’ red ’ ’ )
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Manipulating and visualizing parametric survival distributions

If needed we can simulate data from Weibull distribution as

1 t t . weib <− rwe ibu l l (1000 , shape =1.5 , s c a l e=1/ 0 . 03 )

We can then check whether some empirical quantities converge to their
theoretical values

1 > mean( t t . weib )
2 [ 1 ] 31 .35497
3 > median ( t t . weib )
4 [ 1 ] 26 .84281
5
6 > gamma(1 + 1/ 1 . 5 ) / 0 .03
7 [ 1 ] 30 .09151
8 > ( log (2) ^(1/ 1 . 5 ) ) / 0 .03
9 [ 1 ] 26 .10733
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Computation of the Survival function from the Hazard function
As discussed in Ch. 1, one can use the hazard function to approximate
the survival function

Then, we can compute the empirical mean and median estimates

1 > l i b r a r y ( s u r v i v a l )
2 > tm <− c (0 ,1 / 365 ,7 / 365 ,28 / 365 ,1 :107)
3 > tm . d i f f <− d i f f (tm)
4 > survMale <− exp(−cumsum( hazMale∗tm . d i f f ) ∗ 365 .24)
5 > survFemale <− exp(−cumsum( hazFemale∗tm . d i f f ) ∗ 365 .24)
6 > sum( survMale∗tm . d i f f )
7 [ 1 ] 71 .99964
8 > sum( survFemale∗tm . d i f f )
9 [ 1 ] 76 .98838

At this stage, to get an estimate of the hazard function we rely on

1 > tm <− c (0 , b i r th
2 1/ 365 , f i r s t day o f l i f e
3 7/ 365 , seventh day o f l i f e
4 28/ 365 , f our th week o f l i f e
5 1 :106 ) subsequent years
6 > hazMale <− survexp . us [ , "male" , "2004" ]
7 > hazFemale <− survexp . us [ , " female " , "2004" ]
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The Kaplan-Meier estimator

The Kaplan-Meier estimator is the most used non-parametric estimator
of the survival function

In the course we first apply it to artificial data

1 > l i b r a r y ( s u r v i v a l )
2 > tt <− c (7 , 6 , 6 , 5 , 2 , 4 )
3 > cens <− c (0 , 1 , 0 , 0 , 1 , 1 )
4 > Surv ( tt , cens )
5 [ 1 ] 7+ 6 6+ 5+ 2 4

Then, the KME rely on the following function of the survival library

1 r e s u l t .km <− su r v f i t ( Surv ( tt , cens ) ~ 1 , conf . type=" log−log " )
2 > summary( r e s u l t .km)
3 > plo t ( r e s u l t .km)
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