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Non parametric models
As discussed in Chapter 1, Lehman-type alternatives are defined as

H1 : S1(t) =
(
S0(t)

)ψ
where ψ 6= 1 unless under

H0 : S1(t) =
(
S0(t)

)1
⇒ theses hypotheses can be formulated in terms of proportional hazards

h1(t) = ψh0(t)

The latter Eq. is the key to quantify the difference between two hazard
functions by means of the so-called proportional hazards model

We can extend the model to include covariate information x as follows

ψ = exβ

Other functional are possible albeit this is the most common in practice

Note The estimation is complicated in absence of parametric form for

h0(t),

and require the concept of partial likelihood developed by Cox
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Introduction to the partial likelihood

Let j denotes the j’th failure time (sorted from lowest to highest)

Let hi(tj) be the hazard function for subject i at failure time tj

⇒ The Cox proportional hazards (semi-parametric) model is

hi(tj) = ψih0(tj), ψi = ex
′
iβ

Note ψi characterize the hazard ratio hi(tj)/h0(tj)

In the simplest case where we compare two groups (dummy variable)

xi = {0, 1}

In the particular case of control vs treatment group we expect

β < 0

as the experimental group is less likely than control patients to fail

⇒ Hence, ψi < 1 (ψi = 1) is expected in the treatment (control) group
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The partial likelihood

Consider the first failure time t1 and let

R1

be the set of all subjects at risk for failure at this time (the risk set)

The probability that the subject i fails is its hazard divided
∑
hk(t1)

P1 =
hi(t1)∑

k∈R1
hk(t1)

=
ψih0(t1)∑

k∈R1
ψkh0(t1)

=
ψi∑

k∈R1
ψk

where h0(t1) is the hazard for a subject from the control group

At failure time t2 a new (smaller) risk set R2 is considered

⇒ We repeat this calculation to obtain p2 and so on up to tn

The partial likelihood is the product

L(ψ) = P1P2 . . .Pn
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Example of partial likelihood computation

Consider the following (artificial) data (see also Chapter 1)

Table – Survival data

Patient Survtime Censor Group
1 6 1 C(x1 = 0)
2 7 0 C(x2 = 0)
3 10 1 T (x3 = 1)
4 15 1 C(x4 = 0)
5 19 0 T (x5 = 1)
6 25 1 T (x6 = 1)

Consider the following (artificial) data (see also Chapter 1)

⇒ the first failure time is at t = 6 and for each patient we have either

ψ1 = ψ2 = ψ4 = 1 or ψ3 = ψ5 = ψ6 = ψ

i.e. we have 6 patients at risk (3 in the “C” group for which ψ = 1) and

P1 =
ψ1h0(t1)

3ψh0(t1) + 3h0(t1)
=

1

3× ψ + 3
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Example of partial likelihood computation
The second failure time is at t = 10 because at t = 7 there is no failure

Note At t = 7 we have a “C” patient that dropped out due to censoring

⇒ Of the 6 patients at risk at the first time, only 4 remains in R2 and

P2 =
ψ

3ψ + 1

where ψ appears in the numerator as the patient 3 was in the “T” group

The third failure time (t3) is at t = 15 with 3 patients in R3 and

P3 =
1

2ψ + 1

The last failure time (t4) is at t = 25 with 1 patient in R4 and

P4 =
ψ

ψ
= 1

as she is in the “T” group
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Example of partial likelihood computation
Now we are ready to compute the partial likelihood

L(ψ) = P1P2P3P4 =
ψ

(3ψ + 3)(3ψ + 1)(2ψ + 1)

In the case of a Cox model the log partial likelihood is

`(β) = β − log(3 exp(β) + 3)− log(3 exp(β) + 1)− log(2 exp(β) + 1)

as ψ is assumed to be of exponential form : ψ = eβ

⇒ The maximum partial likelihood estimate is

β̂

the value of β that maximizes this function

Note 1 As discussed above, it is nonparametric because the hazard function

h0(t)

does not enter the partial likelihood and hence requires no specification

Note 2 Unlike traditional likelihood, L(ψ) is not a probability but allows to
estimate β
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Example of partial likelihood computation
β̂ = −1.3261 is obtain by numerical optimization

We anticipate on the next slide and report some test statistics

Note 1 The null hypothesis (β = 0) is reported for comparison

Note 2 The slope of the tangent is given by the LM statistic S(β) = `′(β)

Note 3 I(β) = −S′(β) = −`′′(β) denotes the fisher information
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Partial likelihood hypothesis tests

As in standard likelihood one can derive 3 types of test for H0 : β = 0

The Wald test

The LM test

The LR test

The limit theory of theses tests can differ and is often more difficult to
derive

In view of presenting them, define

S(β) = `′(β), the score function

I(β) = −S′(β) = −`′′(β), the fisher information

I(β̂), the observed information
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The Wald test

The Wald test is of form

ZW =
β̂

σβ̂

where σ2
β̂
is obtained numerically from the negative inverse of the Hessian

I(β̂)−1 = −`′′(β̂)−1

Note As the second derivative reflects the curvature of the likelihood, a sharper
curve (i.e. more information) leads to lower variance

Under the null hypothesis H0 : β = 0, this normalized statistic if Gaus-
sian

⇒ We reject H0 if |ZW | > zα/2 or Z2
W > χ2

α,1

The asymptotic normality can be used to construct confidence intervals

β̂ ± zα/2 × σβ̂
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The Lagrange Multiplier (score) test

The LM test is based on the score of the partial log-likelihood

⇒ The variance of this test is hence directly I(β)

The test is computed under the null hypothesis as follows

ZLM =
S(β = 0)√
I(β = 0)

⇒ We reject H0 : β = 0 if |ZLM | > zα/2 or Z2
W > χ2

α,1

Note 1 This test can be computed without finding the MPLE

Note 2 This test is equivalent to the log-rank test statistic U0 discussed in Chap-
ter 1

⇒ With the same artificial data of Table 1, U0 was equal to 0.917 ≡ −S(0)
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The Likelihood Ratio test

The LR test is based on the asymptotic behavior of

ZLR = 2
(
`(β = β̂)− `(β = 0)

)
∼ χ2

1

ZLR is invariant to monotonic transformations of β (unlike the LM and
Wald tests)

⇒ Whether the test is computed in terms of β or ψ = exp(β) has no effect
on the p-value

⇒ We reject H0 if Z2
LR > χ2

α,1
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Exercise : computation of partial likelihood hypothesis tests
Consider the MPLE results plotted on S10

⇒ All elements needed to compute ZW , ZLM , ZLR are there

For ZLM we have

Z2
LM =

( S(β = 0)√
I(β = 0)

)2
=

(−0.917)2

0.660
= 1.274

Any software can compute the p-value which is p = 0.2591

For ZW we have

Z2
W =

( β̂
σβ̂

)2
=
(−1.326129√

1/0.639

)2
= 1.124

Any software can compute the p-value which is p = 0.2891

Finally, for ZLR we have

ZLR = 2
(
`(β = β̂)− `(β = 0)

)
= 2(−3.672 + 4.277) = 1.209

Any software can compute the p-value which is p = 0.2715
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Pseudo-R2 statistic

At this stage one can also use

`(β = β̂) and `(β = 0)

to compute an adaptation of the R2 statistic to survival analysis

The R2
CS statistic (Cox and Snell) is defined as follows

R2
CS = 1−

(
`(0)

`(β)

)2/n

⇒ R2
CS reflects the improvement in the fit of the model with the covariate

compared to β = 0

Note R2
CS has a major drawback as it is capped to 0.75 but alternatives are

not consensual
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The partial likelihood with multiple covariates

To achieve greater generality we now consider the case where

xi = (xi,1, · · · , xi,p)′

is a vector of p dummy covariates for each individual i

To save place we use ψi in place of ψi(xi, β), where β is now a vector of
p coefficients

In the particular case of the Cox model, the hazard ratio is exp(x′iβ)

As in S6, before the first failure time, all of the subjects are said to be
at risk

⇒ Among them one will fail at time t1 in the risk set R1

More generally, at time tj , the risk set is Rj leading to

L(β) =
D∏
j=1

hi(tj)∑
k∈Rj hk(tj)

=
D∏
j=1

ψjh0(tj)∑
k∈Rj ψkh0(tj)

=
D∏
j=1

ψj∑
k∈Rj ψk

for the Cox proportional hazard model, with D the number of failures
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The log partial likelihood with multiple covariates
The log partial likelihood is simply given by

`(β) =

D∑
j=1

(
log(ψj−log

( ∑
k∈Rj

ψk

))
=

D∑
j=1

x′jβ−
D∑
j=1

log

( ∑
k∈Rj

exp(x′kβ)

)
The score function has p components, one for each of the p covariates

⇒ For the l’th component the score is given by

Sl(β) =
∂`(β)

∂βl
=

D∑
j=1

(
xjl −

∑
k∈Rj xjk exp(x′jβ)∑
k∈Rj exp(x′jβ)

)

Note We may view the score function as the sum of “residuals”

⇒ The observed value xjl of the covariate l minus an “expected” value

Recall When xj is a single binary covariate, S(β = 0) is the log-rank statistic

Note The Fisher information matrix is now a matrix

I(β;x) = −∂
2`(β)

∂β∂β′
= −S(β)

∂β
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Wald, LR and LM tests with multiple covariates

In presence of multiple covariates the usual tests are as follows

The Wald test under H0 : β = 0 is

Z2
W = β̂′I(β̂;x)β̂

The LM test :

Z2
LR = S′(β = 0;x)I(β = 0;x)−1S(β = 0;x)

The LR test :
Z2
LM = 2

(
`(β = β̂)− `(β = 0)

)
Under H0, all 3 statistics are asymptotically χ2

k−1
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Exercise with multiple covariates

Consider the exponential survival data simulated in Chapter 1

⇒ A confounding binary genotype factor was introduced :

g = 1 (wild type) or g = 2 (mutant type)

When estimating the Cox model to compare trivially the “T” and “C”
group we obtain

β̂ = 0.464(σβ̂ = 0.117) with LR = 15.5(p = 0.00000)

⇒ How to interpret those results ?

Note 1 It suggests higher hazards for the “T” group (β̂ > 0) with a significant
difference with the “C” group

Note 2 Also, exp(β̂) = 1.59 indicates that the “T” group is associated with a
59% additional risk of death over the “C” group
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Exercise with multiple covariates

As for the log-rank test, it is possible to stratified the data
When estimating the stratified Cox model to compare the “T” and “C”
group we obtain

β̂ = −0.453(σβ̂ = 0.164) with LR = 7.66(p = 0.00566)

⇒ How to interpret those results ?

Note 1 It suggests higher hazards for the “C” (β̂ < 0) group with a significant
difference with the “T” group

Note 2 Also, exp(β̂) = 0.636 indicates that the “T” group is associated with

1− 0.636 = 36%

less risk of death over the “C” group

G. de Truchis ESA ST1 21/76
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Exercise with multiple covariates

Finally, we introduce the genotype as a covariate

When estimating the Cox model with the two covariates we obtain

β̂grp = −0.453(σβ̂grp = 0.163)

and
β̂gen = −1.568(σβ̂gen = 0.183)

with
LR = 93.4(p = 0.00000)

⇒ How to interpret those results ?

Note 1 As for the stratified Cox model, the correct treatment effect is identified

Note 2 Indeed, we see higher hazards for the “C” (β̂ < 0) group with a significant
difference with the “T” group
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Tied survival times
Tied survival time are failure that occurs simultaneously

Note 1 In continuous time data this is likely to arise due to rounding

Note 2 In discrete time data this can genuinely appear

Note 3 If censoring times are tied with failure times, the convention is to consi-
der the failures to precede the censoring

Example Consider a continuous time process and the following reports

Table – Survival data with tied survival times

Patient Survtime Censor Group
1 1 1 T
2 1 1 T
3 2 1 C
4 3 0 T
5 4 1 T
6 4 1 C
7 5 0 C
8 6 1 C
9 6 0 C

10 7 0 C
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Tied survival times and partial likelihood
As the underlying times are actually continuous we use the Cox model

h(t;x) = exβh0(t)

where x = 1 or 0 for the treatment or control group, respectively

As in the regular case, the likelihood is the product of probabilities

P1 At t = 1, all 10 patients are at risk and two of them fail, both from the
“T” group, and either of those two patients may have failed first

⇒ We account for those two possibilities when constructing P1

P1 =
exp(β)

4 exp(β) + 6

exp(β)

3 exp(β) + 6
+

exp(β)

4 exp(β) + 6

exp(β)

3 exp(β) + 6
= A×B+C×D

The first (second) product assumes that patient 1 (2) fails first

Note 1 In B, 4 becomes 3 as patient 1 has failed

Note 2 In D, 4 becomes 3 as patient 2 has failed

Note 2 As both patients are in the “T” group the A×B and C×D are symmetric
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Exercise : tied survival times and partial likelihood
We want to derived the remaining terms of the partial likelihood

P2 At t = 2, 8 patients are at risk (2 and 6 in the “T” and “C” group resp.)

⇒ As there is only 1 failure in the “C” group we have

P2 =
1

2 exp(β) + 6

P3 At t = 4, 6 patients are at risk (as at t = 3 patient 4 is censored)

⇒ We have two failures, one in each group, and

P3 =
1

exp(β) + 5
× exp(β)

exp(β) + 4
+

exp(β)

exp(β) + 5
× 1

5

to account for all scenarios of failure (patient 5 first or patient 6 first)

Only 1 constant factor remains as patients 7 and 10 are censored and

P4 =
1

3

as at t = 6, by convention, the censored patient 9 failed after patient 8

⇒ One may express the partial likelihood as L(β) = P1P2P3 or P1P2P3P4
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Discrete tied survival times

Consider now that times are in fact discrete in the table below

⇒ In such a case, the Cox model is transformed to a discrete logistic model

h(t;x)

1− h(t;x)
= exβ

h0(t)

1− h0(t)

Table – Survival data with tied survival times

Patient Survtime Censor Group
1 1 1 T
2 1 1 T
3 2 1 C
4 3 0 T
5 4 1 T
6 4 1 C
7 5 0 C
8 6 1 C
9 6 0 C

10 7 0 C
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Discrete tied survival times and partial likelihood
At t = 1, as 2 patients fail among the 10 patients at risk we now have(

10

2

)
=

10!

2!(n− k)!
= 45

pairs that could represent the two failures
All factors are summarized in the matrix below and lead to

P1 =
e2β

6e2β + 24eβ + 15

Table – Pairs that could represent two failures among 10 patients

eβ eβ eβ eβ 1 1 1 1 1 1
eβ •
eβ e2β •
eβ e2β e2β •
eβ e2β e2β e2β •
1 eβ eβ eβ eβ •
1 eβ eβ eβ eβ 1 •
1 eβ eβ eβ eβ 1 1 •
1 eβ eβ eβ eβ 1 1 1 •
1 eβ eβ eβ eβ 1 1 1 1 •
1 eβ eβ eβ eβ 1 1 1 1 1 •
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Exercise : discrete tied survival times and partial likelihood
We want to compute the remaining factors

At t = 2, there is only 1 failure in the “C” group ⇒ P2 = 1/(2eβ + 6)

At t = 4, there are 2 failures and 6 patients are at risk such that we have(
6

2

)
= 15

possible pairs, of which 1 is from the “T” group and 1 from the “C” group

P3 =
exp(β)× 1

5 exp(β) + 10

⇒ Again, one may simply express the partial likelihood as L(β) = P1P2P3

Table – Pairs that could represent two failures among 6 patients

eβ 1 1 1 1 1
eβ •
1 eβ •
1 eβ 1 •
1 eβ 1 1 •
1 eβ 1 1 1 •
1 eβ 1 1 1 1 •
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6

2

)
= 15

possible pairs, of which 1 is from the “T” group and 1 from the “C” group

P3 =
exp(β)× 1

5 exp(β) + 10

⇒ Again, one may simply express the partial likelihood as L(β) = P1P2P3

Table – Pairs that could represent two failures among 6 patients

eβ 1 1 1 1 1
eβ •
1 eβ •
1 eβ 1 •
1 eβ 1 1 •
1 eβ 1 1 1 •
1 eβ 1 1 1 1 •
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Approximation in presence of tied survival times
With many ties, the discrete and continuous methods are cumbersome

⇒ Two approximation methods can be implemented

Breslow It adjusts the denominator to simply reflect all patients at risk

⇒ In the previous example, P1 and P3 becomes

P1 =
2e2β

(6eβ + 4)2
and P3 =

2(eβ × 1)

(eβ + 5)2

Efron It is better as it reflects all patients at risk before and after the failure

⇒ In the previous example, P1 and P3 becomes

P1 =
eβ

(6eβ + 4)

eβ

(0.5eβ + 0.5eβ + 4eβ + 4)

and

P3 =
eβ

(eβ + 5)

1

(0.5 + 0.5eβ + 3)

with the weight 0.5 reflecting that each of the 2 patients has a chance
of 1/2 of being in the second denominator since 1 of them would have
been the first failure
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Left truncated data

Consider the data of Table 1 with left truncation information

e.g. A patient can be diagnosed before entering a trial (i.e. backwards recur-
rence times is 6= 0)

Note 1 The standard way to compare the 2 groups is to ignore “back times”

⇒ Nothing wrong (i.e. no bias) in that way to proceed but starting from
diagnosis could be of interest

Note 2 To account for backwards recurrence times, one can re-configure the data
so that they start at 0

Table – Survival left truncated data

Patient Survtime Censor Group Back time
1 6 1 C -3
2 7 0 C -11
3 10 1 T -3
4 15 1 C -7
5 19 0 T -10
6 25 1 T -5
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Left truncation and re-configured data

Time from entry to trial

−10 0 10 20 30

Patient 1 (C)

Patient 2 (C)

Patient 3 (T)

Patient 4 (C)

Patient 5 (T)

Patient 6 (T)

Time from diagnosis

0 10 20 30 40

Patient 1 (C)

Patient 2 (C)

Patient 3 (T)

Patient 4 (C)

Patient 5 (T)

Patient 6 (T)

Re-aligned data with left truncationRaw left truncated data

In that case, estimation results are similar for the two data sets
⇒ No statistical difference between “C” and “T” (but n is too small)

Raw data :
β̂ = −1.33(σ

β̂
= 1.25) with LR = 1.21(p = 0.271)

Re-configured data :

β̂ = −1.07(σ
β̂
= 1.24) with LR = 0.81(p = 0.368)
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Plan

1 Partial Likelihood Estimation
2 Covariates

3 Model Diagnostics
4 Time Dependent Covariates
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Categorical and Continuous Covariates

All covariates considered until now are dummy variables

Note An exception is the confounder “genotype” that is categorical

g ∈ {1, 2}

but can easily be transformed to {0, 1} as it is dichotomous

More generally one can encode categorical variables with dummies

e.g. If we have a 3-level variable we need : “Ba (x1), Ma (x2), no-diploma
(x3)”

⇒ If “Ba” is the reference, then x1 = 1, x2 = x3 = 0

⇒ An individual without any diploma implies x1 = x2 = 0 and x3 = 1

Continuous variables are also frequent and have to be considered

e.g. income, age, etc.
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The Cox model with categorical and continuous covariates

For a set of k covariates (categorical or/and continuous) the model is

log(ψi) = x1iβ1 + x2iβ2 + . . .+ xkiβk = x′iβ

For the covariate xj , βj is the log hazard ratio for the effect of that
parameter on survival, adjusting for the other covariates

For continuous covariates, it represents the effect of a unit change in the
covariate

For dummy covariates, it represents the effect of the corresponding level
as compared to the reference

Note 1 As for logistic regression, a variable can enter non-linearly the model

Note 2 Interaction terms can be introduced

Note 3 At this stage, all covariate are assumed to be fixed in time

Note 4 This model differs from the logistic model as there is no intercept term :
if there were one, it would cancel out just as h0(t) canceled out
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Example of Cox model estimation with categorical and continuous covariates

Consider artificial survival data with two covariates : age and diploma

⇒ individual at risk can loose their job

Ages are between 40 and 80 at random

We set the diploma variable so that there are 20 of each 3 categories

We assume an exponential distribution with parameter as follows

We set the log-rate parameter to have baseline -4.5

The diploma variable take the values 1 and 2 for “Ba” and “No diploma”
when compared to “Ma”

We let “age” decrease the log rate by 0.05 per year

We do not introduce censoring in the data set and n = 60
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Example of Cox model estimation with categorical and continuous covariates
When applying the Cox model we obtain the following estimates

β̂Ba = 1.151, (σβ̂Ba = 0.368), z = 3.113 (p = 0.00173)

and

β̂No = 2.499, (σβ̂No = 0.429), z = 5.820 (p = 0.00000)

and

β̂age = −0.078, (σβ̂age = 0.014), z = 5.385 (p = 0.00000)

⇒ Estimates of log hazard ratios are close to the true values (1, 2 and 0.05)

When looking at exponential coefficient, exp(β), we conclude that

Individuals with Bachelor degree have exp(βBa) = 3.16 times the risk of
being fired as do subject with Ma degree

Individuals without diploma have exp(βNo) = 12.17 times the risk of
being fired as do subject with Ma degree

Note The z statistics is a generalizations of the 2-group comparison Wald tests
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Nested models

When comparing models we have to determine whether that are nested

Here is an illustration of nested models in terms of covariates

Model A : “Age”

Model B : “Employment”

Model C : “Age” + “Employment”

⇒ Model A is nested in Model C as well as model B

To test for the presence of nested models we can compute LR tests

Note Models A and B are not nested and requires specific testing procedures
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Example of nested models
Consider the data on therapies to aid smokers to quit (Chapter 1)
In this study, “Age” and “Employment” have 4 and 3 levels

Age : “21-34”, “35-49”, “50-64” and “65+”

Employment : “ft” (full-time), “other” and “pt” (part-time)

⇒ By default we choose the first level as the reference level

Estimation of the Cox model on model A, B and C
coef exp(coef) se(coef) z p

LR : 12.2 (p = 0.006) Model A
age35-49 0.0293 1.030 0.309 0.0947 0.920
age50-64 -0.7914 0.453 0.336 -2.3551 0.019
age65+ -0.3173 0.728 0.444 -0.7153 0.470

LR : 2.06 (p = 0.357) Model B
other 0.198 1.22 0.237 0.836 0.40
pt 0.450 1.57 0.323 1.394 0.16

LR : 16.8 (p = 0.005) Model C
age35-49 -0.130 0.878 0.321 -0.404 0.6900
age50-64 -1.024 0.359 0.359 -2.856 0.0043
age65+ -0.782 0.457 0.505 -1.551 0.1200
other 0.526 1.692 0.275 1.913 0.0560
pt 0.500 1.649 0.332 1.508 0.1300
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Example of nested models

From the Wald test (z) for Model C we see that some levels are significant

e.g. The “50-64” age group has a lower hazard when compared to the reference
“21-34” with β̂ = −1.024

e.g. The “other” employment group has higher hazard when compared to the
reference “ft” with β̂ = 0.526

However, we cannot easily see whether “Age” or “Employment” should
be part of the model

⇒ We assess this issue using (partial) likelihood ratio tests based on
`(β̂) Model A : -380.043, Model B : -385.123, Model C : -377.759

LR : A|C 2(`(β̂C)− `(β̂A) = 4.567 compare to χ2
ν=5−3 which leads to p = 0.1019

⇒ “Age” is not significant when “Employment” is included in the model

LR : B|C 2(`(β̂C)− `(β̂B) = 14.727 compare to χ2
ν=5−2 which leads to p = 0.0020

⇒ “Employment” is significant when “Age” is included in the model
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Example of nested models

These results raise the question of including “Age” in model A

⇒ To test this hypothesis we consider the null model N

`(β̂N ) = −386.153

free of any covariate

LR : N|A 2(`(β̂A)− `(β̂N ) = 12.220 compare to χ2
ν=3−0 which leads to p = 0.0066

⇒ “Age” is significant when included in the model N
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When a large number of potential factors can enter the model
⇒ The forward stepwise model selection

Step 1 fit univariate models (1 for each covariate) and retain the one with the
smallest p-value

Step 2 apply Step 1 again but with the selected covariate included

Step 3 continue until no additional covariate has a p-value less than a pre-defined
threshold (e.g. 5%)

⇒ The backward stepwise model selection

Step 1 fit a model with all covariates

Step 2 remove one by one the covariates, each time removing the one with the
largest p-value

Step 3 continue the procedure until the p-values are all below a pre-defined thre-
shold (e.g. 5%)

The stepwise approach can be automatized but has 2 main drawbacks

Due to multiple comparisons, the p-values produced from one stage to the
next are misleading

Note Corrections like the one of Bonferroni exist

Also, p-values are only valid for nested models and hence this approach
is not recommended for non-nested models
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Non-nested models and criterion based selection
Information criteria apply to partial log likelihood

We discuss some examples based on the so-called AIC

AIC = −2`(β̂) + 2k

where k is the number of parameters in the model

One can view the AIC as balancing two quantities

The goodness of fit −2`(β̂) (smaller for models that fit the data well)

The complexity measure that enter the criterion as a penalty term 2k

Applying the AIC to the previous model selection issue we obtain

`(β̂) Model A : 766.086, Model B : 774.246, Model C : 765.519

⇒ The model C is the one that minimizes the AIC and offers the best fit

Note The BIC (or SIC) also applies to survival analysis

BIC = −2`(β̂) + k log(n)

and as it penalizes by a factor of log(n), it will tend to select models
with fewer parameters as compared to AIC
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Information criterion and the stepwise approach

We can implement the backward stepwise procedure with the AIC

Let consider additional covariates for the smokers therapies

“yearsSmoking”+“levelSmoking”+“priorAttempts”+“longestNoSmoke”

+ “gender”+ “morphotype”+ “age”+ “employment”

Note 1 (+) & (-) show the effect on AIC of adding or removing the covariate

Note 2 Covariates are listed in order from the one which, when removed, yields
the greatest AIC reduction to the smallest reduction
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Information criterion and the stepwise approach
When starting the procedure, all covariates are there (AIC = 770.2)

⇒ “(-) morpho” is at the top of the list and will be removed first

Intermediate results are unreported but proceed in the same way

At final step (AIC = 758.42) and all per-covariate are above 758.42

⇒ The sign (-) remains for employment & age and reveal that removing
them would be detrimental

⇒ At the opposite, variables for which a “(+)” appears indicate that adding
would deteriorate the fit of the model

Sign Covariate Level AIC Sign Covariate Level AIC

Step 1 770.2 Final Step 758.42

- morpho 3 766.98 <none> 758.42
- years 1 768.20 + longest 1 759.10
- gender 1 768.20 - employment 2 760.31
- prior 1 768.24 + years 1 760.34
- level 1 768.47 + gender 1 760.39
- longest 1 769.04 + prior 1 760.40

none 770.20 + level 1 760.41
- employment 2 772.45 + morpho 3 761.53
- age 3 774.11 - age 3 767.24
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Forest plot
Final model coef exp(coef) se(coef) z p

grppatchOnly 0.656 1.928 0.220 2.986 0.0028
employmentother 0.623 1.865 0.276 2.254 0.0240
employmentpt 0.521 1.684 0.332 1.570 0.1200
ageGroup435-49 -0.112 0.894 0.322 -0.348 0.7300
ageGroup450-64 -1.023 0.359 0.360 -2.845 0.0044
ageGroup465+ -0.707 0.493 0.502 -1.410 0.1600

The Forest plot offers an alternative representation :
e.g. 1 triple therapy is better than the patch alone
e.g. 2 subjects with full-time work have a better success rate than others
e.g. 3 the upper age groups have better results than younger patients

Treatment Group
   triple therapy
   patch

Employment
   full time
   other
   part time

Age group
   21−34
   35−49
   50−64
   65+

−1.5 −1 −0.5 0 0.5 1 1.5

Log hazard ratio

95% confidence intervals, each
with respect to a reference level
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Smooth estimates of continuous covariates

For continuous covariates, the relationship with the log-hazard can be

... linear, quadratic, or of any other nonlinear nature

e.g. in the previous study, the age has been split into 4 groups and

... the forest plot reveals different effects and hence nonlinearities

⇒ An alternative way to capture this nonlinearity is via pieces of

... polynomial functions (Splines) that are stitched to form a smooth curve

The points where these pieces are joined are called “knots”

... and a crucial issue is to determined their locations

⇒ The Splines enter the penalized partial likelihood via a penalty term

P(β, ω) = `(β, ω)− g(ω, θ)

with ω the set of constrained parameters and θ some tuning parameters
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Penalized Cox model and Spline fit
Splines with many knots increase the complexity of the likelihood

... but also improve the goodness of fit

⇒ P(β, ω), when maximized, balances goodness of fit against complexity
e.g. When plotting the penalized spline fit from the Cox model we observe

a decreasing relationship with age with a slight upward turn after age 65

but for most of the part, the effect seems not significant

Figure – Splines
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Penalized Cox model and Spline fit

The penalized Cox model estimation results are reported below

coef exp(coef) se(coef) χ2 ν p
grppatchOnly 0.651 0.221 0.219 8.67 1.00 0.0032
employmentother 0.633 0.277 0.275 5.21 1.00 0.0220
employmentpt 0.570 0.340 0.333 2.81 1.00 0.0940
pspline(age,linear) -0.034 0.010 0.010 11.07 1.00 0.0009
pspline(age,nonlinear) 4.20 3.08 0.2500

For the 3 first factors the coefficient are stable as compared to S45

The Splines are decomposed in two parts : linear and nonlinear

the linear one is highly significant

the nonlinear one is not significant (probably because the data set is
sparse)
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Plan

1 Partial Likelihood Estimation
2 Covariates

3 Model Diagnostics
4 Time Dependent Covariates
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Martingale residuals

Assessing goodness of fit using residuals also applies to survival analysis

Residual analysis essentially relies on graphical analysis

⇒ Typically, residuals are plotted versus some quantity

To construct the residuals sequence, we compare the censoring indicator

δi

to the expected value of the indicator under the Cox model

⇒ In absence of time dependent covariates and for right-censored data

m̂i = δi − Ĥ0(ti) exp(x′iβ̂)

These Martingale residuals range in value from −∞ to 1 and E(m̂i) = 0

However these residuals can be asymmetric and hence cannot be used
as a measure of goodness of fit
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Deviance residuals

An alternative is the so-called deviance residual defined as

d̂i = sign(m̂i)
(
− 2
(
m̂i + δi log(δi − m̂i)

))1/2
di residuals are symmetrically distributed with E(d̂i)

Note 1 The sum of squares of d̂i is the value of the partial likelihood ratio test

While their properties might seem preferable to those of m̂i, only m̂i

have the property of showing us the functional form of a covariate

⇒ In practice, the martingale residuals are more useful

Note 2 Other types of residuals will be discussed later

G. de Truchis ESA ST1 51/76



MPLE Covariates Diagnostics Time dependence

Example : Martingale versus deviance residuals

Consider again the Cox model for smoking therapies data

As discussed earlier, the null model (N) is the one without covariates

⇒ We may plot m̂i against continuous covariates to get a preliminary as-
sessment of which of them should be in the model

Note 1 We also include the log of covariates and use a LOESS curve to identify
patterns

Note 2 LOESS (LOcally Estimated Scatterplot Smoothing) is a nonparametric
regression based on the nearest neighbor method

Note 3 The 95% confidence intervals for the LOESS curve are also reported
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Example : Martingale versus deviance residuals
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For the raw covariates we observe strong non-linearities

e.g. For “age”, we find something similar to Figure 1 (Spline fit)

⇒ This null model residual based approach is an alternative way to identify
nonlinearity

For the log-transformed covariates we observe less non-linearities

e.g. For “LongestNoSmoke”, the log seems sufficient to remove the non-linearity
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Example : Martingale versus deviance residuals
We apply the stepwise approach with the log of “LongestNoSmoke”

⇒ The results are unchanged (only “age” and “employment” are retained)

We compute the final model residuals and obtain the following plots

⇒ Some non-linearity remains for “age” albeit less than for the null model

The residual distributions of both “group” and “employ” are reasonably
comparable, indicating that these variables are modeled successfully
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Jackknife residuals
Some subject may have a huge influence on the parameter estimates

⇒ As this may indicate a problem with the data

... we need tools that can identify those individuals

The Jackknife residuals are computed as the difference in the value of

β̂

when all data are used and when an individual is deleted from the data

⇒ Then, we can plot the change in coefficients for each subject
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At most, changes are less than 10% of the coefficient value.
Still subject 46 and 68 should be checked to 

ensure that there is no errors 
in recording the data.
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Log cumulative hazard plots

When comparing survival times between two groups

... the proportional hazards assumption is of importance

S1(t) =
(
S0(t)

)exp(β)
with exp(β) the proportional hazards constant

⇒ This is the foundation of Lehman alternatives and the Cox model

The log-transformation gives

log(S1(t)) = exp(β) log(S0(t))

with all logs being negative as survival functions are less than 1

g(u) = log(− log(u)) changes the range of u from (0, 1) to (−∞,∞)

⇒ The so-called log cumulative hazard plot, that is a plot of

g(S1(t)) and g(S0(t)) versus log(t)

should lead to parallel curves separated by β if the assumption is correct
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Example of log cumulative hazard plots
Consider the pancreatic cancer data (see in Chapter 1)

Recall We performed the Prentice-modification test and found a stronger group
difference than did the log-rank test

⇒ As this test places higher weight on earlier survival times it suggests
non-proportional hazards

This is confirmed by the log cumulative hazard plot

Note However, statistical inference is unavailable and this approach is limited
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Schoenfeld residuals
Schoenfeld residuals can assess the proportional hazards assumption
more rigorously

To compute them, let start from the partial log-likelihood

`(β) =
∑
i∈D

(
log(ψi)−log

( ∑
k∈Ri

ψk
))

=
∑
i∈D

(
xiβ−log

( ∑
k∈Ri

exp(xkβ)
))

and its derivative (the score function)

`(β)′ =
∑
i∈D

(
xi−

∑
k∈Ri

xkp(β, xk)
)
, p(β, xk) = exp(xkβ)

( ∑
j∈Rk

exp(xjβ)
)−1

where the second term can be viewed as the weighted expected value
E(Xi) = x̄(ti)

The Schoenfeld residuals are the individual terms of the score

r̂i = xi −
∑
k∈Ri

xkp(β, xk) = xi − x̄(ti)

A plot of r̂i versus xi will yield a pattern of points

⇒ They are centered on 0 if the proportional hazards assumption is correct
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Example of Schoenfeld residuals
Consider the artificial data of S1 (β̂ = −1.32) and compute the weights

ti n0i n1i p(β, xk = 0) p(β, xk = 1) Grp

6 3 3 1/(3 + 3eβ̂) eβ̂/(3 + 3eβ̂) C
10 1 3 1/(1 + 3eβ̂) eβ̂/(1 + 3eβ̂) T
15 1 2 1/(1 + 2eβ̂) eβ̂/(1 + 2eβ̂) C
25 0 1 1/eβ̂ eβ̂/eβ̂ = 1 T

It remains to compute E(Xi) and r̂i which for ti = 6 gives

E(Xi) = 3×0×1/(3+3eβ̂)+3×1×eβ̂/(3+3eβ̂) = 0.2098⇒ r̂i = 0−0.2098

For ti = 10 : E(Xi) = 1×0×1/(1 + 3eβ̂) + 3×1× eβ̂/(1 + 3eβ̂) = 0.4434

⇒ r̂i = 1− 0.4434 = 0.5566

For ti = 15 : E(Xi) = 1×0×1/(1 + 2eβ̂) + 2×1× eβ̂/(1 + 2eβ̂) = 0.3468

⇒ r̂i = 0− 0.3468 = −0.3468

For ti = 25 we have E(Xi) = 1

⇒ r̂i = 1− 1 = 0
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Example of Schoenfeld residuals
Consider the artificial data of S1 (β̂ = −1.32) and compute the weights

ti n0i n1i p(β, xk = 0) p(β, xk = 1) Grp

6 3 3 1/(3 + 3eβ̂) eβ̂/(3 + 3eβ̂) C
10 1 3 1/(1 + 3eβ̂) eβ̂/(1 + 3eβ̂) T
15 1 2 1/(1 + 2eβ̂) eβ̂/(1 + 2eβ̂) C
25 0 1 1/eβ̂ eβ̂/eβ̂ = 1 T

It remains to compute E(Xi) and r̂i which for ti = 6 gives

E(Xi) = 3×0×1/(3+3eβ̂)+3×1×eβ̂/(3+3eβ̂) = 0.2098⇒ r̂i = 0−0.2098

For ti = 10 : E(Xi) = 1×0×1/(1 + 3eβ̂) + 3×1× eβ̂/(1 + 3eβ̂) = 0.4434

⇒ r̂i = 1− 0.4434 = 0.5566

For ti = 15 : E(Xi) = 1×0×1/(1 + 2eβ̂) + 2×1× eβ̂/(1 + 2eβ̂) = 0.3468
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Grambsch and Therneau residuals

They propose to scale each residual by an estimate of its variance

r̂∗i = r̂i × d× V(β̂)

where d is the total number of death

Then, Grambsch and Therneau show that if hazards are non proportio-
nal

E(r∗i ) ≈ β + β(t)

i.e. a survival time dependent β (unknown) enter the E(r̂∗i ) whereas

E(r∗i ) = β

in presence of proportional hazards

⇒ β(t) can be approximated by

β̂(t) ≈ r̂∗i − β̂

where β̂ is estimated from the Cox model

Note Statistical inference is now possible to test H0 : β(t) = 0
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Example for Grambsch and Therneau residuals
We compute β̂(t) for the pancreatic cancer data and plot it versus time

Note 1 we also compute the LOESS curve and its 95% confidence intervals

Note 2 the time axis is scaled to match the Kaplan-Meier-transformed time
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Scaled Schoenfeld residual plot for
the pancreatic cancer data

The curve reveals a slight increase, followed by a steady decline

Note 3 Zero seems to be almost always in the confidence intervals
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Example for Grambsch and Therneau residuals
A more formal test can be obtained by fitting as straight line to r̂∗i

This score-type test statistic, denoted ρ̂ ∼ χ2
1, gives

ρ̂ = −0.328, p = 0.0496

⇒ we reject the null of a constant β (i.e. we reject the proportional hazards)

The way we defined the time axis matters (Kaplan-Meier-transformed
time here)

e.g. If we consider time ordered by the ranks survival times we obtain

ρ̂ = −0.330, p = 0.0486

⇒ very similar results

e.g. If we consider the untransformed time line we obtain

ρ̂ = −0.197, p = 0.2390

⇒ here we cannot reject the null of proportional hazards

Note This latter approach is not to be preferred when the failure times are
sparse and not uniformly spaced over time
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Plan

1 Partial Likelihood Estimation
2 Covariates

3 Model Diagnostics
4 Time Dependent Covariates
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What are time dependent covariates ?

The partial likelihood theory assumes that covariates are time invariant

⇒ The value of z at t = 0 is the same at any ti > 0

In some cases this assumption is unrealistic

e.g. In credit scoring analysis, the employment status is likely to change

e.g. In job market analysis, the skills are likely to evolve

⇒ Time dependent covariates require special measures to obtain valid pa-
rameter estimates

G. de Truchis ESA ST1 64/76



MPLE Covariates Diagnostics Time dependence

Impact of time dependent covariates
Unfortunately, we cannot predict survival using future covariate values

This deceptively principle can ensnare even experienced research

⇒ We illustrate this with the following example :

e.g. consider data on patients enrolled in a transplant program

Here are the results of the survival study :

coef exp(coef) se(coef) z-test p
transplant -1.71711 0.17958 0.27853 -6.165 7.05e-10
age 0.05889 1.06065 0.01505 3.913 9.12e-05
surgery -0.41902 0.65769 0.37118 -1.129 0.259

⇒ It seems that heart transplanted patients live longer than others

The covariate “transplant” equals 1 for transplanted patients

⇒ The issue is that “transplant” is time dependent as patients in a trans-
plant program have to live long enough to be transplanted

⇒ It only shows that patients who live long enough to receive a transplant
have longer lives than patients who do not live as long (tautology)
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Landmark time

In that particular case, a simple fix is to define a landmark time τ

It divide patients into two groups : intervention and comparison groups

Intervention those who received the intervention prior to τ

Comparison those who did not received the intervention prior to τ

If only patients who survive up to τ are included

and all patients remain in their assigned group, this method is valid

Note Hence, patients transplanted after τ remain in the comparison group

⇒ the comparison group could be renamed “no transplant within τ days”
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Example of landmark time

If we set τ = 30 days, 79 of the 103 patients lived this long

Of these 79 patients, 33 had a transplant before τ and 46 did not

Of these 46 patients, 30 subsequently had a transplant

Note we still count them in the comparison group

⇒ we have hence created a new variable “transplant30” which has a fixed
value for all patients in the set of 30-day survivors

Here are the valid results of survival study :

coef exp(coef) se(coef) z-test p
transplant30 -0.04214 0.95874 0.28377 -0.148 0.8820
age 0.03720 1.03790 0.01714 2.170 0.0300
surgery -0.81966 0.44058 0.41297 -1.985 0.0472

The “transplant” covariate is no longer significant

Note However, one could discuss the choice of the landmark τ
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Beyond the landmark approach

Unfortunately there is no clear way to select the landmark τ

⇒ we prefer another approach based on adjustments of the Cox model

Let consider a subset of 6 patients to illustrate this approach

3 of them received a transplant and 3 of them did not

id wait.time futime fustat transplant

2 – 5 1 0

5 – 17 1 0

10 11 57 1 1

12 – 7 1 0

28 70 71 1 1

95 1 15 1 1

Time in days

0 20 40 60 80

Patient  2 

Patient  5 

Patient 10 

Patient 12 

Patient 28 

Patient 95 

futime : following-up (failure) time
fustat : 0 if censored, 1 otherwise

and waiting time : time of transplant
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Modified partial likelihood
We first model incorrectly the data

coef exp(coef) se(coef) z-test p
transplant -1.6878 0.1849 1.1718 -1.44 0.150

To correct the model we allow the contributions of each subject to change
from one failure time to the next

⇒ The hazard function is now given by

h(t) = h0(t)exk(ti)β

with xk(ti) the time-varying covariate for the kth subject at time ti

This leads to the modified partial likelihood

L(β) =
D∏
i=1

ψii
( ∑
k∈Ri

ψki
)−1

with ψki = exk(ti)β

In the fixed-time case we were able, as time passes, to successively delete
ψi for subject that failed at that time

We here have to recalculate the entire denominator at each failure time
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Example of modified partial likelihood computation
Let compute L(β) for the six patients (labeled 2, 5, 10, 12, 28, 95)
L1(β) P2 fails at t = 5, all 6 being at risk, the P95 being the only 1 transplanted

L1(β) =
1

5 + eβ

L2(β) P12 fails at t = 7, 5 being at risk, still 1 patient being transplanted

L2(β) =
1

4 + eβ

L3(β) P95 fails at t = 15, 4 being at risk, but the P10 “transplant” status has
switched to 1

L3(β) =
eβ

2 + 2eβ

L4(β) P5 fails at t = 17, 3 being at risk, still 2 patients being transplanted

L4(β) =
1

2 + eβ

L5(β) P10 fails at t = 57, 2 being at risk, still 2 patients being transplanted

L5(β) =
eβ

1 + eβ

L6(β) P28 is the last to fail (t = 71), just after having been transplanted

L6(β) =
eβ

eβ
= 1
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Example of modified partial likelihood computation
Overall, the modified partial likelihood is

L(β) =
1

5 + eβ
× 1

4 + eβ
× eβ

2 + 2eβ
× 1

2 + eβ
× eβ

1 + eβ
× 1

On the numerical side, L(β) is based on the start-stop format
It divides the time data for patients with a time-varying covariate

e.g. As P10 was a non-transplant patient until day 11, its future as a non-
transplant patient is unknown

⇒ we censor that portion of the patient’s life experience at t = 11 :
start : t = 0, stop : t = 11

⇒ we start a new record of P10 (which is left-truncated at t = 11)
start : t = 11, stop : t = 57

For our subset of 6 patient it results in new lines in the database
P# start stop death transpl

2 0 5 1 0
5 0 17 1 0

10 0 11 0 0
10 11 57 1 1
12 0 7 1 0
28 0 70 0 0
28 70 71 1 1
95 0 1 0 0
95 1 15 1 1
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Example of modified partial likelihood computation

Once the data are in this start-stop format the Cox model applies

For our subset of 6 patient the conclusions remain unchanged

coef exp(coef) se(coef) z-test p
transplant 0.2846 1.3292 0.9609 0.296 0.767

When considering the whole data set and all covariates we obtain

coef exp(coef) se(coef) z-test p
transplant 0.01405 1.01415 0.30822 0.046 0.9636
surgery -0.77326 0.46150 0.35966 -2.150 0.0316
age 0.03055 1.03103 0.01389 2.199 0.0279

As with the landmark analysis we confirm that there is no evidence that
receiving a heart transplant increases survival
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Predictable time dependent variables

An alternative way to model non-proportional hazard is to allows for

β = β(t)

for a particular covariate

If there is only one covariate we have

h(t) = h0e
xkβ(t)

Characterizing the functional form of β(t) is challenging

⇒ A way to proceed is to define a new time dependent variable with fixed
coefficients

Note As this variable is defined by the econometrician, it is referred as pre-
dictable variable

The pattern of the Schoenfeld residuals are helpful to identify an appro-
priate time dependent function

G. de Truchis ESA ST1 73/76



MPLE Covariates Diagnostics Time dependence

Time transfer function
Consider again the pancreatic cancer data as in S61

A simple estimation of the Cox model gives
coef exp(coef) se(coef) z-test p

stage of progress 0.593 1.81 0.401 1.48 0.14

Recall the Schoenfeld plot revealed that the hazard ratio might vary

An alternative way is to define a time dependent covariate as

g(t) = θ0 + θ1 × log(t)

where θ0 denotes the usual time-invariant group indicator

⇒ Plugging g(t) in the Cox model, the fitted time transfer function is

β(t) = 6.01− 1.09 log(t)

coef exp(coef) se(coef) z-test p
l(stage) 6.01 407.339 3.060 1.96 0.050
nl(stage) -1.09 0.338 0.589 -1.84 0.065

The LR test that compares the two groups accounting β(t) gives

LR = 6.33 (p = 0.0423)

⇒ As θ0 and θ1 are significant, this suggests that the group indicator combi-
ned with a time-varying hazard ratio yields evidence of group difference
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Visualization of the time transfer function
We can use the Schoenfeld residuals plot of S61 to visualize θ1 × log(t)
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The red curve, −1.09 log(t), is linear as the time axis is in log

⇒ It indicates that overall, the log hazard ratio decreases over time

Note The results are dependent of the functional and e.g. no longer old for

g(t) = θ0 + θ1 × t

stage.n 1.27810 3.590 0.66103 1.93 0.053
tt(stage.n) -0.00366 0.996 0.00253 -1.44 0.150
LR test 4.56 p=0.102
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Variables that linearly increase with time
A common source of confusion is whether the age variable is time de-
pendent

Indeed, the age increases with time itself

⇒ the age is definitely a time dependent variable

But it has no effect on the model if one includes it as time varying covariate

To see why this happens defined the current age of a subject by

x(t) = x(0) + t

where x(0) denotes the age at entry into the study

⇒ Then, the hazard function is given by

h(t) = h0(t)eβx(t) =
(
h0(t)eβt

)
eβx(0)

such that once we insert h(t) in the partial likelihood,

eβt

appears in both the numerator and the denominator of each factor

⇒ Hence, it cancels out as does the baseline hazard
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