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Survival Analysis

Study of survival times of a particular phenomenon...

... and the factor that influence them

Data with survival outcomes are numerous

⇒ Clinical trials

⇒ Biomedical studies

⇒ Industrial settings (failure of a device)

⇒ Labor market

⇒ Credit default

Statistical analysis of survival data requires

⇒ Estimation of survival distribution

⇒ Comparisons of various survival distributions

⇒ Elucidations of the factors that influence survival times (regressions)

G. de Truchis ESA ST1 4/59



Introduction Basics MLE KM estimator Comparison

Survival Data

The variable of interest has key characteristics

⇒ Non-negative discrete (or continuous) random variable

⇒ Represents the time from a well-defined origin to a well-defined event

⇒ Often subject to censoring : the starting or ending event is not observed

Example of right censoring

Let T ∗ be a random variable representing the time to failure

Let U be a random variable representing the time to censoring event

The recorded event will be T = min(T ∗, U) and we can define

δ = I(T ∗ < U)

a censoring indicator taking value 1 or 0

⇒ δ = 1 if T is an observed failure time and δ = 0 if T is a censored time

Note 1 Left censoring are possible albeit less frequent

Note 2 Interval censoring are also possible : the failure time has occurred within
an unobserved time interval
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Censoring classification

There are 3 types of censoring times :

Type I Pre-specified censored times

e.g. In a study with a pre-specified ending time, if an individual has not ex-
perienced the event of interest before the end, it is censored at that time

Type II Pre-specified fraction of failure

e.g. If the study runs until a pre-specified fraction of failure is reached (e.g.
25 %), individuals or objects that have not failed (75%) are censored

Random Censoring that occurs randomly and independently of the study

e.g. In a biomedical study, patient dropout that are unrelated to the disease
process (e.g. death unrelated to the disease under investigation)

Note The random nature of this type of censoring is crucial to avoid bias
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Type I censored data
In biomedical studies, administrative censoring is of type I

⇒ It occurs when patients are still alive at the end of the follow-up period

Year of entry
2000 2002 2004 2006 2008 2010

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Accrual Follow−up

Censored event

Death event
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Patient time structure

Survival database are generally structured as follows

⇒ For each individual, the survival time and δ (“Status”) are reported

Table – Survival data example

Patient Survtime Status
1 7 0
2 6 1
3 6 0
4 5 0
5 2 1
6 4 1
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Patient time representation

The patient time graphical representation is as follows

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient time

0      1       2       3      4       5      6       7      8
Survival time in year
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Database example (1)

Additional informations can include additional outcomes

individual characteristics

competing risks factors

⇒ Below, δ ∈ {0, 1, 2} where 2 to indicate death from other causes

Table – Survival prospects of prostate cancer patients with high-risk disease

Patient grade stage ageGroup survTime status
88 poor T2 75-79 33 0
89 mode T2 75-79 6 0
90 mode T1c 75-79 15 2
91 mode T2 70-74 6 2
92 mode T1ab 80+ 93 1
93 poor T2 80+ 60 2
94 mode T2 80+ 1 0
95 mode T1ab 75-79 34 0
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Database example (2)

Comparisons survival data is also of crucial interest

e.g. triple-medication v.s. nicotine patch therapy alone

Note 1 δ is set to 0 for individuals who remained non-smokers for 6 months

Note 2 Below, the variable ttr is time until return to smoking

⇒ The objective is to compare the two treatment therapies by identifying
the factors related to this outcome

Table – Comparison of medical therapies to aid smokers to quit

ttr relapse grp age gender morphotype employment
1 182 0 patchOnly 36 Male white ft
2 14 1 patchOnly 41 Male white other
3 5 1 combination 25 Female white other
4 16 1 combination 54 Male white ft
5 0 1 combination 45 Male white other
6 182 0 combination 43 Male hispanic ft
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Hazard and Survival Functions

Survival Analysis relies on the survival distribution that is specified by

either the Survival Function (SF)

or the Hazard Function (HF)

The SF is defined as the probability of surviving up to a point t

S(t) = P(T > t), 0 < t <∞

⇒ S(t) is right continuous, equals 1 at time 0 and decreases over time

Note In some cases, S(t) can also remain constant and never reach 0

The HF is defined as the instantaneous failure rate

h(t) = lim
∆→0

P(t < T < t+ ∆|T > t)

∆

⇒ h(t) is the probability of failing in the next interval of time ∆, given that
the subject has survived up to time t, divided by that interval
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Hazard and Survival Functions representation
Data The daily hazard rates of men and women by age from 1940 to 2004

The initial days and weeks of life are particularly dangerous

The hazard increases during the teen years, then levels off

It starts a steady increase in midlife
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Other representations of the Survival Distribution

The complement of the SF is just the so-called CDF

F (t) = P(T ≤ t), 0 < t <∞

⇒ known as cumulative risk function in the survival analysis

The PDF is also an obvious alternative representation

f(t) = − d

dt
S(t) =

d

dt
F (t)

⇒ it is the rate of change of F (t) or minus the rate of change of S(t)

f(t) is also related to h(t) by

h(t) =
f(t)

S(t)

⇒ the hazard at time t is the probability that an event occurs in the neigh-
borhood of t divided by the probability that the subject is alive at t
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The Survival Function as function of the Hazard Function

The area under the HF up to time t is the cumulative HF

H(t) =

∫ t

0

h(u)du

Then, one can define the survival function in terms of the CHF

S(t) = exp

(
−
∫ t

0

h(u)du

)
= exp(−HF )
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Mean and Median Survival time

The expected value of the survival time is simply

E(T ) =

∫ ∞
0

tf(t)dt = µ

An alternative equivalent measurement is

µ =

∫ ∞
0

S(t)dt

Note 1 it is defined (µ <∞) only if S(∞) = 0 : all subjects eventually fail

⇒ this might not be the case if, e.g., the survival outcome is time to cancer
recurrence and a fraction c of subjects are completely cured

The Median survival time is the time τ such that S(τ) = 1/2

Note 2 If S(t) is a step function, it is not continuous at 1/2 and the Median is
the smallest t such that S(t) ≤ 1/2

Note 3 If S(t) never drop below c = 1/2 during the observation period, the
Median is undefined
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Introduction to parametric Survival Distributions

In view of modeling the survival process, we need to specify a distribution

The simplest survival distribution is the exponential one

f(t) = λe−λt,

The definitions of S13 allows to compute the SF

S(t) = e−λt

and alternative representations of S15 give

h(t) = λ

⇒ This SD has constant hazard function h(t) = λ
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The Exponential Survival Distribution
The cumulative hazard function is hence

H(t) =

∫ t

0

h(u)du =

∫ t

0

λdu = λt

and is represented by the shaded area below
H
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Exponential hazard

The mean survival time is simply

E(T ) =

∫ ∞
0

S(t)dt =

∫ ∞
0

e−λtdt = 1/λ

and the median survival time is obtained for e−λτ = 0.5, i.e. τ = log(2)/λ
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The Weibull Survival Distribution

The constant hazard is a strong assumption in many practical cases

⇒ a first generalization is obtained by considering

h(t) = αλαtα−1

the hazard function derived from the Weibull distribution

Note For α = 1 it comes down to the exponential distribution

From h(t) one can easily derive H(t) = (λt)α and hence

S(t) = e−(λt)α
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The Weibull Hazard Function
For several parameter choices the behavior of h(t) is represented below

Weibull hazard functions
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The mean survival time formula is not obvious

E(T ) =

∫ ∞
0

S(t)dt =
Γ(1 + 1/α)

λ

and the median survival time is given by τ = log(2)1/α/λ

Note The Gamma function generalizes the factorial function to real numbers
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The Gamma Hazard Function
Another choice for survival modeling is the Gamma distribution

f(t) =
λβtβ−1 exp(−λt)

Γ(β)

which comes down to the exponential one for β = 1 as Γ(1) = 1

Gamma hazard functions
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Note No closed form exist for the HF and SF ⇒ numerical computations
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Numerical approximation to the Hazard and Survival Functions

In some cases (see e.g. S14), the distribution is much more complicated

An alternative way is numerical computation :

1 Take people dead at birth, after 1 day, week, month, year, 2 years, ...

2 Take the data in difference to obtained rectangles

3 Compute the cumulated sum of data in each rectangle to get Ĥ(t)

4 The SF is simply given by Ŝ(t) = exp(−Ĥ(t))

One can use Ŝ(t) to compute the mean that is

73.80

for the male and
78.90

for the women when considering the US lifetime data of S14
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Example of CHF approximation

Step 1 to 3 allow to approximate the integral of H(t)

e.g. The male lifetime CHF up to 1.5 years is given by the blue area

⇒ Applying this method beyond 2 years leads to the blue CHF curve in
S14
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Unknown distribution parameters

In general, we have poor knowledge upon

S(t)

the underlying Survival Distribution

We only have realizations

t1, t2, . . . , tn

of random variables for which a distributional assumption is done

e.g. Under exponential distribution hypothesis, the parameter

λ

is unobserved and we would like to estimate it

⇒ A natural candidate is the Maximum Likelihood estimator
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MLE principle for Survival data
As in time series analysis, the likelihood function take the general form

L(θ; t1, t2, . . . , tn) = f(t1, θ) · f(t2, θ) . . . f(tn, θ) =

n∏
i=1

f(ti, θ)

with θ = λ in the exponential distribution case

Note However, particular attention has to be paid to censored data

e.g. For right-censored data we use δ and the Survival Function

S(ti, θ)
1−δi

to indicate that observation i is known only to exceed ti as

S(ti, θ) = P(Ti > ti)

⇒ The likelihood is hence transformed to

L(θ; t1, t2, . . . , tn) =

n∏
i=1

f(ti, θ)
δiS(ti, θ)

1−δi =

n∏
i=1

h(ti, θ)
δiS(ti, θ)

Note For left-censored data we use δ and 1− S(ti, θ) = P(Ti ≥ ti) = F (ti, θ)
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MLE principle for exponential distribution

In the particular case of the exponential distribution,

L(θ; t1, t2, . . . , tn) =

n∏
i=1

(
λe−ti/µ

)δi(
e−λti

)1−δi
= λde−λV

where d = δ1 + . . .+ δn is the total number of failure and

V = t1 + . . .+ tn

is the total amount of time of patients

The MLE is given by the value of λ that maximizes L(λ; t1, t2, . . . , tn)

As log-transformation simplifies the likelihood function we prefer

`(λ) = logL(θ; t1, t2, . . . , tn) = d log λ− λV

Under regularity conditions, the MLE is asymptotically Gaussian
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Solution of exponential-based MLE
The first derivative (score function) give

`′(λ) =
d

λ
− V

and hence the maximum likelihood estimate is λ̂ = d/V

The second derivative (Hessian function) is

`′′(λ) = − d

λ2
= −I(λ)

where I(λ) > 0 is the Fisher information

As `′′(λ) < 0 the solution is a maximum and inversing I(λ) we obtain

V(λ̂) = σ2
λ ≈ I−1(λ) = λ2/d

In practice we will use

σ̂2
λ ≈ I−1(λ) = λ̂2/d = d/V 2

Note For most of distributions, no explicit solutions exist ⇒ numerical reso-
lution
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Exercise
Consider the data of Table 1

Plot the log-likelihood and compute the MLE of λ and V(λ̂)

Simple observation of the data gives d = 3 and

V = 7 + 6 + 6 + 5 + 2 + 4 = 30

⇒ The log-likelihood function is

`(λ) = 3 log λ− 30λ

and hence we obtain λ̂ = 3/30 = 0.1 with σ̂2
λ ≈ 3/(302) = 0.0033
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The Kaplan-Meier estimator (KPE)

In practice, the distribution/survival/hazard function is hard to choose

⇒ The parametric approach is likely to be misspecified

Nonparametric estimation procedures offer more flexibility

⇒ The most widely used of these procedures is the Kaplan-Meier estimator

Ŝ(t) =
∏
ti≤t

(1− q̂i) =
∏
ti≤t

(
1− di

ni

)
where di is the number of failure at time ti and ni the number of indi-
viduals at risk at that time

⇒ Ŝ(t) is the product over failure times of the conditional probabilities of
surviving to the next failure time
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Application of the KPE
By using the data of the Table 1, one can easily obtain

Table – Kaplan-Meier estimator

ti ni di qi 1− qi Ŝi

2 6 1 0.167 0.833 0.833
4 5 1 0.200 0.800 0.667
6 3 1 0.333 0.667 0.444

One can use Ŝi to reconstruct graphically the Survival Function
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Interpretation of Ŝt

Ŝt is a non-increasing right continuous step function

ti is the failure time

ni is the number of individuals at risk at time ti

di is the number of individuals who fail at time ti

qi = di/ni is the failure probability

1− qi is the conditional survival probability

Si is the Survival Function at time ti

The right-continuity is illustrated by open and closed circles

e.g. S(4) = 0.667 while S(3.99) = 0.833

Note The median is obtained for

ti = τ̂ = 6,

that is the smallest time such that S(t) ≤ 1/2 (Ŝ(τ) = 0.444)
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KPE and inference
The variance of the KPE can be approximated by

V(Ŝt) ≈ Ŝ2
t

∑
ti≤t

di
ni(ni − di)

Unfortunately, CIs derived from V(Ŝt) may extend above 1 or below 0

Note Remind that S(t) ∈ [0, 1]

⇒ One often overcome this issue by using a log-log transformation of Ŝ(t)

V(log(− log Ŝt)) ≈
1

(log Ŝt)2

∑
ti≤t

di
ni(ni − di)
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Nelson-Altschuler estimate of the SF

An alternative estimator is the one of Nelson-Altschuler based on H(t)

Ŝt = e−Ĥ(t), Ĥ(t) =
∑
ti≤t

di
ni

Table – Nelson-Altschuler estimator

ti ni di qi Ĥi Ŝi

2 6 1 0.167 0.167 0.846
4 5 1 0.200 0.367 0.693
6 3 1 0.333 0.700 0.497

Confidence intervals can be obtained in a similar way to KPE
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Median and inference
As stated previously, the median is

τ̂ = inf{t : Ŝ(t) ≤ 1/2}

For a risk level α confidence intervals are given by

−zα/2 ≤
g
(
Ŝ(t)

)
− g
(
1/2
)

V
(
L
(
Ŝ(t)

))1/2
≤ zα/2

with g(x) = log(− log(x)) and zα/2 a Standard Normal quantile

e.g. Consider the data of Table 2 and the KPE : τ̂ = 10.3
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Kernel smoothing and Hazard Function estimation
The Nelson-Altschuler estimate of h(t) can be rough and quite instable

A kernel function can be used to smooth ĥ(t)

ĥ(t) =
1

b

D∑
i=1

K
( t− ti

b

) di
ni

where t1 < . . . < tD are ordered failure times and b a tuning parameter

Note Many kernel function exist but the Epanechnikov kernel is very common

K(x) = 3/4(1− x2), −1 ≤ x ≤ 1
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Corrected Kernel smoothing and Hazard Function estimation
Without corrections K(x) is likely to be 6= 0 at time t < 0

⇒ The first kernel below is centered at t = 2 and b = 2.5 meaning that

t− b = −0.5 t+ b = 4.5

and hence, the actual area under the first kernel is too small

⇒ The modified Epanechnikov kernel is recommended
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Another approach consists in setting a time-varying b :

⇒ wider b(t) is used than for time regions densely populated with events
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Example Kernel smoothing and Hazard Function estimation

Consider again the data of Table 2

⇒ Choose the modified Epanechnikov kernel with b = 20

Note Selection of b can be critical :

if b is too small, the estimate may gyrate widely

if b is too wide, the hazard function may be too smooth to observe real
variations in the hazard function
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Example Kernel smoothing and Survival Function estimation

One can use ĥ to obtain a smooth estimate of S(t)

Ŝ(t) = exp
(
−
∫ t

u=0

ĥ(u)du
)

In practice the integral is approximated by the rectangles method
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Comparing Two Groups of Survival Times

Comparison of distributional features is of crucial interest

e.g. In medical trials you need to compare treatment and control groups

H0 : S1(t) = S0(t)

Let S1(t) be the SF of the treatment group

⇒ Two alternative hypotheses can be specified (one-sided or two-sided)

H1 : S1(t) > S0(t) or H1 : S1(t) 6= S0(t)

⇒ Unfortunately, Survival data imply several serious issues

Survival distributions can be similar for some t and differ for others

Survival distributions can cross
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Lehman alternatives

One solution is to consider Lehman-type alternatives defined as

H1 : S1(t) =
(
S0(t)

)ψ
where ψ 6= 1 unless under

H0 : S1(t) =
(
S0(t)

)1
⇒ The one-sided alternative is now

H1 : ψ < 1

and imposes that S1(t) is uniformly higher than S0(t)

Theses hypotheses can be formulated in terms of proportional hazards

h1(t) = ψh0(t)
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The 2-by-2 Table representation

In the spirit of the rank tests à la Mann-Whitney H0 can be tested
against Lehman alternatives

Note Complications arise from the presence of censoring

⇒ To solve this issue consider a two-by-two table representation of the data

Table – 2-by-2 Table representation

Control Treatment Sums
Failure d0i d1i di
Non-failure n0i − d0i n1i − d1i ni − di
At risk n0i n1i ni

Numbers at risk for the control and treatment groups are n0i and n1i

Numbers of failure for the control and treatment groups are d0i and d1i

This representation is adopted for any distinct ordered failure time ti
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Hypergeometric distribution

If one holds di, n0i and n1i fixed (and hence ni too) we can derive

P(d0i|n0i, n1i, di) =

(
n0i

d0i

)(
n1i

d1i

)(
ni
di

)−1

the hypergeometric distribution of d0i where(
ni
di

)
=

ni!

di!(ni − di)!

represents the number of combinations of n items taken d at time ti

The 2 first moments of that distribution are

E(d0i) =
n0idi
ni

= µ0i

and
V(d0i) =

n0in1idi(ni − di)
n2
i (ni − 1)

= σ2
0i
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The log-rank test statistics
Based on the 2-by-2 representation and E(d0i) one can define

U0 =
∑
i=1

(d0i − E(d0i))

a simple linear test statistic and its variance

V(U0) =
∑
i=1

V(d0i)

One can show that U0/
√

V(U0) ∼ N (0, 1) or equivalently

U2
0

V(U0)
∼ χ2

1

This test statistic is known as the log-rank test of group comparison

Note 1 This test is also known as the Mantel-Haenzel test

Note 2 A comparison of k groups is possible and modify the distribution to

χ2
k−1

but is slightly different from the stratified tests discussed in S55
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Exercise : application of the log-rank test

Consider the following survival data

C and T stand for Control and Treatment groups respectively

Table – Survival data

Patient Survtime Censor Group
1 6 1 C
2 7 0 C
3 10 1 T
4 15 1 C
5 19 0 T
6 25 1 T

When required, construct the 2-by-2 tables

Compute the log-rank test and interpret the result
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Exercise : computation

Failures appear at t = 6, 10, 15, 25 and result in four 2-by-2 tables

Table – 2-by-2 tables for t = 6, 10, 15, 25

t = 6 t = 10 t = 15 t = 25
C T

∑
C T

∑
C T

∑
C T

∑
Failure 1 0 1 0 1 1 1 0 1 0 1 1
Non-failure 2 3 5 1 2 3 0 2 2 0 0 0
At risk 3 3 6 1 3 4 1 2 3 0 1 1

Table – Intermediate calculus to compute the log-rank test statistic

ti ni di n0i d0i n1i d1i µ0i σ2
0i

6 6 1 3 1 3 0 0.500 0.2500
10 4 1 1 0 3 1 0.250 0.1875
15 3 1 1 1 2 0 0.333 0.2222
25 1 1 0 0 1 1 0.000 0.0000∑

2 2 1.083 0.6597
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Exercise : interpretation

From Tables in previous slide we easily obtain

U0 =
∑
i

d0i −
∑
i

µ0i = O0 − E0 = 2− 1.083 = 0.917

and V(U0) =
∑
i σ

2
0i = V0 = 0.6597

⇒ The log-rank test statistic is

U2
0

V(U0)
≈ 1.26

which we compare to a χ2
1 distribution

⇒ The corresponding p-value is

p = 0.259

meaning that we cannot reject H0 and hence the group difference is not
statistically significant

Note When applying the test to d1i, the result is identical as it also sums to 2
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The generalized log-rank test statistics
An important generalization of the log-rank test is

U0(w) =
∑
i=1

wi(d0i − E(d0i))

with the corresponding variance V(U0) =
∑
i=1 w

2
iV(d0i)

This leads to the so called Fleming-Harrington G(ρ) test

G(ρ) =
U0(w)2

V(U0(w))

The most common way of setting weights is à la Gehan-Wilcoxon

wi = F
(
Ŝ(ti)

)ρ
, F(.) being a certain function

Note 1 When ρ = 1 we get the Prentice modification : places higher weight on
earlier survival times

Note 2 When wi =
√
ni we get the Tarone-Ware modification : intermediate

weight compared to ρ = 0 and ρ > 0

Note 3 When wi = Ŝ(ti)
p(1− Ŝ(ti))

q we get the Harrington-Fleming(p, q) test :
more flexible
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Example : Prentice modification of Gehan-Wilcoxon test

Let consider pancreatic cancer data from a clinical trial (41 patients)

We are interested in the progression-free survival (PFS)

⇒ the time from assignment in the trial to disease progression or death

Table – Locally Advanced Pancreatic Cancer or Metastatic Pancreatic Cancer

stage onstudy progression death
1 MPC 16/12/2005 02/02/2006 19/10/2006
2 MPC 06/01/2006 26/02/2006 19/04/2006
3 LAPC 03/02/2006 02/08/2006 19/01/2006
4 MPC 30/03/2006 “NA” 11/05/2006
5 LAPC 27/04/2006 11/03/2007 29/05/2007
6 MPC 07/05/2006 25/06/2006 11/10/2006
...

...
...

...
...

Note 1 “NA” means that the patient died with no recorded progression and the
PFS is time to death

Note 2 For all other patients, the PFS is time to the date of progression
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Example : Prentice modification of Gehan-Wilcoxon test

The graphical analysis of SF reveals :

the LAPC group shows an early survival advantage over the MPC

but the survival curves converge after about 10 months
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Example : Prentice modification of Gehan-Wilcoxon test
When computing the Gehan-Wilcoxon test for

ρ = 0

i.e. the log-rank test and
ρ = 1

i.e. the Prentice modification, we obtain

Table – Fleming-Harrington G(ρ) for ρ = 0 and ρ = 1, with k = {0, 1}

ρ = 0 N Ok Ek (Ok − Ek)2/Vk
LAPC 8 8 1.49 2.25
MPC 33 33 0.64 2.25

We cannot reject H0 (no difference) as p-value = 0.134

ρ = 1 N Ok Ek (Ok − Ek)2/Vk
LAPC 8 2.34 2.13 4.71
MPC 33 18.76 0.82 4.71

We reject H0 as p-value = 0.0299

The two tests produce conflicting results as they are optimized for dif-
ferent alternatives

⇒ For ρ = 1, the test places higher weight on earlier survival times
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Stratified tests

To compare two groups while adjusting for another covariate, one can

1 include the other covariate as regression terms for the hazard function
(see next Chapter)

2 construct a stratified log-rank test if the covariate we are adjusting for is
categorical

⇒ denote h0j the population hazard of level j = 1, 2, . . . , G, with G small

For the G categories of the covariate we can test

H0 : h0j(t) = h1j(t), j = 1, 2, . . . , G

Accordingly, the stratified version of the log-rank test statistic is

X2 =

(∑G
g=1 U0g

)2

∑G
g=1 V0g

∼ χ2
1
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Example 1 of stratified test
Consider the dataset of Table 3 (time to return smoking)

We first compare the 2 treatment groups by means of the log-rank test

ρ = 0 N Ok Ek (Ok − Ek)2/Vk
Combination 61 37 49.9 8.03
Patch only 64 52 39.1 8.03

We reject H0 (no difference) as p-value = 0.00461

If now we are interested by the influence of the age we may define

g = 1 : 21− 49 || g = 2 : 50 or more

a categorical variable that divides the subjects in 2 groups

The resulting stratified log-rank test is close to the unadjusted test

⇒ the stratification based on the age seems unnecessary

ρ = 0 N Ok Ek (Ok − Ek)2/Vk
Combination 61 37 49.1 7.03
Patch only 64 52 39.9 7.03

We reject H0 (no difference) as p-value = 0.008
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Example 2 of stratified test
Consider simulated data representing an artificial clinical trial

This trial compares a standard therapy (control) and an experimental
one (treatment)

The survival times are simulated as exponentially distributed and pro-
duces no censoring

A confounding genotype factor is also simulated with only 2 levels

g = 1 : wild type genotype || g = 2 : mutant genotype

with g = 2 leading to poorer prognosis as the hazard rate is

λ = 0.03 per day

for a mutant patient in the control group whilst the effect of treatment
leads to

λ = 0.0165

For wild type patients λ = 0.006 whilst the effect of treatment leads to

λ = 0.0033
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Example 2 of stratified test
The Kaplan-Meier survival curves are computed both naively and ac-
counting for the gene confounder

Note 1 The naive estimate concludes against the experimental therapy

Note 2 When accounting for the gene confounder the results are at the opposite

⇒ within each genotype, the treatment is actually superior to the control
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Example 2 of stratified test
The stratified log-rank test is now used to confirm the graphical analysis

Unadjusted N Ok Ek (Ok − Ek)2/Vk
Control 150 150 183 15.9
Treatment 150 150 117 15.9

We reject H0 (no difference) as p-value = 0.00006

Note 1 The unadjusted test shows that the treatment reduces survival

Stratified N Ok Ek (Ok − Ek)2/Vk
Control 150 150 133 7.57
Treatment 150 150 167 7.57

We reject H0 (no difference) as p-value = 0.00595

Note 2 The stratified test confirms that the treatment improves survival com-
pared to the control

Note 3 Patients carrying the wild type form of the gene have better survival
than do patients carrying the mutation

Note 4 There are more mutation-carrying patients in the treatment group than
in the control group, whereas the reverse is true for wild type patients
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