Économétrie non-linéaire Chapitre 4: Modèles GARCH

Gilles de Truchis, Elena Dumitrescu

Master 2 BMM - EIPMC - GDA

Septembre 2016

Les chapitres du cours

- 1 Faits Stylises
- 2 ARCH

- 3 GARCH
- 4 Conclusions
- 5 Références

Séries financières

Faits Stylises

Modèles ARCH / GARCH sont apparus dans le contexte du débat sur la représentation linéaire / non-linéaire des processus stochastiques temporels.

Nonlinearity in variance

A major contribution of the ARCH literature is the finding that apparent changes in the volatility of economic time series may be predictable and result from a specific type of nonlinear dependence rather than exogenous structural change in variables (Berra et Higgins, 1993, page 315).

- représentation spécifique de la non-linéarité
- modélisation simple de l'incertitude

Faits Stylises

Notations

 p_t : prix d'un actif financier (ou portefeuille) à une date t

 r_t : le logarithme du rendement correspondant

$$r_t = log(p_t) - log(p_{t-1})$$

$$r_t = log(1+R_t)$$
 où $R_t = \frac{p_t - p_{t-1}}{p_{t-1}}$

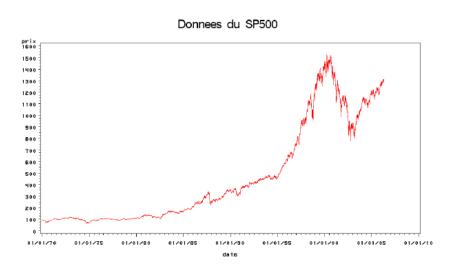
Faits Stylises

I) Stationnarité

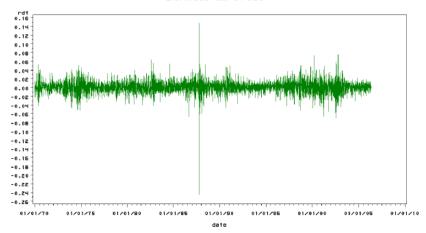
Les processus stochastiques p_t associés aux **prix d'actif** sont généralement non stationnaires au sens de la stationnarité du second ordre

Les processus associés aux **rendements** sont compatibles avec la propriété de stationnarité au second ordre

Rappel - Ch 1 : stationnarité forte et stationnarité de second ordre



Donnees du SP500



Faits Stylises

II) Autocorrélation des carrés des rendements

- i) série r_t^2 : fortes auto-corrélations, $cov(r_t^2, r_{t-k}^2) \neq 0$, alors que
- ii) série r_t : souvent auto-corrélations très faibles (hypothèse de bruit blanc), $cov(r_t, r_{t-k}) = 0$

Notons que ii) renvoie à la notion d'efficience (hypothèse de marchés efficients; Efficient Market Hypothesis ou EMH)

Sous EMH le cours p_t d'une action incorpore toutes les informations pertinentes

$$E(p_{t+1}|\mathcal{F}_t) = p_t$$

Faits Stylises

II) Autocorrélation des carrés des rendements

Definition (Propriété d'orthogonalité)

Sous l'hypothèse d'anticipations rationnelles, les erreurs de prévisions

$$\varepsilon_{t+1} = P_{t+1} - E_t P_{t+1}$$

doivent être nulles en moyenne et ne doivent être corrélées avec aucune information de l'ensemble \mathcal{F}_t d'information disponible à la date t

Faits Stylises

II) Autocorrélation des carrés des rendements

Hypothèse de marchés efficients appliquée aux rendements des actions r_t :

$$r_{t+1} = E_t r_{t+1} + \varepsilon_{t+1}$$

où l'erreur de prévision ε_{t+1} vérifie $E(\varepsilon_{t+1}) = 0$.

Note: l'hypothèse EMH n'impose a priori aucune restriction sur la forme des moments supérieurs à un de la distribution de ε_t .

Par exemple, la variance de ε_{t+1} peut être liée avec ses valeurs passées tout en respectant l'efficience informationnelle.

Remark

EMH L'hypothèse d'anticipation rationnelle n'impose des restrictions que sur le premier moment de ε_t et l'auto-corrélation des r_t^2 n'est pas incompatible avec l'EMH.

Faits Stylises

II) Autocorrélation des rendements

Test de Ljung-Box Notons z_t les rendements ou les rendements aux

carrés et ρ_k l'autocorrélation d'ordre k du processus z_t

H0:
$$\rho_1 = \rho_2 = \cdots = \rho_K = 0$$
,

$$Q_{LB}(K) = T(T+2) \sum_{k=1}^{K} \frac{\hat{\rho}_k^2}{T-k} \xrightarrow{T \to \infty} \chi^2(K)$$

où $\hat{\rho}_k$ désigne l'autocorrélation empirique :

$$\hat{\rho}_k = \frac{\sum_{t=k+1}^{T} (z_t - \bar{z})(z_{t-k} - \bar{z})/(T - k)}{\sum_{t=k+1}^{T} (z_t - \bar{z})^2/T}$$

Propriétés (SP 500)

Correlogram of R_SP									
Included observations: 3755									
Autocorrelation	Partial Correlation	AC PAC Q-Stat Prob							
		1 -0.005 -0.005 0.1112 0.739 2 -0.015 -0.015 1.0087 0.604 3 -0.037 -0.037 6.2220 0.101 4 -0.014 -0.014 6.9153 0.140 5 -0.019 -0.020 8.2728 0.142 6 -0.025 -0.028 10.701 0.098 7 -0.038 -0.040 16.093 0.024 8 0.004 0.001 16.154 0.040 9 0.006 0.002 16.294 0.061 10 0.025 0.021 18.570 0.046 11 -0.028 -0.029 21.479 0.029 24.575 0.017 12 0.029 0.027 24.575 0.017 3 0.039 0.039 30.447 0.004 14 0.011 0.010 30.877 0.006 15 0.007 0.011 31.055 0.013 16 0.002 0.007 31.065 0.013							
1		17 -0.023 -0.019 33.000 0.011 18 -0.013 -0.012 33.634 0.014 19 0.002 0.006 33.646 0.020							
	ą'	20 -0.036 -0.035 38.499 0.008							

Propriétés (SP 500)

	Correlogra	m of	R SP2)		
Included observation			K_51 2	-		
	o. or oo					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
 	 	1	0.191	0.191	137.22	0.000
=	ı =	2	0.173	0.141	249.19	0.000
ı =	ı l	3	0.162	0.113	348.33	0.000
ı 🗖	ļ į	4	0.114	0.050	397.09	0.000
ı	ļ i	5	0.139	0.082	470.00	0.000
-	ı <mark>l</mark>	6	0.147	0.084	551.81	0.000
–	ı l	7	0.130	0.058	615.71	0.000
-	ļi i	8	0.123	0.046	672.88	0.000
-	ļi i	9	0.124	0.048	730.42	0.000
ı	ļi i	10	0.127	0.052	791.49	0.000
ı <mark>.</mark>	ı j ı	11	0.121	0.041	846.41	0.000
i i	1	12	0.119	0.037	899.35	0.000
ı	•	13	0.094	0.010	932.55	0.000
ı	•	14	0.095	0.017	966.25	0.000
ų i	ψ	15	0.079	0.002	990.07	0.000
·	ų.	16	0.113	0.046	1038.6	0.000
ı l	•	17	0.094	0.017	1071.8	0.000
 	•	18	0.110	0.037	1117.2	0.000
=	1	19	0.115	0.039	1167.4	0.000
·	ψ.	20	0.083	0.003	1193.3	0.000
uchis, Elena Dumitrescu	Éconon	ıétri	e non-li	néaire		

Faits Stylises

III) Asymétrie perte/gain

La distribution des cours est généralement asymétrique : il y a plus de mouvements forts à la baisse qu'à la hausse.

$$S_k < 0 \Rightarrow Pr(r_t < \mathbb{E}(r_t)) > Pr(r_t > \mathbb{E}(r_t))$$

Coefficient de Skewness:

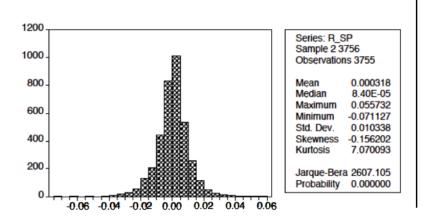
$$\frac{\mu_3}{\sigma^3} = \mathbb{E}[(\frac{r_t - \mathbb{E}r_t}{\sigma})^3]$$

H0:
$$S_k = 0$$

Statistique de test

$$\frac{S_k^2}{\sqrt{6/T}} \xrightarrow{T \to \infty} N(0,1)$$

Histrogramme des Rendements sur SP500



Faits Stylises

IV) Queues de distribution épaisses

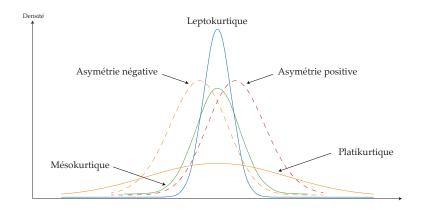
L'hypothèse de normalité des rendements est généralement rejetée

- Distribution normale: à queue "plate", mezokurtique
- Si le Kurtosis excède 3 (queues épaisses) la distribution est dite leptokurtique
- Si le Kurtosis est inférieure à 3, la distribution est dite *platikurtique*

Le **kurtosis** mesure "l'épaisseur" des queues de distribution

$$\frac{\mu_4}{\mu_2^2} = \mathbb{E}[(\frac{r_t - \mathbb{E}r_t}{\sigma})^4]$$

Le degré d'excès de Kurtosis = $\mathbb{E}[(\frac{r_t - \mathbb{E}r_t}{\sigma})^4] - 3$



Faits Stylises

IV) Queues de distribution épaisses

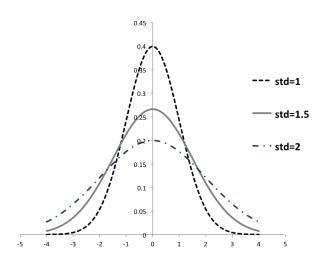
Estimateur du kurtosis

$$\hat{K}_u = \frac{1}{T} \sum_{t=1} T \left(\frac{r_t - \bar{r}_t}{\hat{\sigma}} \right)^4$$

H0 : Ku = 3Statistique de test

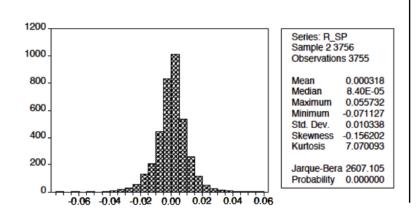
$$\frac{Ku-3}{\sqrt{24/T}} \xrightarrow{T \to \infty} N(0,1)$$

IV) Queues de distribution épaisses



IV) Queues de distribution épaisses

Histrogramme des Rendements sur SP500



Faits Stylises

IV) Queues de distribution épaisses

Test de Jarque Bera

H0:
$$S_k = 0$$
 et $K_u = 3$

$$JB = \frac{T}{6}\hat{S}_k^2 + \frac{T}{24}(\hat{K}u - 3)^2 \xrightarrow[T \to \infty]{d} \chi^2(2)$$

⇒ rejet de l'hypothèse de normalité des rendements

Faits Stylises

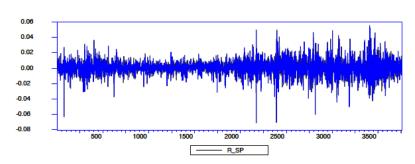
V) Clusters de volatilité

De fortes variations des rendements sont généralement suivies de fortes variations

- ⇒ regroupement des extrêmes en cluster ou paquets de volatilités
- \Rightarrow remet en cause l'hypothèse d'homoscédasticité généralement adopté en économétrie linéaire

V) Clusters de volatilité

Illustration des Clusters de Volatilité sur les Rendements du SP500



Faits Stylises

VI) Queues épaisses conditionnelles

Même une fois corrigée du phénomène de volatilité clustering (par exemple avec des modèles ARCH / GARCH), la distribution des résidus demeure leptokurtique même si la kurtosis est plus faible que dans le cas non conditionnel

VII) Effet de levier

Asymétrie entre l'effet des valeurs passées négatives et l'effet des valeurs passées positives sur la volatilité des cours ou de rendements

Les baisses de cours tendent à engendrer une augmentation de la volatilité supérieure à celle induite par une hausse des cours de même ampleur

Faits Stylises

VIII) Saisonnalité

Les returns présentent de nombreux phénomènes de saisonnalité (effets weekend, effet janvier etc..)

Illustration de l'Effet Janvier

Return Moyen (% par mois)						
Période	Janvier	\ <u>*</u> /				
1904-1928	1.30	0.44				
1929-1940	6.63	-0.60				
1940-1974	3.91	0.70				
1904-1974	3.48	0.42				

Sources: Rozeff et Kin,ney (1976) cité dans Cobbaut (1997)

Illustration de l'Effet Week-End

		Lundi	Mardi	Mercredi	Jeudi	Vendredi
French (1980)	1953-1977	-0.17	0.02	0.10	0.04	0.09
Gibbons et Hess (1981)	1962-1978	-0.13	0.00	0.10	0.03	0.08

Sources: Cobbaut (1997), Return en pourcentage par mois, macrhé action US,

Faits Stylises

Remark

Ces propriétés sont difficiles, voir impossibles, à reproduire à partir de modèle ARMA linéaires classiques

Le théorème central de l'analyse des séries temporelles : le théorème de Wold (1954) - écriture MA de v.a. non-corrélés (cf. Chapitre 1)

- ⇒ l'hypothèse de processus ARMA stationnaires ne permet pas de prendre en compte
- i) l'autocorrélation du carré des rendements,
- ii) les clusters des volatilité et
- iii) les queues de distribution épaisses

Approche ARCH-GARCH

Objectif: prendre en compte les variances conditionnelles dépendant du temps ⇒ remise en cause de la propriété d'homoscédasticité

Analyse traditionnelle de la prévision (cf. Box et Jenkins)

exemple:

Faits Stylises

AR (1) stationnaire
$$X_t = \theta X_{t-1} + \varepsilon_t$$
, avec ε_t i.i.d $N(0, \sigma_{\varepsilon}^2)$

$$E(X_{t+1}) = 0$$

$$E(X_{t+1}|X_t, X_{t-1}, ...) = \theta X_t$$

Note: l'amélioration des prévisions issues de modèles de séries temporelles provient clairement de l'exploitation de l'information contenue dans l'espérance conditionnelle du processus

Approche ARCH-GARCH

Faits Stylises

L'idée d'Engle (1982) : tenir compte des autres moments conditionnels de ce processus

Or, pour un processus AR(1)

$$E(X_{t+1}^2) = \sigma_\varepsilon^2/(1-\theta^2)$$

$$E(X_{t+1}^2|X_t,X_{t-1},\ldots)=\sigma_\varepsilon^2$$

sont constantes quelle que soit la date de la prévision

Avec de tels modèles on est donc incapables de mesurer d'éventuels changements dans les variances des erreurs de prévision même si l'on souhaite que celles-ci soient affectées par l'évolution passée

Approche ARCH-GARCH

Le principe général proposé par Engle (1982) consiste à supposer que la variance dépend de l'ensemble informationnel dont on dispose (évolue dans le temps)

⇒ Spécification ARCH(q) où le carré des perturbations suit un processus autorégressif d'ordre q

$$V(X_{t+1}|\mathcal{F}_t) = f(X_1, X_2, ... X_t; \theta)$$

 $V(X_{t+1}) = c$

Les modèles ARCH sont donc des modèles autorégressifs conditionnellement hétéroscédastiques

Famille des modèles ARCH

Faits Stylises

- modèles linéaires spécification quadratique de la variance conditionnelle des perturbations (ARCH(q), GARCH(p, q) et IGARCH(p, q)) (cf. le cours de V. Bouvatier)
- modèles non-linéaires spécifications asymétriques des perturbations (EGARCH(p, q), GJRGARCH(p, q), TGARCH(p, q)...)

Définition: ARCH(1), Engle (1982)

$$X_t \sim ARCH(1)$$
 si $X_t = z_t \sqrt{(h_t)}$, $h_t = \alpha_0 + \alpha_1 X_{t-1}^2$

 z_t - bruit blanc fort

 h_t - processus qui conditionnellement à l'ensemble d'information des valeurs passées de X_t est déterministe et positif

$$V(X_t|\mathcal{F}_{t-1}) = V(z_t\sqrt{(h_t)}|\mathcal{F}_{t-1})$$

= $h_tV(z_t|\mathcal{F}_{t-1}) = h_t\sigma_z^2$
= h_t , σ_z^2 normalisé à 1

 $\Rightarrow h_t$ est la variance conditionnelle de X_t

Modèles ARCH

Modèles ARCH

Moments du processus ARCH

i)
$$E(X_t) = 0$$
 et $E(X_t | \mathcal{F}_{t-1}) = 0$, où $\mathcal{F}_{t-1} = X_{t-1}, X_{t-2}, \cdots$

ii)
$$V(X_t) = \frac{\alpha_0}{1-\alpha_1} \ \forall t$$

 $V(X_t|\mathcal{F}_{t-1}) = h_t \ \forall t$

Modèles ARCH

Moments du processus ARCH (Proofs)

i)
$$E(X_{t}|\mathcal{F}_{t-1}) = E(z_{t}\sqrt{h_{t}}|\mathcal{F}_{t-1})$$

$$= \sqrt{h_{t}}E(z_{t}|\mathcal{F}_{t-1}) = 0 \text{ si } z_{t} \text{ est bb faible}$$

$$E(X_{t}) = E(E(X_{t})|\mathcal{F}_{t-1}) = 0$$
ii)
$$V(X_{t}|\mathcal{F}_{t-1}) = V(z_{t}\sqrt{h_{t}}|\mathcal{F}_{t-1})$$

$$= h_{t}V(z_{t}|\mathcal{F}_{t-1})$$

$$= h_{t}V(z_{t})$$

$$= h_{t} = \alpha_{0} + \alpha_{1}X_{t-1}^{2}.$$

$$V(X_{t}) = E((X_{t} - E(X_{t}))^{2}) = E(X_{t}^{2})$$

De l'écriture autorégressive sur X_t^2 du modèle ARCH sous hypothèse de stationnarité $(E(X_t^2) = \alpha_0 + \alpha_1 E(X_t^2))$ on a

$$E(X_t^2) = V(X_t) = \frac{\alpha_0}{1 - \alpha_1}$$

Moments du processus ARCH

- La variance marginale du processus X_t existe si et seulement si $\alpha_0 > 0 \text{ et } 0 < \alpha_1 < 1.$
- Les auto-covariances conditionnelles du processus ARCH(1) X_t sont nulles:

$$cov(X_t, X_{t+k}|X_{t-h}) = 0, \ \forall h \ge 1, \ \forall k \ge 1$$

- moment conditionnel centré d'ordre 4 de X_t vérifie : $E(X_t^4|X_{t-1}) = 3(\alpha_0 + \alpha_1 X_{t-1}^2)^2$
- La kurtosis non conditionnelle associée au processus ARCH(1) est égale à : $Kurtosis = \frac{E(X_t^4)}{E(X_t^2)^2} = 3(\frac{1-\alpha_1^2}{1-3\alpha^2}) > 3$

Modèles ARCH(q)

$$X_t = z_t \sqrt{h_t}$$
avec $h_t = \alpha_0 + \sum_{i=1}^q \alpha_i X_{t-i}^2$

et où z_t désigne un bruit blanc faible tel que $E(z_t) = 0$ et $E(z_t^2) = \sigma_z^2$.

• Ce modèle respecte les propriétés de différence de martingale et variance conditionnelle variable dans le temps

$$E(X_t|X_{t-1}) = 0$$
 et $V(X_t|X_{t-1}) = \alpha_0 + \sum_{i=1}^q \alpha_i X_{t-i}^2$

Modèle linéaire auto-régressif $Y_t = E(Y_t|Y_{t-1}) + \varepsilon_t$

où ε_t est un bruit blanc faible

$$E(\varepsilon) = 0$$
 et $E(\varepsilon_t \varepsilon_s) = 0$ si $s \neq t$,

satisfaisant la condition de différence de martingale $E(\varepsilon_t|\varepsilon_{t-1})=0.$

On suppose que ce résidu admet une représentation de type ARCH(q): $\varepsilon_t = z_t \sqrt{h_t}$ avec $h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2$

où z_t est un bruit blanc faible

Modèles avec erreurs ARCH

• Exemple AR(1)- ARCH(1)

$$Y_t = \mu + \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t = z_t \sqrt{h_t}$$

avec
$$h_t = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$
 et $|\rho| < 1$

Le modèle qui décrit à la fois l'évolution de l'espérance conditionnelle et de la variance conditionnelle du processus Y_t dans le temps

- $\bullet \varepsilon_t$: résidus
- z_t : résidus standardisés

Les résidus ε_t satisfont les propriétés des processus ARCH: différence de martingale; variance conditionnelle dépendante du temps; auto-covariance conditionnelles nulles; distribution des résidus leptokurtique

Remark

Pour tenir compte de la dynamique du ε_t^2 , on peut être amené à imposer une valeur élevée du paramètre q dans la modélisation ARCH(q) ce qui peut poser des problèmes d'estimation.

Bollerslev (1986) définit ainsi le processus GARCH(p,q) avec une dynamique de la variance conditionnelle :

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}$$

avec les conditions $\alpha_0 > 0$, $\alpha_i \ge 0$, i = 1, ..., q et $\beta_i \ge 0$, i = 1, ..., p suffisantes pour garantir la positivité de h_t .

Definition

Un processus ε_t satisfait une représentation GARCH(p, q) si

$$\begin{split} \varepsilon_t &= z_t \sqrt{h_t}, \\ h_t &= \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}, \end{split}$$

où z_t est un bruit blanc faible

et où
$$\alpha_0 > 0$$
, $\alpha_i \ge 0$, $i = 1, ..., q$ et $\beta_i \ge 0$, $i = 1, ..., p$

Moments conditionnels

$$E(\varepsilon_t|\varepsilon_{t-1}) = 0$$

$$V(\varepsilon_t|\varepsilon_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i},$$

Variance non-conditionnele

$$V(X_t) = E(X_t - E(X_t)^2) = E(X_t^2)$$

$$V(X_t) = E(X_t^2) = \frac{\alpha_0}{1 - \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)}$$

Variance non-conditionnele (proof)

De l'écriture ARMA sur ε_t^2 du modèle GARCH stationnaire $(\varepsilon_t^2 = \alpha_0 + \sum_{i=1}^{max(p,q)} (\alpha_i + \beta_i) \varepsilon_{t-i}^2 + \mu_t - \sum_{i=1}^p \beta_i \mu_{t-i}, \text{ avec}$ innovations $\mu_t = \varepsilon_t^2 - h_t$) on a

$$E(\varepsilon_t^2) = \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) E(\varepsilon_{t-i}^2) + E(\mu_t) - \sum_{i=1}^p \beta_i E(\mu_{t-i})$$

$$= \alpha_0 + \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i) E(\varepsilon_t^2) + E(\mu_t) - \sum_{i=1}^p \beta_i E(\mu_{t-i})$$

$$\left(1 - \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)\right) E(\varepsilon_t^2) = \alpha_0$$

$$V(X_t) = E(X_t^2) = \frac{\alpha_0}{1 - \sum_{i=1}^{\max(p,q)} (\alpha_i + \beta_i)}$$

Definition

Un processus ε_t satisfaisant une représentation GARCH(p, q) telle que

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i},$$

et où $\alpha_0 > 0$, $\alpha_i \geq 0$, i = 1,...,q et $\beta_i \geq 0$, i = 1,...,p est asymptotiquement stationnaire au second ordre si et seulement si

$$\sum_{i=1}^{q} \alpha_i + \sum_{j=1}^{p} \beta_j \le 1$$

Hypothèse de Normalité

Rappel sur l'idée du MV:

- i) on postule une distribution conditionnelle de ε_t
- ii) on déduit la log-vraisemblance associée à l'échantillon $\ell(\varepsilon_t, \theta)$, avec θ le vecteur de paramètres

Rappel sur l'idée du \mathbf{MV} :

i) on postule une distribution conditionnelle de ε_t

Hypothèse de Normalité

Si $z_t \sim N(\mu_z, \sigma_z)$, alors les processus ARCH(q) et GARCH(p,q) suivent conditionnellement à l'ensemble de l'information disponible F_{t-1} une loi normale de

- moyenne $E(\varepsilon_t|\mathcal{F}_{t-1}) = 0$
- variance $V(\varepsilon_t|\mathcal{F}_{t-1}) = h_t$

Rappel sur l'idée du MV:

ii) on déduit la log-vraisemblance associée à l'échantillon $\ell(\varepsilon_t, \theta)$, avec θ le vecteur de paramètres

Hypothèse de Normalité

La fonction de log-vraisemblance (pseudo log-vraisemblance) associée à un échantillon de T observations $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_T)$ de ε_t sous l'hypothèse de normalité de la loi conditionnelle de ε_t sachant \mathcal{F}_{t-1} s'écrit:

$$\ell(\varepsilon_1, \varepsilon_2, ..., \varepsilon_T; \theta) = \sum_{t=1}^{T} log f(\varepsilon_t | \mathcal{F}_{t-1})$$

$$= -\frac{T}{2} log (2\pi) - \frac{1}{2} \sum_{t=1}^{T} log(h_t(\theta)) - \frac{1}{2} \sum_{t=1}^{T} \frac{\varepsilon_t^2}{h_t(\theta)}$$

Rappel sur l'idée du MV:

Hypothèse de Normalité

L'estimateur du maximum de vraisemblance θ sous l'hypothèse de normalité, satisfait le système non linéaire d'équations suivant (CPO):

$$\frac{\partial \ell(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_T; \theta)}{\partial \theta} \big|_{\theta = \hat{\theta}} = 0$$

L'estimateur θ n'a pas de formule explicite, et peut être obtenu en utilisant des méthodes d'optimisation numériques comme par exemple l'algorithme de Newton-Raphson.

L'estimateur θ vérifie

$$\sqrt{T}(\hat{\theta} - \theta_0) \xrightarrow{d} \mathcal{N}(0, I_T^{-1}(\theta_0))$$

(cf. Chapitre 1 sur le MLE et le QMLE)

Example: SP500

$$dSP_t = c + \varepsilon_t$$

$$\varepsilon_t = z_t \sqrt{h_t} \quad z_t \sim N.i.d.(0, 1)$$

$$h_t = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 h_{t-1}$$

Le Système SAS

The AUTOREG Procedure

Dependent Variable dlsp Ordinary Least Squares Estimates

SSE MSE SBC		0.40117 0.0001069 -23672.063	DFE Root MSE AIC		3754 0.01034 678.294	
Regress R-Square !Durbin-Watson		0.0000 2.0103	Total R-Squ		0.0000	
Variable	DDL	Estimation	Standard Error	t Value	Approx Pr > ¦t¦	
Intercept	1	0.000318	0.000169	1.88	0.0598	

Algorithm converged.

GARCH Estimates

SSE	0.40125116	Observations	3755
MSE	0.0001069	Uncond Var	0.00012899
Log Likelihood	12286.4373	Total R-Square	
SBC	-24539.951	AIC	-24564.875
Normality Test	3199.6495	Pr > ChiSq	<.0001

Variable	DDL	Estimation	Error	t Value	$Pr \rightarrow \{t\}$
Intercept	1	0.000465	0.000138	3.37	0.0008
ARCH0	1	4.8418E-7	9.4476E-8	5.12	< .0001
ARCH1	1	0.0443	0.003015	14.70	< .0001
GARCH1	1	0.9519	0.003226	295.09	< .0001
Gilles de Truchis, Elena Du	mitrescu	Écono	métrie non-linéaire		53/9:

Standard

ADDITOX

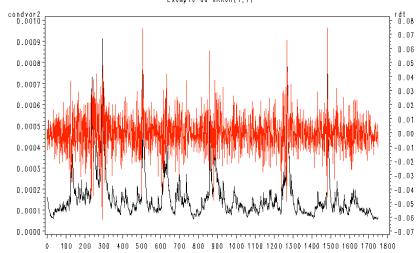
Exemple: SP500

$$dSP_t = 0.000465 + \varepsilon_t$$

$$\varepsilon_t = z_t \sqrt{h_t} \quad z_t \sim N.i.d.(0, 1)$$

$$h_t = 4.84e^{-7} + 0.0443\varepsilon_{t-1}^2 + 0.9519h_{t-1}$$

Variance conditionnelle et Rendements estimes



Exemple: SP500 AR(2)-GARCH(1,3) troué

$$\begin{split} dSP_t &= c + \phi_1 dSP_{t-1} + \phi_2 dSP_{t-2} + \varepsilon_t \\ \varepsilon_t &= z_t \sqrt{h_t} \quad z_t \sim N.i.d.(0,1) \\ h_t &= \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + + \alpha_3 \varepsilon_{t-3}^2 + \beta_1 h_{t-1} \end{split}$$

code SAS:

```
proc autoreg data=donnes;
    model dSP_t = /\text{nlag} = 2 \text{ garch} = (q = (1,3), p = 1) \text{ covest} = qml;
    output out=r r=yresid:
run;
```

Observations

0.0170

0.0199

0.0198

0.0313

0.0250

3.4826E-7

Uncond Var

3755

0.00011318

-0.98

-0.30

0.82

3.68

-1.39

38.66

Modèles GARCH

SSE

MSE

AR1

AR2

ARCH0

ARCH1

ARCH3

GARCH1

GARCH Estimates

0.40156741

0.0001069

-0.0166

0.0729

0.9682

-0.0436

-0.005916

2.8496E-7

Log Likelihood SBC Normality Test		12292.177 -24526.738 2395.3023	Total R-Square AIC Pr > ChiSq	-24570.354 <.0001	
Variable	DDL	Estimation	Standard Error	t Value	Approx Pr > ¦t¦
Intercept	1	0.000506	0.000136	3.71	0.0002

0.3268

0.7665

0.4132

0.0002

0.1633

< .0001

Estimateurs du MV sous d'autres lois

- i) Student
- ii) Skewed Student
- iii) GED

MV sous Student

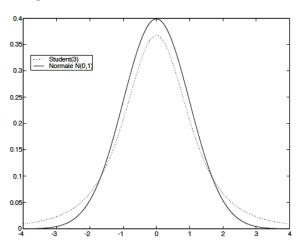
Si x et y sont deux variables aléatoires indépendantes, telles que xsuit une loi N(0,1) et y suit une loi du chi-deux à v degrés de liberté, alors la variable

$$t = \frac{x}{\sqrt{y/v}}$$

est distribué selon une loi de Student à v degrés de liberté, telle que E(t) = 0 si v > 1 et V(t) = v/(v-2) si v > 2.

MV sous Student

Comparaison entre les Distributions de Student et Normale



MV sous Student

Si la variable z_t admet une distribution de Student à v degrés de libertés, où $v \in \mathbb{R}$ vérifie v > 2, alors la log-vraisemblance associée à une observation et à l'ensemble de paramètres θ s'écrit :

$$\ell(\theta, \varepsilon_t) = \log\left[\Gamma\left(\frac{v+1}{2}\right)\right] - \log\left[\Gamma\left(\frac{v}{2}\right)\right] - 0.5\left[\log[\pi(v-2)] + \log(h_t) + (1-v)\log\left(1 + \frac{z_t^2}{v-2}\right)\right]$$

où $\Gamma(.)$ désigne la fonction Gamma et où $z_t = \frac{\varepsilon_t - \mathrm{E}\varepsilon_t}{\sqrt{L}}$

AR(2)-GARCH(1,3) sous Student

GARCH Estimates

SSE MSE Log Likelihood SBC	0.40122616 0.0001069 14457.071 -28848.295	Observations Uncond Var Total R-Square AIC	3755 -28898.142
Normality Test	5752.8219	Pr > ChiSq	<.0001

Variable	DDL	Estimation	Standard Error	t Value	Approx Pr > t
Intercept	1	0.000520	0.000101	5.12	< .0001
AR1	1	0.005989	0.0142	0.42	0.6740
AR2	1	0.0182	0.0140	1.30	0.1921
ARCH0	1	9.2511E-6	0.0000282	0.33	0.7426
ARCH1	1	0.7571	2.2852	0.33	0.7404
ABCH3	1	1.1003	3.3777	0.33	0.7446
GARCH1	1	0.8911	0.0167	53.47	< .0001
TDF I	1	0.4869	0.0399	12.21	< .0001

$$v = \frac{1}{TDF1} = 2.0538$$

MV sous Student dissymétrique standardisée

$$\ell(\theta, \varepsilon_t) = \log\left[\Gamma\left(\frac{v+1}{2}\right)\right] - \log\left[\Gamma\left(\frac{v}{2}\right)\right] + \log\left(\frac{2}{\xi + \frac{1}{\xi}}\right) + \log(s)$$
$$-0.5\left[\log[\pi(v-2)] + \log(h_t) + (1-v)\log\left(1 + \frac{(sz_t + m)^2}{v-2}\xi^{-2I_t}\right)\right]$$

avec
$$m = \frac{\Gamma(\frac{v-1}{2})\sqrt{v-2}}{\sqrt{\pi}\Gamma(\frac{v}{2})} (\xi - \frac{1}{\xi}),$$

$$s^{2} = (\xi^{2} + \frac{1}{\xi^{2}} - 1) - m^{2},$$

$$I_{t} = \begin{cases} 1, & \text{si } z_{t} \geq -\frac{m}{s} \\ 0, & \text{si } z_{t} \leq -\frac{m}{s} \end{cases}$$

- Distribution leptokurtique et asymétrique
- ξ paramètre d'asymétrie (si $\xi = 1$, Student classique)

MV sous GED Si la variable z_t , telle que $E(z_t) = 0$ et $V(z_t) = 1$,

admet une distribution GED de paramètre v>0, sa densité est définie par :

$$f_z(z_t) = \frac{v \exp(-0.5|z_t/\lambda|^v)}{\lambda 2^{[(v+1)/v]} \Gamma(1/v)}$$

où $\Gamma(.)$ désigne la fonction gamma et λ est une constante définie par

$$\lambda = \left[\frac{2^{-\frac{2}{v}}\Gamma(1/v)}{\Gamma(3/v)}\right]^{\frac{1}{2}}$$

MV sous GED

Si la variable z_t admet une distribution GED avec $v \in \mathbb{R}^*$, alors la log-vraisemblance associée à une observation z_t et à l'ensemble de paramètres θ s'écrit :

$$\begin{split} \ell(\theta, \varepsilon_t) &= \log(v/\lambda) - 0.5 |\frac{z_t}{\lambda}|^v - (1+v^{-1})\log(2) - \log\left[\Gamma(\frac{1}{v})\right] - 0.5\log(h_t) \\ \text{avec} \\ \lambda &= \sqrt{\frac{2^{-2/v\Gamma(\frac{1}{v})}}{\Gamma(\frac{3}{v})}} \end{split}$$

où $\Gamma(.)$ désigne la fonction Gamma.

Extensions

- Modèles ARMA-GARCH
- 2 GARCH-M
- 3 IGARCH
- 4 GARCH asymmétriques

• Weiss (1984)

régression linéaire avec erreurs GARCH :

$$y_t = x_t b + \varepsilon_t, \ \varepsilon_t \sim GARCH(p, q)$$

ARMA avec erreurs GARCH:

$$\Phi(L)y_t = \Theta(L)\varepsilon_t, \, \varepsilon_t \sim GARCH(p,q)$$

Extension 2 GARCH-M

• Engle et al. (1987)

$$y_t = x_t b + \delta h_t + \varepsilon_t = x_t b + \delta V(\varepsilon_t | \mathcal{F}_{t-1}) + \varepsilon_t$$
$$\varepsilon_t = z_t \sqrt{h_t}, \ z_t \ i.i.d. \ (0, 1)$$

$$h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}$$

Trois cas:

$$y_t = x_t b + \delta h_t + \varepsilon_t$$
 Forme linéaire $y_t = x_t b + \delta log(h_t) + \varepsilon_t$ Forme log-linéaire $y_t = x_t b + \delta \sqrt{h_t} + \varepsilon_t$ Forme racine carrée

Note: la variance conditionnelle est une variable explicative de la movenne conditionnelle

Extension 2 GARCH-M

SSE

ARCHO

ARCH1

GARCH1

DELTA

SP500 : GARCH(1,1)-M spécification racine carrée

0.40117164

5.1173E-7

0.0455

0.9505

0.0629

GARCH Estimates

MSE Log Likelihood SBC Normality Test		0.0001068 12287.2538 -24533.353 3216.2064	Uncond Var Total R-Square AIC Pr > ChiSq	-24564.508 <.0001	
Variable	DDL	Estimation	Standard Error	t Value	Approx Pr > ¦t¦
Intercept	1	-0.000021	0.000425	-0.05	0.9612

Observations

1.0134E-7

0.003159

0.003429

0.0514

< .0001

< .0001

< .0001

0.2208

3755

5.05

1.22

14 41

277.15

Extension 3. IGARCH

Modèles IGARCH

- Engle and Bollerslev (1987)
- correspondent au cas d'une racine unitaire dans le processus de variance conditionnelle
- sont caractérisés par un effet de persistance dans la variance Un processus ε_t satisfait une représentation IGARCH(p,q) si et seulement si:

$$V(\varepsilon_t|\mathcal{F}_{t-1}) = h_t = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}$$

avec

$$\alpha_0 \ge 0, \alpha_i \ge 0 \ \forall i = 1, \dots, q \ \text{et} \ \beta_j \ge 0, j = 1, \dots, p \ \text{et} \ \sum_{i=1}^q \alpha_i + \sum_{i=1}^p \beta_i = 1$$

• Nelson (1990):

$$V[\varepsilon_t/\varepsilon_{t-1}] = h_t = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 h_{t-1} \text{ avec } \alpha_1 + \beta_1 = 1$$

Prévisions de la variance conditionnelles à différents horizons k

Frevisions de la variance conditionnenes a din
$$E[h_{t+k}/\varepsilon_t] = (\alpha_1 + \beta_1)^k h_t + \alpha_0 \sum_{i=0}^{k-1} (\alpha_1 + \beta_1)i$$

• si $\alpha_1 + \beta_1 = 1$, $E[h_{t+k}/\varepsilon_t] = h_t + \alpha_0 k$

En présence d'un terme constant, cette espérance diverge avec k

Extension 4. GARCH Asymétriques

GARCH: la réponse de la volatilité future aux variations de prix déterminée uniquement par l'ampleur de ces dernières et non leur signe.

Les modèles GARCH asymétriques étendent ces spécifications en incorporant de l'asymétrie dans la réponse de la volatilité aux variations de prix

EGARCH

• Nelson (1991)

Un processus ε_t satisfait une représentation EGARCH(p,q) si et seulement si:

$$\varepsilon_t = z_t \sqrt{h_t}$$

$$\log(h_t) = \alpha_0 + \sum_{i=1}^{q} \alpha_i g(z_{t-i}) + \sum_{i=1}^{p} \beta_i \log(h_{t-i})$$

où le résidu normalisé z_t est un bruit blanc faible et où la fonction g(.) vérifie :

$$g(z_{t-i}) = \theta z_{t-i} + \gamma(|z_{t-i}| - E|z_{t-i}|)$$

EGARCH

Modèle estimable:

$$\log(h_t) = \alpha_0 + \sum_{i=1}^q a_i z_{t-i} + \sum_{i=1}^q b_i (|z_{t-i}| - \mathrm{E}[|z_{t-i}|]) + \sum_{i=1}^p \beta_i \log(h_{t-i})$$

- L'écriture porte sur le logarithme de la variance conditionnelle h_t de ε_t , \Rightarrow aucune restriction n'a besoin d'être imposée sur les différents paramètres de l'équation pour assurer la positivité de h_t
- La variance conditionnelle h_t fait apparaître un effet de signe, $a_i z_{t-i}$, et un effet d'amplitude mesuré par $b_1(|z_{t-i}| - E[|z_{t-i}|])$.

EGARCH

 $\mathrm{E}[|z_{t-1}|]$ dépend de la loi supposée de z_t

$$\mathrm{E}[|z_t|] = \sqrt{\frac{2}{\pi}}$$
 Loi Gaussienne

$$\mathrm{E}[|z_t|] = 2 \frac{\gamma(\frac{v}{2})\sqrt{v-2}}{\sqrt{\pi}(v-1)\Gamma(\frac{v}{2})}$$
 Loi de Student (v)

$$E[|z_t|] = \frac{4\xi^2 \Gamma(\frac{1+v}{2})\sqrt{v-2}}{(\xi + \frac{1}{xi})\sqrt{\pi}(v-1)\Gamma(\frac{v}{2})} \text{ Loi de Student dissymétrique } (\xi)$$

$$E[|z_t|] = \frac{\Gamma_{\overline{v}}^2}{\sqrt{\Gamma(\frac{1}{v})\Gamma(\frac{3}{v})}} \text{ Loi GED (v)}$$

EGARCH - condition de stationnarité

Definition

Supposons que $g(z_t)$ n'est pas presque partout nul et que les polynômes $\alpha(z) = \sum_{i=1}^{q} \alpha_i z^i$ et $\beta(z) = 1 - \sum_{i=1}^{p} \beta_i z^i$ n'ont pas des racines communes, et que $\alpha(z)$ n'est pas identiquement nul. Alors, le modèle EGARCH(p,q) admet une solution strictement stationnaire si et seulement si les racines de $\beta(z)$ sont en dehors du cercle unitaire. Cette solution implique $E(\log \varepsilon_t^2)^2 < \infty$ lorsque $E(\log z_t^2)^2 < \infty$ et $E(\log z_t^2)^2 < \infty$.

Nasdaq : EGARCH(1,1)

	NOTE: At FIML	Iteration 1	15 CONVERGE=0.00	1 Criteria Met.
--	---------------	-------------	------------------	-----------------

Estimations FIML Parameter non linéaires						
Parameter	Estimation	Erreur standard appr.	Valeur du test t	Approx Pr > t		
alpha0	4.094E-6	7.97E-7	5.14	<.0001		
alpha1	0.174515	0.0190	9.17	<.0001		
beta1	0.866692	0.0136	63.83	<.0001		
phi	-0.10213	0.0180	-5.67	<.0001		
intercept	0.000482	0.000232	2.08	0.0375		

GJR-GARCH

• Glosten et al (1993) Un processus ε_t satisfait une représentation GJR-GARCH(p,q) si et seulement si :

$$\varepsilon_t = z_t \sqrt{h_t}$$

$$h_t = \alpha_0 + \sum_{i=1}^{q} (\alpha_i \varepsilon_{t-i} + \gamma_i \mathbf{I}_{\varepsilon_{t-i} < 0} \varepsilon_{t-i}^2) + \sum_{i=1}^{p} \beta_i h_{t-i}$$

où le résidu normalisé z_t est un bruit blanc faible et $I_{\varepsilon_{t-i}<0}$ désigne la fonction indicatrice telle que

$$I_{\varepsilon_{t-i}<0}=1 \text{ si } \varepsilon_{t-i}<0 \text{ et } I_{\varepsilon_{t-i}<0}=0 \text{ sinon}$$

GJR-GARCH(1,1)

$$h_t = \alpha_0 + \alpha_1 \varepsilon_{t-i}^2 + \gamma_1 \mathbf{I}_{\varepsilon_{t-i} < 0} \varepsilon_{t-1}^2 + \beta_1 h_{t-1}$$

011

$$h_t = \alpha_0 + \alpha_{pos} \mathbf{I}_{\varepsilon_{t-i} \geq 0} \varepsilon_{t-1}^2 + \alpha_{neg} \mathbf{I}_{\varepsilon_{t-i} < 0} \varepsilon_{t-1}^2 + \beta_1 h_{t-1}$$

Nasdaq : GJR-GARCH(1,1)

NOTE: At FIML Iteration 40 CONVERGE=0.001 Crite	riteria Met.
---	--------------

Estimations FIML Parameter non linéaires						
Parameter	Estimation	Erreur standard	Valeur du test t	$\begin{array}{c} Approx \\ Pr > t \end{array}$		
alpha0	-0.1217	0.0285	-4.26	<.0001		
alpha1	0.06046	0.00968	6.25	<.0001		
beta1	0.985106	0.00339	290.93	<.0001		
theta	3.198596	0.5900	5.42	<.0001		
intercept	0.000413	0.000225	1.84	0.0665		

TGARCH(1,1)

• Zakoïan (1994)

Un processus ε_t satisfait une représentation TGARCH(1,1) si et seulement si :

$$\varepsilon_t = z_t \sqrt{h_t}$$

$$\sqrt{h_t} = \alpha_0 + \alpha_{pos} I_{\varepsilon_{t-i} \ge 0} \varepsilon_{t-1} - \alpha_{neg} I_{\varepsilon_{t-i} < 0} \varepsilon_{t-1} + \beta_1 \sqrt{h_{t-1}}$$

où le résidu normalisé z_t est un bruit faible et $I_{\varepsilon_{t-1}<0}$ désigne la fonction indicatrice telle que

$$\mathbf{I}_{\varepsilon_{t-i}<0}=1$$
 si $\varepsilon_{t-i}<0$ et $\mathbf{I}_{\varepsilon_{t-i}<0}=0$ sinon

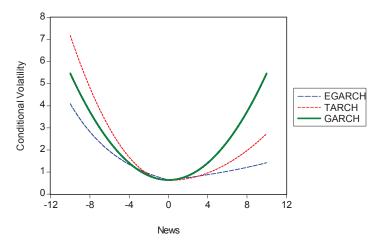
• Asymétrie spécifiée sur l'écart type et non sur la variance conditionnelle

News Impact Curve (NIC)

- Engle and Ng (1993)
 - Les nouvelles ont des effets asymétriques sur la volatilité
 - La NIC mesure l'impact des chocs des rendements présents sur la variance conditionnelle de la période suivante.
 - Elle facilite la comparaison des modèles
 - La NIC des modèles de la famille ARCH-GARCH est définie comme la différence entre la variance pour un choc e_t et la variance sans $choc (e_t=0)$
 - La NIC ne dépend pas du niveau de la variance car la variance des périodes passées est fixée à son espérance non-conditionnelle h_t :

$$n(e_t) = h_{t+1}(e_t|h_t = \bar{h}_t)$$

$$NIC(e_t) = n(e_t) - n(0)$$



News Impact Curves For Daily Volatility of the Dow Jones Industrial Average (DJIA) 1915-2001.

Exemples:

GARCH(1,1)

NIC est donnée par les termes de l'équation de variance conditionnelle contenant ε_t^2 $n(e_t) = \alpha_1 e_t^2$ où $n(e_t) = A + \alpha_1 e_t^2$ et $A = \alpha_0 + \beta_1 \bar{h}_t$

EGARCH(1,1)

$$n(e_t) = \begin{cases} A^E \exp\left[\frac{a+b}{\bar{h}_t} e_t\right], & \text{for } e_t > 0, \\ A^E \exp\left[\frac{a-b}{\bar{h}_t} e_t\right], & \text{for } e_t < 0, \end{cases}$$

avec
$$A^E = \bar{h}_t^{2\beta_1} \exp[a_0 - b\sqrt{2/\pi}], \ a < 0 \text{ et } a + b > 0.$$

 \bullet Tests habituels d'autocorrélation sur la série des rendements au carré X_t^2 : Ljung Box

H0:
$$\rho_1 = \rho_2 = \dots = \rho_K = 0$$
,

$$Q_{LB}(K) = T(T+2) \sum_{k=1}^{K} \frac{\hat{\rho}_k^2}{T-k} \xrightarrow{d} \chi^2(K)$$

où $\hat{\rho}_k$ désigne l'autocorrélation empirique :

$$\hat{\rho}_k = \frac{\sum\limits_{t=k+1}^T (X_t^2 - \bar{X}^2)(X_{t-k}^2 - \bar{X}^2)/(T-k)}{\sum\limits_{t=k+1}^T (X_t^2 - \bar{X}^2)^2/T}$$

Test d'effet ARCH/GARCH

• ARCH-LM test d'homoscédasticité conditionnelle

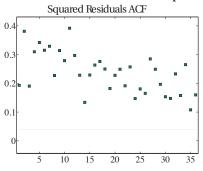
Regression auxiliaire:

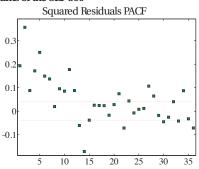
$$\hat{\varepsilon}_t^2 = \phi_0 + \phi_1 \hat{\varepsilon}_{t-1}^2 + \dots + \phi_p \hat{\varepsilon}_{t-p}^2 + \eta_t$$

$$H0: \phi_1 = \dots = \phi_p = 0$$

Statistique de test : LM(p)= $T\times R^2 {{d}\over{T\to\infty}} \chi^2(p)$

ACF and PACF of squared returns of the S&P 500





Test d'effet ARCH/GARCH

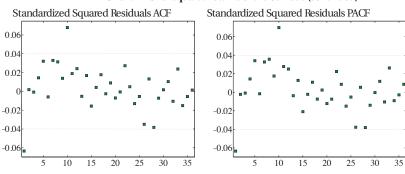
Validation du modèle (G)ARCH choisi

Ljung Box test sur les résidus standardisés $\hat{z}_t = X_t/\sqrt{h_t}$

$$Q_{LB,\hat{z}}(K) \xrightarrow[T \to \infty]{d} \chi^2(K-m),$$

où m représente le nombre de paramètres estimés dans le modèle (G)ARCH

ACF and PACF of squared returns of the S&P 500 (continued)



Conclusions

Démarche - estimation des modèles de la famille GARCH

- Est-ce que la modélisation (G)ARCH est appropriée ? \Rightarrow tester la présence d'effets ARCH sur le serie des rendements
- Est-ce que des termes autoregréssifs ou moyenne mobile sont nécessaires? \Rightarrow tester la présence d'autocorrélation dans la série des rendements
- Estimer le modèle choisi précédemment
- Testez la validité de ce modèle en appliquant le test d'effet ARCH / GARCH sur la série des innovations \hat{z}_t . Si le modèle n'est pas valide augmentez l'ordre p ou q du modèle GARCH
- Enrichir le modèle en autorisant des effets d'asymétrie, par exemple.

Bibliographie générale :

- Bollerslev, T, 1986. Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics (1986)
- Engle, R.F., Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation. Econometrica, 50, 987-1008.
- Engle, R.F., D. Lilien, and R. Robins, 1987. Estimating time varying risk premia in the term structure: The ARCH-M model, Econometrica, 5(5), 391-408.
- Engle, R.F. and T. Bollerslev, 1987. Modelling the Persistence of Conditional Variances. Econometric Reviews, 5(1), 1-50.
- Engle, R.F. and V.K. Ng, 1993. Measuring and testing the impact of news on volatility. Journal of Finance, 48(5), 1749-78.
- Glosten, L. R., R. Jaganathan, and D. Runkle, 1993. On the Relation between the Expected Value and the Volatility of the Normal Excess Return on Stocks. Journal of Finance, 48, 1779-1801.
- Nelson, D., 1991. Conditional heteroskedasticity in asset returns: a new approach, Econometrica, 59, 347-370.
- Nelson, D.B., 1990, Stationarity and Persistence in the GARCH(1,1) Model, Econometric Theory, 6, 318-334.
- Weiss, A.A., 1984. ARMA models with ARCH errors, Journal of Time Series Analysis, 5, 129-143.
- Zakoïan, J. M., 1994. Threshold Heteroskedastic Models. Journal of Economic Dynamics and Control, 18, 931-944.